von Angela Kempe
Am 5. November fand eine von der Fakultät für Mathematik
organisierte und von den Studenten lang gewünschte
Informationsveranstaltung statt. Auf ihr hatten die Dozenten
Gelegenheit, ihre Vorlesung(en) und ihre Forschungsgebiete
vorzustellen. Außerdem sollten speziell die Technomathematiker des 3.
und 1. Semesters über ihre Wahlmöglichkeiten informiert werden.
Hinweis auf
Im folgenden berichten die einzelnen Dozenten. Zu den Inhalten der
Vorlesungen verweise ich auf das Kommentierte Vorlesungsverzeichnis.
Herr Prof. Scheurle, seit diesem Semester an unserer Universität,
hält die Vorlesung Partielle Differentialgleichungen. Seine
Arbeitsgebiete sind dynamische Systeme und deren Langzeitverhalten. Da
in seiner Vorlesung numerische Verfahren nur am Rande behandelt
würden, verweist er auf die Vorlesung Numerik Partieller
Differentialgleichungen, die dieses Semester von Herrn Prof. Hebeker gelesen
wird. Außerdem kündigt er für das nächste Semester ein Hauptseminar und eine
Vorlesung über unendlichdimensionale dynamische Systeme an, an deren Anschluß
man sich unmittelbar in eine Diplomarbeit einarbeiten könne.
Herr Prof. Tinhofer hält die bereits erwähnte Vorlesung
Kombinatorische Optimierung, die in Zusammenhang mit der linearen
Optimierung und der algorithmischen Graphentheorie steht. Er
beschäftigt sich vor allem mit Packungs- und Verschnittproblemen.
Für die Vergabe von Diplomarbeiten, deren Themen aus der ,,Außenwelt`` kommen,
gäbe es keine Vorbedingung.
Frau Dr. Meyer-Spasche arbeitet am Max-Plank-Institut für Plasmaphysik.
Ihre Forschungsschwerpunkte liegen im Bereich der Theorie dynamischer Systeme
(kontinuierlich und diskret), der Numerik nichtlinearer Differentialgleichungen
(wo gerade eine Diplomarbeit fertig geworden ist) und in den Anwendungen in
der Plasmaphysik und der Fluiddynamik. Dieses Semester liest sie
Bifurkationsprobleme in Anwendungen.
Herr Prof. Hoffmann hält eine Vorlesung über Mathematische
Methoden in der Kontinuums-Mechanik, die in Partiellen
Differentialgleichungen mündet und sowohl analytische wie auch
numerische Lösungsmethoden behandelt. In seinen Forschungsarbeiten
beschäftigt er sich mit Variationsproblemen, schwachen Lösungen,
,,smart materials``, Robotik und mathematischen Modellen zur Prognose
naturwissenschaftlicher Vorgänge.
Herr Prof. Reinsch liest dieses bzw. nächstes Semester die
Vorlesung Numerische Mathematik 3 bzw. 4. Die bereits angekündigte Vorlesung
über die ,,brandaktuellen`` Wavelets werde er in einem oder zwei Jaren lesen.
Er habe eine Diplomarbeit in Zusammenarbeit mit Siemens zu vergeben, in
der ein bekanntes Verfahren zur Signalverarbeitung adaptiert werden soll.
Herr Priv.-Doz. Dr. Hartl stellte in Vertretung für Herrn
Prof. Giering das Angebot des Lehrstuhls Geometrie I vor. Zu den
Kursvorlesungen gehören Geometrie und Differentialgeometrie, die man
bereits vor der DVP schon hören kann. Im Anschluß daran, nicht jedes
Semester natürlich, gibt es Globale Differentialgeometrie, Spezielle
Flächen, allgemeine Relatvitätstheorie, angewandte Rechnergestützte
Geometrie (nicht zum Bereich Mathematik I) und Kinematik (letzteres auch
schon vor der DVP) und Seminare. Die Themen für FoPras und Diplomarbeiten
würden gesprächsweise entwickelt. Für Studierende des Studiengangs
Technomathematik werde ab dem Sommersemester '98 eine eigene
problemorientierte Geometrie gelesen. Die Forschungsrichtungen sind
Flächen mit ebenen Fallinien, pseudoeuklidische Kreisgeometrie,
nichteuklidische Kinematik und Koppelkurven in der hyperbolischen Ebene.
Herr Prof. Bulirsch, unser scheidender Dekan, liest in den
nächsten beiden Jahren die Analysis I-IV. Er berichtete für seinen Lehrstuhl
Höhere und Numerische Mathematik und wies besonders auf zwei Vorlesungen
dieses Semesters hin:
Singuläre Störungen (Herr Priv.-Doz. Kugelmann)
Mathematische Grundlagen der Computertomographie (Herr Dr. K.-D. Reinsch)
Ausführlich informieren über Forschungsbereiche kann man sich im Internet
unter
http://www.mathematik.tu-muenchen.de/Numerik .
Auch Herr Prof. Königsberger sprach für seinen Lehrstuhl
Analysis II, der in diesem Semester die Vorlesung Funktionentheorie II
(Herr Dr. Roesler) anbietet. Diese Vorlesung, die in Richtung der
Zahlentheorie gehe, werde im Sommersemester in einem Seminar fortgeführt.
Es werde, ebenfalls im Sommersemester, eine Fortsetzung der Funktionentheorie
aus Analysis 3 geben mit der Ausrichtung geometrische Funktionentheorie.
Im Anschluß daran solle eine Veranstaltung
über komplexe dynamische Systeme stattfinden.
Herr Prof. Meyberg hält dieses Semester Ergänzungen zur
Algebra. Seine Arbeitsgebiete sind: Algebra, Lie - Algebren, Matrizentheorie
und verschiedene Typen von Algebren.
Im Anschluß daran hatten die Erstsemester des Studiengangs
Technomathematik Gelegenheit, spezielle Fragen zu stellen.
Angela Kempe