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Abstract

This thesis consists of two parts: in the first part we focus on information set decoding
algorithms and in the second part on the local to global principle for densities.

One of the main candidates for post-quantum cryptography is based on coding
theory, more in detail, its security is based on the NP-complete problem of decoding
a random linear code. Code-based cryptography first came up with the seminal work
of McEliece in 1978. The fastest algorithm to solve this NP-complete problem, and
thus to decode a random code, is information set decoding. These algorithms have
exponential cost in the input size. Hence they are not considered as attacks on code-
based cryptosystems but are rather used as a tool to determine the necessary size of
public keys in order to achieve a given security level. The main disadvantage of code-
based cryptography is its enormous public key size. Many researchers have tried to
tackle this problem, by proposing different families of codes as secret key.

Recently, the community has changed its focus on a different direction: changing
the underlying metric of the code. In fact, cryptosystems based on the rank metric
achieve remarkably small key sizes. In this part of the thesis we follow this new path
for code-based cryptography and provide different information set decoding algorithms
in the Lee metric. The Lee metric is very promising as it can correct many more errors
than the Hamming metric and in fact our theoretical comparisons confirm that the key
size will decrease substantially.

In the second part of this thesis we focus on the natural density, which is the Z-
analogue of a uniform probability distribution. This topic belongs to theoretical number
theory, and dates back to a question asked by Mertens and Césaro, namely: how likely
is it that two randomly chosen integers are coprime? To compute the natural density
there exist many different techniques. We will focus on the local to global principle
that allows to compute natural densities by characterizing the target set locally, i.e.,
over the p-adic integers. Using this method, we give an elegant proof that the density of
coprime pairs is ﬁ%’ where ¢ denotes the Riemann zeta function. In addition, the set
of Eisenstein polynomials and the generalizations of the set of coprime pairs, namely
the coprime m-tuples and the rectangular unimodular matrices, are considered.

Furthermore, seeing the natural density as a Z-analogue of a uniform probability
distribution the natural task arises to define the mean and the variance corresponding
to this density. We use tools of analytic number theory to compute the mean and
variance for the four sets of interest. The results all follow the same pattern, which
only becomes visible when considering the local to global principle. Hence we are
able to give an addendum to the local to global principle, which with few additional
conditions guarantees the existence of the mean and the variance and allows to compute
them directly in an elegant way.






Kurzfassung

Diese Doktorarbeit besteht aus zwei Teilen: im ersten Teil konzentrieren wir uns auf
Decodieralgorithmen mittels Informations-Sets und im zweiten Teil auf das ,,lokal zu
global“ Prinzip fiir Dichten.

Einer der Hauptkandidaten fiir Post-Quanten Kryptographie basiert auf Codierungs-
theorie, genauer gesagt, die Sicherheit basiert auf dem NP-vollstindigen Problem des
Decodierens eines zufélligen linearen Codes. Codierungs-basierte Kryptographie wurde
mit der wegweisenden Arbeit von McEliece im Jahr 1978 eingefiihrt. Der schnellste
Algorithmus, um dieses NP-vollstdndige Problem zu 16sen und damit einen zufalli-
gen Code zu decodieren, ist Decodierung via Informations-Sets. Da diese Algorith-
men exponentielle Kosten haben, werden sie nicht als Angriffe auf Codierungs-basierte
Kryptosysteme betrachtet, sondern werden vielmehr als Werkzeug verwendet, um die
erforderliche Grosse des offentlichen Schliissels zu bestimmen, der nétig ist um ein
gewisses Sicherheitslevel zu erreichen. Der grosste Nachteil der Codierungs-basierten
Kryptographie ist die enorme Grosse dieses offentlichen Schliissels. Viele Forscher
haben versucht, dieses Problem zu beheben, indem sie verschiedene Familien von Codes
als geheimen Schliissel vorgeschlagen haben. Erst vor kurzem hat sich der Fokus in
eine andere Richtung gewendet: das Wechseln der zugrundeliegenden Metrik des Codes.
In der Tat erzielen Kryptosysteme, die auf der Rangmetrik basieren, bemerkenswert
kleine Schliisselgrossen. In diesem Teil der Arbeit folgen wir diesem neuen Weg der
Codierungs-basierten Kryptographie und préasentieren verschiedene Information-Set
Dekodieralgorithmen in der Lee-Metrik. Die Lee-Metrik ist sehr vielversprechend, da
sie viel mehr Fehler korrigieren kann als die Hamming-Metrik und in der Tat bestatigen
unsere theoretischen Vergleiche, dass sich die Schliisselgrosse erheblich verringert.

Im zweiten Teil dieser Arbeit konzentrieren wir uns auf die natiirliche Dichte, die als
Analogon einer gleichméssigen Wahrscheinlichkeitsverteilung iiber den ganzen Zahlen
angesehen werden kann. Dieses Thema gehort zur theoretischen Zahlentheorie und
geht auf eine Frage von Mertens und Césaro zuriick, ndmlich: Wie wahrscheinlich ist
es, dass zwei zufallig gewéhlte ganze Zahlen teilerfremd sind? Um die natiirliche Dichte
zu berechnen, gibt es viele verschiedene Techniken. Wir werden uns auf das sogenan-
nte ,lokal zu global“ Prinzip konzentrieren, welches es ermoglicht, natiirliche Dichten
durch eine lokale Charakterisierung der Zielmenge zu berechnen. Mit Hilfe dieser Meth-
ode geben wir einen eleganten Beweis dafiir, dass die Dichte von teilerfremden Paaren
ﬁ betragt, wobei ¢ die Riemannsche Zetafunktion bezeichnet. Zusétzlich werden wir
die Menge der Eisenstein-Polynome und die Verallgemeinerungen der Menge der teil-
erfremden Paare, also die teilerfremden m-Tupel und die rechteckigen unimodularen
Matrizen, betrachten. Wenn wir die natiirliche Dichte als Z-Analogon einer gleichmafi-
gen Wahrscheinlichkeitsverteilung betrachten, so stellt sich die natiirliche Frage, den
Mittelwert und die Varianz, die zu dieser Dichte gehoren, zu definieren. Wir verwen-
den einige Werkzeuge der analytischen Zahlentheorie zur Berechnung des Mittelwerts
und der Varianz fiir die vier Zielmengen. Die Ergebnisse folgen alle demselben Muster,
das nur bei Betrachtung des ,lokal zu global“ Prinzips sichtbar wird. Daher kénnen
wir ein Addendum zum ,lokal zu global®* Prinzip erstellen, welches mit nur wenigen
zusatzlichen Bedingungen die Existenz des Mittelwerts und der Varianz garantiert und
es ermOglicht, diese auf eine elegante Art und Weise direkt zu berechnen.
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Chapter 1

Preface

This thesis covers two aspects of algebra: in the first part we focus on applied algebra,
namely cryptography, whereas in the second part, we consider a more theoretical topic,
namely number theory.

Although, number theory can be used in cryptography, the topics we cover in this
thesis do not live in this intersection.

We have put the two very different aspects together in one thesis for several reasons;
for applied algebra studying the theoretical background is crucial and leads to a broader
insight. On the other hand, from applications, such as cryptography, arise many in-
teresting theoretical questions. Thus, studying both, applications and the theoretical
background, builds a fruitful bridge, especially for cryptography.

Information Set Decoding On the applied algebra side we focus on information
set decoding. These are algorithms that decode random linear codes. A code is a linear
space over a finite field and to decode is comparable with finding the element in the
code, that is closest to a given element in the full space. In order to measure how close
two vectors are codes are equipped with a metric. To ensure that decoding is possible
a code is usually endowed with some algebraic structure. However, if a code is chosen
at random this problem is NP-complete.

Although these algorithms arose from a theoretical question they are currently of
crucial importance in code-based cryptography.

In the era of capable quantum computers all currently used public key cryptosys-
tems will be completely broken. With the threat coming from quantum computers
cryptography is facing its probably most important task: the search for quantum-
secure cryptosystems.

At the core of post-quantum cryptography lies the hope that cryptosystems whose
security rely on NP-complete problems will survive attacks on quantum computers.

With the seminal work of McEliece the NP-complete problem of decoding a random
linear code lies at the base of code-based cryptography.

The National Institute of Standards and Technology (NIST), responsible for stan-
dardizing cryptosystems, has initiated such a standardization process for post-quantum
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Chapter 1. Preface

cryptosystems and code-based cryptography is one of the main candidates.

In the McEliece cryptosystem a code with algebraic structure is used as private key.
The public key consists of a scrambled version of this code. If the code is hidden well
enough an adversary has to decode a random looking code. Thus, the adversary would
use the fastest algorithm to solve this problem, namely information set decoding.

Information set decoding is based on an algorithm proposed by Prange in 1962 and
many improvements have been suggested since. Information set decoding algorithms
come with a cost that is exponential in the input size. Thus, such algorithms do
not break a cryptosystems but rather determine the size of the public key for a fixed
security level.

One of the main problems in code-based cryptography is the enormous size of the
public key. Since the proposal of McEliece many researchers have tried to tackle this
problem by proposing different families of codes as secret codes. Only recently, a new
approach in code-based cryptography has gained a lot of attention: the change of met-
ric. Since classical coding theory deals with the Hamming metric classical code-based
cryptography does as well. However, the code-based cryptosystems that provide the
smallest key sizes within the NIST submission round 2 are based on the rank metric.

In fact, it appears that decoding in the rank metric is even more costly than in the
Hamming metric. The role of information set decoding in code-based cryptography
has thus changed: it does not only determine the key sizes anymore but it also predicts
whether a metric could be used for cryptographic purposes. As a key rule it usually
holds that the more errors a code can correct, the harder becomes the information set
decoding and in turn the public key can be chosen of lower size.

This new approach has opened many new directions for code-based cryptography,
as there are many more metrics that one can explore. In this thesis we present informa-
tion set decoding algorithms endowed with the Lee metric. The Lee metric is usually
considered over finite rings instead of finite fields. The advantage of the Lee metric is
that it can correct many more errors than the Hamming metric. Thus, the Lee metric
promises to lower the key sizes for a fixed security level.

Comparing then the input sizes, which are needed for information set decoding
algorithms to achieve a fixed workfactor, we have the first hints that the Lee metric
can hold this promise.

Natural Density On the theoretical side of algebra we focus, in the second part of
this thesis, on computing densities. Since there is no uniform probability distribution
over the integers, the notion of natural density is introduced. The main question can
be formulated as follows: for a subset 7' C Z¢, how likely is it for a randomly chosen a
to lie in T'7 The natural density answers this question by first bounding with a height
H, i.e., how many a with | a |< H lie in T? Secondly, it divides this quantity by the
size of the d-dimensional cube of height H, and lastly it lets H go to infinity. If this
limits exists, this gives the density of T

The introduction of the natural density dates back to questions asked by Mertens
and Césaro in the 1870’s, namely: how likely is it that two randomly chosen integers
are coprime? Or equivalently: what is the density of coprime pairs? Surprisingly, the

14



Chapter 1. Preface

answer to this question is %

To compute the natural density there exist various techniques. In this thesis we fo-
cus on the local to global principle that allows to compute the density by characterizing
the target set T locally, i.e., over the p-adic integers.

The generalization of the question of Mertens and Césaro is to compute the den-
sity of coprime m-tuples, which has been solved in the 1970’s by Nymann. An even
further generalization is to compute the density of rectangular unimodular matrices.
This recent result has been achieved in collaboration with Giacomo Micheli. Another
set of interest is the set of Eisenstein polynomials, i.e., all polynomials that satisfy the
criterion of Eisenstein. This result is due to Dubickas for the monic case and due to
Heyman and Shparlinski in the non-monic case, both results are rather recently.

Even though the result for rectangular unimodular matrices implies the results for
coprime m-tuples and coprime pairs, we give all results and proofs for the sake of com-
pleteness and for a didactic reason: to understand the local to global principle it makes
sense to apply it first on easier examples and then to increase the difficulty. This part
of the thesis is thus on one hand a compendium of density results through the local to
global principle, but more importantly it can be considered a learning device for this
technique. This is also the reason for the rather large preliminary study on the natural
density, presented in the second part of this thesis.

Seeing the natural density as a Z-analogue of a uniform probability distribution, the
natural question that arises is to define the analogue of the mean and variance. Using
tools from analytic number theory, we hence compute the mean and the variance for
the four sets of interest, namely the coprime pairs, the coprime m-tuples, the Eisenstein
polynomials and the rectangular unimodular matrices. These computations all follow
a common strategy and moreover the results follow a certain pattern. This pattern
becomes visible when considering the local characterization within the local to global
principle. We thus provide an addendum to the local to global principle, where with a
few additional conditions we can guarantee the existence of the mean and the variance
of a target set and even more, using the local characterization, the mean and variance
can be computed directly.

We then apply the addendum to the four sets of interest again to show not only
that the computation through the addendum provides a much shorter and more elegant
proof, but also confirming the previous computations through analytic tools.

Summary The results within this thesis can be summarized as follows.

In Chapter 5 we present three information set decoding algorithms in the Lee metric,
namely the algorithms by Prange, Lee-Brickell and Stern, together with their complex-
ity analyses.

In more detail, in Section 5.2 we consider the ambient space Z/4Z, which presents
a special case for the Lee metric. This section is built up on the article [55].

Section 5.3 contains results from [104], where we generalize these results to Z/p°Z,
for a prime number p and a positive integer s. We lay a special focus on the case s = 1,
where the underlying structure is a finite field, these results can be found in [105].
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Furthermore, in Section 5.3.4 we consider a more general structure of the parity-check
matrix. This section is built upon [105], but is carried out in more detail.

In Chapter 6 we compare the information set decoding algorithms in the Lee met-
ric with their counterparts in the Hamming metric and conclude that the Lee metric
presents a promising alternative for cryptographic purposes, as it decreases the key
sizes substantially.

In Chapter 10 we compute the densities of coprime pairs, coprime m-tuples, Eisen-
stein polynomials and rectangular unimodular matrices over the integers via the local
to global principle. We also provide the idea and the results for the densities of the
target sets over the algebraic integers. This section contains the article [78].

Chapter 11 contains results not yet submitted, where we use tools from analytic
number theory to compute the mean and variance corresponding to the natural density
of the four considered sets.

With these results it becomes evident that they all follow a certain pattern. This
allows us to give in Chapter 12 an addendum to the local to global principle which
allows to compute the mean and variance directly. In addition, we revisit the results
from Chapter 11, which follow now as a corollary from this addendum. This chapter
contains results from [79].
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Chapter 2

Introduction

Coding Theory In classical coding theory, the ambient space is a finite field Iy
which is endowed with a metric and the subject of interest is a linear subspace of Fy,
for some positive integer n. Such a linear subspace is called a code C and the positive
integer n is called its length. The dimension k of C as a linear vector subspace of Fy is
called the dimension of C. The elements that are inside C are called codewords.

The main aim of coding theory is that of communication through a noisy channel,
i.e., a sender wants to send a message m through a channel that possibly adds a
random noise e to the message. Thus, the receiver obtains m + e and in order to
recover the correct message m, the receiver has to remove the error e. To ensure that
this is possible the message m is encoded, i.e., one sends instead the codeword ¢ € C
corresponding to the original message m. The metric we have endowed with the code
is able to tell us how far away the received word c + e is from the original codeword c.
If this discrepancy is below a certain threshold, called the error correction capacity, a
decoding algorithm is able to recover ¢ and thus also the corresponding message m.

From this reasoning one can identify the important aspects of a code; we want
to have a large error correction capacity and we want to have an efficient decoding
algorithm. Note that the metric plays a crucial rule in this topic, as it determines the
distance between two vectors. The classical distance for codes is hence the number of
entries in which two vectors differ. This metric is called the Hamming metric.

A linear code C is usually represented through either the generator matrix, which
has the code as image, or the parity-check matrix, which has the code as kernel.

Public Key Cryptography Although cryptography is a comparatively young branch
of mathematics, due to its various applications it contains many topics, such as signa-
ture schemes, identification schemes, private information retrieval, and many more.

In this thesis we will focus on public key cryptography (PKC). In this setting we
have two parties, usually denoted by A and B, or by Alice and Bob. In PKC Bob
wants to send a confidential message to Alice, thus they require some encryption. In
this scenario Alice, the constructor of the cryptosystem, has a pair of keys; a public
key and a secret key (or private key). As the names suggest, she publishes the public
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Chapter 2. Introduction

key and keeps the secret key private. Bob can use the public key of Alice to encrypt
his message. The encrypted message, called a cipher, is then sent to Alice. Alice can
then use the secret key to decrypt the cipher and recover the message. Thus a PKC
system consists of three steps: the key generation, the encryption and the decryption.

An eavesdropper, usually denoted by E, or Eve, can only see the cipher and the
public key. In order to have a secure cryptosystem, we want that the decryption of the
cipher, and thus also obtaining the private key, is infeasible for Eve.

Note that the scenario is not restricted to two parties only; anyone can use the
public key to send confidential messages to the constructor.

The two main factors in public key cryptography are the public key size, i.e., how
large is the public key, and the security level. The security level is the workfactor
needed by an adversary to decrypt the cipher or to obtain the private key. Other
factors include the efficiency of the decryption process, the secret key size and the
cipher text size.

Clearly, the security level and the public key size are relative to each other. In
the sense that the larger one chooses a public key, the harder it should become for an
adversary to attack and vice versa. Nevertheless, what we want in a PKC is a small
public key size and a large security level.

The currently most used public key cryptosystems are RSA [94] and ECC (for an
overview see [80]). The former is based on the hardness of integer factorization and the
latter on the discrete logarithm problem over elliptic curves. These systems have been
used since decades, e.g., RSA was proposed in 1977, and possess very small key sizes
for a fixed security level. Nevertheless, these cryptosystems cannot be used in near
future. In fact, in the era of capable quantum computers all currently used public key
cryptosystems (based on the hardness of integer factorization or the discrete logarithm
problem) will be completely broken by Shor’s algorithm [97].

Due to recent advances in building capable quantum computers by Google, IBM
and others (see for example [8, 32]), the cryptographic community has to come up with
cryptosystems that will survive attacks on quantum computers. This completely new
branch of cryptography is called post-quantum cryptography (PQC).

In 2016 the National Institute of Standards and Technology (NIST) has initiated
a standardization process for post-quantum cryptosystems. It is believed that systems
whose security relies on NP-complete problems will be quantum-secure [36].

The main candidates for post-quantum cryptography are:

e Code-based cryptography (CBC), based on the NP-complete problem of decoding
a random linear code. For an overview see [88].

e Lattice-based cryptography, based on the NP-complete problems of finding the
shortest vector, respectively the closest vector in a lattice. For an overview see

[89).

e Multivariate cryptography, based on the NP-complete problem of solving mutli-
variate quadratic equations. For an overview see [41].
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Chapter 2. Introduction

e Isogeny-based cryptography, based on finding the isogeny map between two super
singular elliptic curves [60].

For an overview on post-quantum cryptography see [23].
In this thesis we will only focus on the first candidate, i.e., CBC.

Code-Based Cryptography Code-based cryptography first came up in 1978 with
the seminal work of McEliece [74] and is one of the most promising candidates for
post-quantum cryptography.

In a nutshell, the McEliece cryptosystem works as follows. The private key is
given by the generator matrix G of a linear code C that has a large error correction
capacity ¢t and an efficient decoding algorithm D. The public key is a disguised version
of the generator matrix, i.e., p(G), where ¢ is a bijective isometry. The message
m is encrypted by encoding it through the disguised generator matrix and adding an
intentional error vector of weight at most ¢, hence the cipher is given by ¢ = mp(G)+e.
The owner of the private key can then invert the disguising function and since p~1(e)
still has weight at most ¢t the owner can use the decoding algorithm to recover the
message m, i.e.,

m = o(D(p~ H(mp(G) + e))).

Originally, McEliece proposed to use a binary Goppa code as secret code and to
disguise the generator matrix G by computing SGP, where S is an invertible matrix,
thus only changing the basis of the code and P is a permutation matrix, thus giving
a permutation equivalent code and in particular keeping the weight of the error vector
invariant. An equivalent [68] cryptosystem was proposed by Niederreiter in [84], where
one uses the parity-check matrix H instead of the generator matrix and the cipher is
given by the syndrome of an error vector, i.e., He.

Niederreiter originally proposed to use generalized Reed-Solomon (GRS) codes as
secret codes. However, Sidelnikov and Shestakov showed in [99] that using GRS codes
in the Niederreiter system directly (and hence also in the McEliece cryptosystem) is
not safe.

The McEliece cryptosystem, as well as Niederreiter’s cryptosystem, is usually de-
noting the framework of this system, i.e., without restricting to a particular code. The
interested reader can find these frameworks in the appendix, Section A.1.

Note that McEliece’s original proposal of using a binary Goppa code remains un-
broken until today and is even the prioritized system for standardization by NIST
[5].

The main problem of the original McEliece system however remains: it has very
large public key sizes. More in detail, the submission of Bernstein et al. [26] to use the
original McEliece system requires for the NIST category 1, asking for a security level
of 128 bits, a public key size of approximately 2 Megabits, and for the NIST category
5, asking for a security level of 256 bits, it requires a public key size of approximately
8 Megabits. One of the main reasons why the original McEliece cryptosystem suffers
from such large key sizes is the low error correction capacity of Goppa codes.
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Since the proposal of McEliece in 1978, there have been many attempts to tackle
this problem, mainly by proposing different families of codes as secret codes. Since it
seems that using a code with larger error correction capacity might lower the public key
sizes in the McEliece framework, many researchers have tried to use generalized Reed-
Solomon codes [11, 12, 13, 18, 27, 62, 61, 84]. Note that generalized Reed-Solomon
codes are MDS codes and thus they can correct the maximal number of errors for fixed
code length and dimension. Although they did reduce the key sizes and seemed very
promising, their error correction capacity is a result of their algebraic structure, which
is very easily distinguishable from random codes [37, 38, 99, 106].

Apart from the generalized Reed-Solomon codes, some of the famous families of
codes that were considered are: non-binary Goppa codes [24], algebraic geometric
codes [59], LDPC and MDPC codes [10, 82], Reed-Muller codes [98] and convolutional
codes [69]. Most of them were unsuccessful in hiding the structure of the private code
[39, 40, 64, 81, 86].

As stated before, candidates for post-quantum cryptography are based on NP-
complete problems. In the case of CBC, this problem is called syndrome decoding
problem.

Syndrome Decoding Problem In 1978, Berlekamp, McEliece and van Tilborg
proved that decoding a random binary linear code is NP-complete by reducing it from
the 3-dimensional matching problem, [20]. In 1994, this was further generalized to
arbitrary finite fields by Barg in [16]. The problem can be stated as follows.

Problem 1 (Decoding Problem). Let & < n be positive integers. Given a kxn generator
matrix G of a code C over Fy, a positive integer ¢, and a vector y € Fy, which is such
that y = mG + e, for some m € IE"; and e € Fy of Hamming weight ¢, find e.

Observe that this is equivalent to the syndrome decoding problem (SDP), in the
same way as the Niederreiter system is equivalent to the McEliece system [68].

Problem 2 (Syndrome Decoding Problem). Let k& < n be positive integers. Given an
(n—k) x n parity-check matrix H of a code C over F,, a positive integer ¢, and a vector
s € F2~*, which is such that s = eH", for some e € F' of Hamming weight ¢, find e.

In the McEliece system, or equivalently in the Niederreiter system, the secret code
is usually endowed with a particular algebraic structure to guarantee the existence of
an efficient decoding algorithm. However, if this code is hidden well enough by the
disguising function, an adversary has to solve the NP-complete problem of decoding a
random linear code.

An adversary would hence use the best generic decoding algorithm for random linear
codes. Until today two main methods for decoding random linear codes have been pro-
posed: information set decoding (ISD) and the generalized birthday algorithm (GBA).
ISD algorithms are more efficient if the decoding problem has only a small number of
solutions, whereas GBA is efficient when there are many solutions. Also other ideas
such as statistical decoding [4], gradient decoding [9] and supercode decoding [9] have
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been proposed but fail to outperform ISD algorithms.

It is important to remark that the problem on which the McEliece system is based
upon is not exactly equivalent to the SDP. In the McEliece system the parameter ¢
is usually bounded by the error correction capacity of the chosen code. Whereas in
the SDP, the parameter ¢ can be chosen to be any positive integer. Thus, we are in a
more restricted regime than in the SDP. There have been attempts [58] to transform
the McEliece system in such a way that the underlying problem is closer or even
exactly equivalent to the SDP, the actual NP-complete problem. This proposal has
been attacked shortly after in [66].

Nevertheless, it is clear that the ISD algorithms solving the SDP also solve the
restricted SDP, i.e., the underlying problem of the McEliece system.

ISD algorithms are an important aspect of CBC, since they are needed to find
the key size achieving a given security level. ISD algorithms hence do not break a
code-based cryptosystem but they determine the choice of secure parameters.

Overview of Algorithms The duality of the generator matrix and the parity-check
matrix also gives rise to two equivalent formulations of ISD algorithms, one being
through the generator matrix and one through the parity-check matrix.

In this thesis we will only focus on the parity-check formulations of ISD algorithms,
even though some of the ISD algorithms were originally proposed in the generator ma-
trix formulation. Note that the formulation through the parity-check matrix is a priori
more intuitive, since it is enough to find a vector of a certain weight which has the
same syndrome as the corrupted codeword.

All ISD algorithms are based on a decoding algorithm proposed by Prange [93] in
1962, hence before any code-based cryptosystem was proposed and before it was shown
that the underlying problem is NP-complete. The structures of the improvements do
not change much from the original: as a first step one chooses an information set, then
Gaussian elimination brings the parity-check matrix in a standard form and assuming
that the error vector has a certain weight distribution, going through smaller parts of
the error vector and checking for the parity-check equations to hold, will reveal the
error vector.

In an ISD algorithm we hence fix a weight distribution of the error vector and then
go through all information sets, checking if we find the information set for which the
error vector indeed achieves this weight distribution. Hence ISD algorithms are in gen-
eral not deterministic, since there are instances for which there exists no information
set accomplishing the wanted weight distribution. Thus, ISD algorithms should not be
confused with brute-force algorithms, which by default are deterministic.

The brute-force algorithm solving the SDP is doing the exact opposite: it first fixes

an information set and then goes through all weight distributions of the error vector.
This is clearly deterministic, since for any choice of an information set the wanted er-
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ror vector has to achieve some weight distribution. Since the brute-force algorithm is
clearly slower than ISD algorithms, in the sense that it needs more binary operations,
in practice we only consider ISD algorithms.

In the original algorithm by Prange [93], sometimes also referred to as plain ISD,
the weight distribution that we assume on the error vector is such that there are no
errors in the information set and hence all ¢ errors are outside the information set.
Even though the cost of one iteration of Prange’s original ISD algorithm is very low,
the algorithm still has a huge complexity due to the large number of iterations needed.
Indeed, the assumption that no errors happen in the information set is not very likely
and thus the success probability of one iteration is very low.

Many improvements have been suggested to Prange’s simplest form of ISD (see
for example [29, 31, 34, 43, 63, 67, 103]). They all focus on a more elaborate and
more likely weight distribution of the error vector, which results in a higher cost of one
iteration but less iterations have to be performed.

The improvements were splitting from an early time on into two directions: the first
direction is following the splitting of Lee and Brickell [65] into the information set and
the redundant set, i.e., they ask for v errors in the information set and t — v outside.
The second direction is Dumer’s splitting approach [43], which is asking for v errors in
k + ¢ bits, which are containing an information set, and ¢t — v in the remaining n — k — ¢
bits. Clearly, the second direction includes the first direction by setting £ = 0. Apart
from improvements regarding the success probability, one can also improve the cost of
one iteration: Canteaut and Chabaud [30] have provided a speed up for finding infor-
mation sets. They show that the information set should not be taken at random after
one unsuccessful iteration, but rather a part of the previous information set should be
reused and therefore a part of the Gaussian elimination step is already performed.

Now, we focus on the first direction of improvements, which were first proposed for
codes over the binary field and then generalized to arbitrary finite fields F,. In 1988,
the same year as Lee and Brickell proposed their algorithm, Leon [67] generalized Lee-
Brickell’s algorithm by introducing a set of size ¢ outside the information set called
zero-window, where no errors happen. Also in 1988, Stern [100] adapted the algorithm
by Leon and proposed to partition the information set into two sets and ask for v
errors in each part and ¢ — 2v errors outside the information set (and outside the zero-
window). These three algorithms that have been proposed in the same year appear
to be independent from each other, as no paper cites the other. The generalization of
both Lee-Brickell and Stern’s algorithm to a general finite field F, were performed by
Peters [90] in 2010.

In 2011, Bernstein, Lange and Peters proposed the ball-collision algorithm [25],
where they keep the partitioning of the information set but they reintroduce errors in
the zero-window. In fact, they partition the zero-window into two sets and ask for w
errors in both and hence for t —2v — 2w errors outside. This algorithm and its speed-up
techniques were then generalized to I, by Interlando, Khathuria, Rohrer, Rosenthal
and Weger in [57]. In 2016, Hirose [53] generalized the nearest neighbor algorithm over
F, and applied it to the generalized Stern algorithm.
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<—k—> 4—717];—»

Prange 1962 | 0 | | ¢ |

Lee-Brickell 1988 | v | | t—o |

- ————> - > a—n—k— [—>

Leon 1988 | v [l o ] t—w |

Stern 1989 | v | | v | | 0 | | t—2v |

Ball-Collision 2011 | v | | v | | t-20-20 |

Figure 2.1: Overview of algorithms following the splitting of Lee-Brickell, adapted from [25].

An illustration for the algorithms that follow the improvements from the first di-
rection is given in Figure 2.1. Note that for simplicity, we assume that the information
set is in the first k£ positions and the zero-window is in the adjacent ¢ positions.

The second direction has resulted in many improvements, for example in 2009
Finiasz and Sendrier [45] have built two intersecting subsets of the k + ¢ bits, which
contain an information set, and ask for v disjoint errors in both sets and ¢ — 2v in the
remaining n — k — ¢ bits. Niebuhr, Persichetti, Cayrel, Bulygin and Buchmann [83] in
2010 improved the performance of ISD algorithms over F, based on the idea of Finiasz
and Sendrier.

In 2011, May, Meurer and Thomae [72] proposed an improvement using the repre-
sentation technique introduced by Howgrave-Graham and Joux [56]. To this algorithm
Becker, Joux, May and Meurer [17] in 2012 introduced further improvements. This
algorithm is usually referred to as BJMM algorithm.

In the same year Meurer in his dissertation [76] proposed a new generalized ISD
algorithm based on these two papers. In 2015, May-Ozerov [71] used the nearest
neighbor algorithm to improve the BJMM version of ISD. Later in 2017, the nearest
neighbor algorithm over I, was applied to the generalized BJMM algorithm by Gueye,
Klamti and Hirose [51].

The second direction can be summarized as ISD algorithms, which do not use
partitions but rather are allowing the sets to overlap. An illustration of the algorithms
is given in Figure 2.2. Note that for simplicity we assume that the k + ¢ bits containing
an information set are in the beginning. The overlapping sets are denoted by X; and
X5 and their intersection of size 2a(k + ¢) is in blue. The amount of errors within the
intersection is denoted by 6.
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k4l n—k—0
Ball-Collision 2011 | v | | v | | t— 20 —|
k+70
- 5 R —
Finiasz-Sendrier 2009 | X, | I | t—2v —|
L= |
2a(k + ()
N —
=0
BJMM 2012 X, | | | t—2v
N
2a(k + ()
N —
>0

Figure 2.2: Overview of algorithms following the splitting of Dumer.

It is important to remark (see [76]) that the BJMM algorithm, even if having the
smallest complexity, comes with a different cost: memory. In order to achieve a com-
plexity of 128 bits, BJMM needs about 10° terabytes of memory. In fact, Meurer
observed that if one restricts the memory to 24° (which is a reasonable restriction),
BJMM and the ball-collision algorithm are performing almost the same. We hence
restrict ourselves to the first direction of improvements, where we use partitions.

In particular, we focus on Prange’s original ISD algorithm, on Lee-Brickell’s al-
gorithm and on the most used ISD algorithm, which is Stern’s algorithm. There are
several reasons for this choice: on a classical computer one usually considers Stern’s ISD
algorithm. Although, there are some faster algorithms, e.g., BJMM [17] and the ball
collision algorithm [25], these cost improvements are only marginal, while the algorithm
only gets more complex to understand.

On a capable quantum computer ISD algorithms are expected to have a square-root
speed up [21], since Grover’s search algorithm [49, 50] needs only O(v/N) operations to
find an element in a set of size N, instead of O(/N) many. Thus, intuitively, the search
of an information set will become faster and thus the number of iterations needed in
an ISD algorithm will decrease. All improvements on Prange’s algorithm were focusing
on a larger cost of one iteration, but in turn a smaller number of required iterations.
Thus, on a capable quantum computer, it is believed that Prange’s algorithm will be
the fastest. Lee-Brickell’s algorithm is only a slight modification of Prange’s algorithm,
nevertheless, due to this modification more instances can be solved.

Finally, we want to note here that Stern’s algorithm already contains Lee-Brickell’s
algorithm. In fact, setting ¢ = 0 and choosing the partition of the information set to be
trivial, i.e., one set is the full information set and the second is the empty set, Stern’s
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algorithm coincides with Lee-Brickell’s algorithm.

In addition, Lee-Brickell’s algorithm contains Prange’s algorithm. One can see this
by choosing in Lee-Brickell’s algorithm v = 0.

Thus, it would be enough to provide only Stern’s algorithm. Nevertheless, since the
improvements are more complex to understand, we still provide all three algorithms
separately, for the sake of clearness and completeness.

Change of Metric From the short historic overview above it becomes clear, that
CBC constantly tried to find a balance between security and key sizes. This trade-off
was assumed to be an unsolvable problem for CBC and its downfall, as other post-
quantum candidates provide lower key sizes, for example lattice-based cryptosystems
[54]. This changed only recently by the introduction of new metrics to CBC. In fact,
in the NIST submission round 2 the two CBC systems achieving the lowest key sizes
are endowed with the rank metric (see [2, 3]), instead of the Hamming metric as it is
the case for classical coding theory.

The considered metric builds the fundament of coding theory. Thus, changing this
metric changes also everything else. The reason for the low public key sizes in the rank
metric is twofold: on one hand it seems that decoding a random linear rank metric code
appears to be more difficult. In fact, while in the Hamming metric an ISD algorithm
would go through vectors of a certain support size, in the rank metric it would go
through subspaces of certain dimensions. Thus, changing the cost from the Newton
binomial to the Gaussian binomial.

On the other hand, rank metric ISD algorithms (see [7, 35, 47, 87]) are very recent
and have not been studied as thoroughly as in the Hamming metric.

This most likely also gives the reason why rank metric cryptosystems did not survive
the third submission round of the NIST standardization process: recently an attack
via the MinRank problem [15] was proposed on rank metric cryptosystems. This did
not only increase the public key sizes for the cryptosystems but also showed that the
metric and its application in cryptography is still very young and requires more thor-
ough studies.

Although the rank metric cryptosystems have not been chosen as finalists in the
standardization process, they have opened a new perspective in CBC that seems very
fruitful. Namely, to study different kinds of metrics and their effects, when applied in
CBC, on security levels and key sizes.

Following this idea, we want to introduce the Lee metric to cryptography. For this
the study of ISD algorithms is crucial. In fact, if decoding a random linear code in
certain metric comes with a high cost, then the considered metric presents a promising
candidate for CBC and vice versa: improving ISD algorithms forces existing code-based
cryptosystems to increase their key sizes accordingly.
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2.1. Organization of this Part

2.1 Organization of this Part

The first part of the thesis is organized as follows. In Section 2.3 we introduce the
notation that we use throughout this part and in Chapter 3 we cover the required
preliminaries. More in detail, in Section 3.1 we recall the basic definitions of coding
theory, in Section 3.2 we give a general structure of ISD algorithms and in Section 3.3
we introduce the techniques that we use for the ISD algorithms.

In Chapter 4 we introduce the three main algorithms that we will cover in this part
of the thesis, namely Prange’s, Lee-Brickell’s and Stern’s ISD algorithm. Although
they have been originally introduced over the binary, we give them directly over F,
endowed with the Hamming metric and analyze their costs.

In Chapter 5 we change our focus to the Lee metric. Thus, in Section 5.1 we recall
some definitions of ring-linear coding theory and properties of the Lee metric with a
special focus on the quaternary case. In Section 5.1.1 we translate the techniques intro-
duced in Section 3.3 to the Lee metric, whenever possible. In Section 5.2 we translate
the ISD algorithms of interest, i.e., Prange’s, Lee-Brickell’s and Stern’s algorithm, to
7./47 endowed with the Lee metric.

In Section 5.3 we then generalize the ISD algorithms of interest to Z/p°Z, where
we also cover the special case of prime fields, i.e., s = 1. Note that the structure of the
algorithms over Z/p°Z is provided for a simplified systematic form. Thus, in Section
5.3.4 we introduce a technique to generalize these algorithms even further.

In Chapter 6 we compare the three ISD algorithms in the different ambient spaces
and metrics that we have considered.

In Chapter 7 we draw some concluding remarks and state some open problems.

2.2 New Results in this Part

In this part of the thesis we will focus on three ISD algorithms, namely
1. Prange’s ISD algorithm,
2. Lee-Brickell’s ISD algorithm,
3. Stern’s ISD algorithm.

The reason for this selection is the following: Prange’s algorithm is the first ISD
algorithm that has been proposed. It is also considered to be the fastest algorithm on
a capable quantum computer [21]. On the other hand, Lee-Brickell’s algorithm is a
slight adaption of Prange’s algorithm, though with the effect that more instances can
be solved. Whereas Stern’s algorithm is the ISD algorithm that is usually considered
on a classical computer. Although there are faster algorithms, the improvements in
the workfactor are only marginal and Stern’s algorithm is not overly complex.

Note that the original algorithms by Prange [93], Lee-Brickell [65] and Stern [100]
are proposed over the binary finite field endowed with the Hamming metric. In Chapter
4 we give the algorithms over F,. The generalization of Lee-Brickell’s and Stern’s
algorithm to F, was done by Peters in [90]. We also recall their algorithms over the
binary in the appendix, Section A.2.
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In Section 5.2 we translate the three algorithms, namely by Prange, Lee-Brickell
and Stern to Z/47Z endowed with the Lee metric. This section is based on the paper
[55]:

Information set decoding in the Lee metric with applications to cryptography, by
Anna-Lena Horlemann-Trautmann and Violetta Weger, in Advances in Mathematics
of Communications, 10.3934/amc.2020089, 2019.

More in detail, Lee-Brickell’s and Stern’s algorithm over Z /47 endowed with the Lee
metric were provided in [55] in collaboration with Anna-Lena Horlemann-Trautmann.
Thus, the Lee metric analogue of Prange’s algorithm over Z/47Z is only available in this
thesis.

In Section 5.3 we generalize the three ISD algorithms to Z/p*Z endowed with the
Lee metric. This section is based on the papers [104, 105]:

Information set decoding of Lee-metric codes over finite rings, by Violetta Weger,
Massimo Battaglioni, Paolo Santini, Franco Chiaraluce, Marco Baldi and Edoardo
Persichetti, arXiv preprint arXiv:2001.08425, 2020.

On the Hardness of the Lee Syndrome Decoding Problem, by Violetta Weger, Massimo
Battaglioni, Paolo Santini, Anna-Lena Horlemann-Trautmann and Edoardo
Persichetti, arXiv preprint arXiv:2002.12785, 2020.

In more detail, Prange’s algorithm and Stern’s algorithm over Z/p°Z equipped with
the Lee metric were provided in [104] in collaboration with Massimo Battaglioni, Paolo
Santini, Franco Chiaraluce, Marco Baldi and Edoardo Persichetti.

Prange’s algorithm and Stern’s algorithm over IF,, endowed with the Lee metric, as
well as Lee-Brickell’s algorithm over Z/p°Z and over F,, endowed with the Lee metric
were provided in [105] in collaboration with Massimo Battaglioni, Paolo Santini, Anna-
Lena Horlemann-Trautmann and Edoardo Persichetti.

The idea of the possible generalization was provided in [105], however without a
complexity analysis or an example.

2.3 Notation

Let p be a prime number, ¢ a prime power. We denote by Z/¢Z the ring of integers
modulo ¢, and by [F, the finite field with ¢ elements, as usual. For a ring R, the
multiplicative group is denoted by R*.

Given an integer z, we denote its absolute value as | x |. We use capital letters to
denote sets of integers. The cardinality of a set is denoted as | V' |.

We use bold lower case, respectively upper case letters to denote (row-) vectors,
respectively matrices. The identity matrix of size k is denoted by Idj; the k x n zero
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matrix is denoted as Oy, while 0,, simply denotes the zero vector of length n. For a
matrix M, we denote by M| its transpose, by det(M) its determinant and by rk(M)
its rank. For a set S, we denote by S¢ its complement.

Given a vector x of length n and a set S C {1,...,n}, we denote by xg the
projection of x to the coordinates indexed by S. In the same way, Mg denotes the
projection of the k x n matrix M to the columns indexed by S.

The support of a vector a of length n is defined as

Supp(a) :={i € {1,...,n} | a; # 0}.

For S C {1,...,n} of size k, we denote by Fy (S) the vectors in F; having support
inside S. The projection of x € F7(S) to F¥ is then canonical and denoted by mg(x).
On the other hand, we denote by og(x) the canonical embedding of a vector x € IF’;
into F(S).

Lastly, for a function f we denote by im(f) its image and by ker(f) its kernel. By
a slight abuse of notation, we use the same also for matrices, i.e., if M € Fy*™, then
im(M) = {aM | a € F'}, whereas ker(M) = {b € FJ" [bM ' = 0}.
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Chapter 3

Preliminaries

3.1 Coding Theory

With the rationale given in Chapter 2 in mind, let us introduce coding theory properly.
Throughout the whole first part of this thesis, we will denote by F, a finite field
with ¢ elements, where ¢ is a prime power.

Definition 3.1.1 (Linear Code). Let 1 < k < n be integers. Then, an [n, k| linear
code C over I, is a k-dimensional linear subspace of Fy.

As mentioned before, the parameter n is called the length of the code, and the
elements in the code are called codewords. Classically, F, is endowed with the Hamming
metric.

Definition 3.1.2 (Hamming Distance). Let n be a positive integer. For x,y € Fy,
the Hamming distance between x and y is given by the number of positions in which
they differ, i.e.,

du(x,y) =[{i € {1,...,n} |z # yi} |

Definition 3.1.3 (Hamming Weight). Let n be a positive integer. For x € Fy, the
Hamming weight of x is given by the size of its support, i.e.,

wtg(x)=|{ie{l,...,n} |z; #0}|.

Obviously, wty(x) = dg(x,0) and dy(x,y) = wtg(x —y). Thus, the Hamming
distance is induced by the Hamming weight.

Another important parameter of a code is its minimum distance, i.e., the minimal
distance achieved by its distinct codewords.

Definition 3.1.4 (Minimum Distance). Let C be a linear code over Fy. The minimum
Hamming distance of C is denoted by dy (C) and given by

dH(C) = min{dH(X7 Y) | X,y € Ca X 7£ y}
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If there is no ambiguity, we will denote the minimum Hamming distance by dg .
Clearly, for a linear code C we have that

dp(C) = min{wtg(c) |c €C, c # 0}.

n

u, we write dg(x,C) for the minimal distance between x

In general, for an x € F
and a codeword in C, i.e.,

dp(x,C) = min{dg(x,c) | c € C}.
Let us define the ball of radius r around a codeword ¢ € C.

Definition 3.1.5. Let k < n and r be positive integers, let C be an [n, k] linear code
over IFy, and let ¢ € C. Then the Hamming ball of radius r around c is defined as

Bg(c,r,n,q) = {x € F} | dg(x,c) <7}

Note that since the code C is linear, the size of By (c,r,n,q) does not depend on
the choice of c¢. Thus, let us introduce

Vir(r,n,q) = {x € FI' | wtgr(x) < 7}

The size of Vi (r,n,q) = By (0,r,n, q), the ball of radius r around the zero codeword
in the Hamming distance, can be computed very easily:

| Vir(r,n,q) |= 27: <T;> (q— 1)

=0

In fact, x € Vi (r,n,q) is equivalent to wty(x) < r. Hence we go through all ¢ < r,
and compute the number of vectors in Fy of Hamming weight i, i.e., we fix ¢ positions,
and for each position we have g — 1 choices for entries in F.

The minimum distance of a code plays a crucial role in coding theory, as it directly
implies how many errors can be corrected. For this let us elaborate on the concept
of error correction. We say that a code can correct up to ¢ errors, if for all x € Fy
with dg(x,C) < t, there exists exactly one y € C, such that dy(x,y) < t. Further, a
decoding algorithm D is defined such that, for any x € Fy, with du(x,C) < t, D(x)
outputs y € C with dy(x,y) = du(x,C), i.e., the nearest codeword to x.
Proposition 3.1.6 (Error Correction Capacity). Let C be a linear code over Fy of
length n and of minimum distance dgy. Then, the code can correct up to L%J
erTors.

For this choose r maximal such that all Hamming balls of radius r around the
codewords of C do not intersect, i.e., for all x;y € C with x # y we have that
By (x,7,n,q) N Bg(y,r,n,q) = 0. Since the minimum distance between two distinct
codewords is given by dg, we must have that r < L%J In fact, let x,z2 € C
be two distinct codewords, and assume that we received a vector y € Fy, with y €
By (x,r,n,q) N By (z,7,n,q). This implies that

dH(X’Z) SdH(X,Y)"‘dH(y,Z) SQTSdH_:L
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which contradicts that the minimum distance between two distinct codewords is dg.
Thus, the error correction capacity is clearly the maximal radius such that all balls
around the codewords do not intersect.
The Singleton bound provides an upper bound on the minimum distance of a code,
by just using the length n and the dimension k.

Theorem 3.1.7 (Singleton Bound). Let k < n be positive integers and let C be an
[n, k] linear code over F,. Then,

ngn—k‘i‘l

The proof is quite easy, since one can observe that by deleting dg —1 of the positions
in all codewords, we have a code of length n — dgy 4+ 1 and since the minimum distance
between two distinct codewords of C was given by dpg, in the new smaller code we must
still have all distinct codewords. Thus, the dimension of the new code remains k.

A code that achieves the Singleton bound is called a mazimum distance separable
(MDS) code. Such codes of course are of huge interest, since for fixed n and k they
can correct the maximal amount of errors.

The representation of linear codes is usually done via two matrices, which we now
introduce. On one hand, we have a matrix G, which has the code C as image.

Definition 3.1.8 (Generator Matrix). Let k < n be positive integers and let C be an
[n, k] linear code over F,. Then, a matrix G € FF*™ which has the code as image, i.e.,
such that

C:{XG\XG]F’;},

is called a generator matriz of C.
On the other hand, there exists a matrix H, which has the code as kernel.

Definition 3.1.9 (Parity-Check Matrix). Let k& < n be positive integers and let C be

an [n, k] linear code over F,. Then, a matrix H € IFE]"_k)X" which has the code as

kernel, i.e., such that
C={ycF;|Hy' =0},

is called a parity-check matriz of C.

Hence, we can look at the short exact sequence given by

.
0— F¥ E>IF2 H—>IF3‘"'—>O,
with im(G) = C = ker(HT). For any x € Fy, we call xHT a syndrome. Clearly, if

the syndrome corresponding to x is zero, then x € C, and vice versa.
For x,y € [y let us denote by (x,y) the standard inner product, i.e.,

n
(x,y) = Z TiYi-
i=1

Then, we can define the dual of an [n, k] linear code C over F, as the dual subspace.
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Definition 3.1.10 (Dual Code). Let k < n be positive integers and let C be an [n, k]
linear code over F,. The dual code C* is an [n,n — k] linear code over F,, defined as

CL:{XGFZH)@y):OVyGC}.

Note that a parity-check matrix of C is in fact a generator matrix of Ct.

Let us shortly recall the notation introduced in Section 2.3. For x € Fy and
S c{1,...,n} we denote by xg the vector consisting of the entries of x indexed by S.
Similarly, we denote by Cg the code consisting of the codewords cg.

The bijective map induced by G is usually called encoding map E:

£:Fr =,
x — xG.

As we can see from the encoding map, the code is already completely defined by k
positions, more formally, we want to introduce the notion of information set.

Definition 3.1.11 (Information Set). Let & < n be positive integers and let C be an
[n, k] linear code over F,. Then, a set I C {1,...,n} of size k, with

[ Cl=[Cr
is called an information set of C.

Note that an [n, k] linear code can have at most (}) many information sets.

As a corollary, we have that G is an invertible matrix of size k and Hj;c is an
invertible matrix of size n — k. In particular, we want to introduce the notion of
systematic form.

Definition 3.1.12 (Systematic Form). Let k& < n be positive integers and C be an
[n, k] linear code over Fy. Then, for some permutation matrix P and some invertible
matrix U the systematic form of the generator matrix G is

UGP = (Id;, A),

where A € ng(n_k). Whereas, for some permutation matrix P’ and some invertible
matrix U’, the systematic form of the parity-check matrix is

UHP' = (B 1d,;),

where B € Fy"F)*F,

Since GHT = 0, we have that the matrices A and B are related. In fact, it holds
that B= —A".

As information sets are of particular interest in this part of the thesis, we provide
here some examples.

Let C be the code generated by G € Fg“, which is such that

13 23
G_Q 443)
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This is an extremal example, as all subsets of {1,...,4} of size 2 are information
sets. The systematic form corresponding to the information set I = {1,2} is of the

form
1 0 4 2
01 1 2/
To give an example of a non-information set, let us look at the code C’' generated
by G’ € F2**, which is given by
, (1 2 43
G = (2 3 0 0/°

Then, the set {3,4} is clearly not an information set.
Let us recall here the syndrome decoding problem, since the main goal of this part
of the thesis is to solve this problem via information set decoding algorithms.

Problem 3 (Syndrome Decoding Problem). Let k& < n be positive integers. Given an
(n—k) x n parity-check matrix H of a code C over F,, a positive integer ¢, and a vector
s € Ff;’k, which is such that s = eH", for some e € [y of Hamming weight ¢, find e.

Note that a possible brute-force algorithm would be to go through all vectors x € Fy
of Hamming weight ¢ and to check whether xH T = s is satisfied. The cost of such an

algorithm is given by
(})ta- vt - n

many additions and multiplications. However, as we will see in the next chapter, using
information set decoding algorithms this cost can be greatly reduced.

Lastly, we want to state here the Gilbert-Varshamov bound in the Hamming metric
which provides a sufficient conditions for the existence of linear codes.

Theorem 3.1.13 (Gilbert-Varshamov bound [95], Theorem 4.4). Let g be a prime
power and let k < n and dyg be positive integers, such that

Vi(dg —2,n—1,q) < ¢" . (3.1.1)

Then, there exists a [n, k] linear code over Fy with minimum Hamming distance at least
dy.

Observe that the classical Gilbert-Varshamov bound is a lower bound on the max-
imal cardinality of any code, not necessarily a linear code. However, the bound we are
interested in is an upper bound, since we want the existence of a linear code.

3.2 Structure of Information Set Decoding
Information set decoding (ISD) algorithms, which first came up in 1962 by the seminal
work of Prange [93], solve a difficult problem, namely the syndrome decoding problem,

which in fact is proven to be NP-complete [20]. Thus, ISD algorithms are clearly not
polynomial-time algorithms but rather exponential in the parameters of the instance,
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i.e., in the code length n, the code dimension k£ and the target weight t.

As we have seen in the Chapter 2 the structure of the improvements on Prange’s
ISD algorithm do not differ much from the original. We hence give here a general
structure of ISD algorithms. We are given a parity-check matrix H € Fg"ik)xn of a
code C, a positive integer ¢ and a syndrome s € IFZ‘_’"7 such that there exists a vector
e € Fy of Hamming weight less than or equal to ¢ with syndrome s, i.e., eH' =s.

The aim of the algorithm is to find such a vector e.

1. Find an information set I C {1,...,n} of size k for C.
2. Bring H into the systematic form corresponding to I, i.e., find an invertible
matrix U € Fénik)x(n*k), such that (UH); = A, for some A € anik)Xk and

(UH);o = Id,_g.

3. Go through all error vectors e € F having the assumed weight distribution (and
in particular having Hamming weight ¢).

4. Check if the parity-check equations, i.e., eHTUT =sUT are satisfied.
5. If they are verified, output e, if not start over with a new selection of I.

The cost of an ISD algorithm is given by the cost of one iteration times how many
times on average one has to repeat an iteration.

The average number of iterations required is given as the reciprocal of the suc-
cess probability of one iteration. This probability is completely defined by the weight
distribution we have assumed on the error vector.

3.3 Techniques

In this section we introduce the techniques that we will use throughout this chapter.
Whenever it makes sense, we will introduce them directly over F, equipped with the
Hamming metric, else we will first introduce them for the Hamming metric over Fo,
where they were originally proposed, and then generalize them to F,. Some of these
techniques can be used also in the Lee metric, for this we refer to Section 5.1.1. Most of
these techniques were introduced in [25] over Fo and later generalized to Fy in [57]. We
want to note here that the original algorithms considered in Chapter 4 did not apply
these concepts to speed up their cost. Hence the cost we provide for the algorithms
can be considered revised with the newest techniques.

First of all, we want to fix the cost that we consider throughout this thesis of one
addition and one multiplication over Fy, i.e., we assume that one addition over [, costs
Mog,(q)] binary operations and one multiplication costs [log,(¢)]* binary operations.
The cost of the multiplication is clearly not using the fastest algorithm known but
will be good enough for our purposes. Also for the cost of multiplying two matrices
we will always stick to a broad estimate given by school book long multiplication, i.e.,

multiplying AB, where A € F&*" and B € F2*" will cost nkr (ﬂogQ(qﬂ + flogQ(q)f)

binary operations. However, over the binary the cost of a multiplication is the same as
the cost of an addition, both only costing 1 bit.
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Number of Iterations One of the main steps in computing the cost of an informa-
tion set decoding algorithm was already explained in Section 3.2, namely the average
number of iterations needed. This number depends on the success probability of one
iteration. In turn, the success probability is completely given by the weight distribution
of the error vector that we assume in the corresponding algorithm. In more detail, in
one iteration we consider a fixed information set and thus the success probability of
an iteration is given by the fraction of how many vectors there are with the assumed
weight distribution, divided by how many vectors there are in general with this weight.

For example, we are looking for e € Fy of Hamming weight ¢, and we assume that
the error vector has no errors inside an information set I, and thus all ¢ errors appear
in I of size n — k. Since there are (";k) (¢ — 1)* many vectors having support of size
t in a set of size n — k and the total number of vectors of support ¢ in a set of size n is
given by (?) (g — 1)!, we have that the success probability of one iteration is given by

(N0

and hence the number of iterations needed on average is given by

n—k\""/n
t t)
We can see clearly that the success probability, and thus also the number of iter-

ations, does not depend on whether we are over Fy or IF,. This will however change,
when looking at a different metric than the Hamming metric.

Early Abort This technique that provides a speed up to some algorithms was intro-
duced in [25] over Fy and then further generalized to F, in [57].

In some of the algorithms we have to perform a computation and the algorithm will
only proceed if the result of this computation satisfies a certain property. In our case,
the property is that the weight of the resulting vector does not exceed a target weight.

We will thus compute one entry of the result and check the weight of this entry,
before proceeding with the next entry. As soon as the weight of the full resulting
vector would already be above the target weight, we can stop the computations, hence
aborting early.

To provide an example also for this technique, assume that we have to compute
xA, for x € IF’; of Hamming weight ¢t and A € IF’;X". Usually computing xA would

cost nt ([log2 (1 + [logQ(q)]) binary operations.

However, assuming our algorithm only proceeds if wty(xA) = w, we can use the
method of early abort, i.e., computing one entry of the resulting vector and checking
its weight simultaneously. For this we assume that the resulting vector is uniformly
distributed. Since we are over F,, the probability that an entry adds to the weight of
the full vector is given by %. Hence we can expect that after computing q%lw entries
the resulting vector should have reached weight w, and after computing #(w +1)
entries we should have exceeded the target weight w and can abort. Since computing
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only one entry of the resulting vector costs ¢ ([logQ (q)] >4 [log, (q)]) binary operations,
the cost of this step is hence given by

q
(w11 (Noga@)]) + Moga()])
binary operations, instead of the previous

nt (ﬂogz(QHQ + ﬂogz(qﬂ) :

Clearly, this is a speed up, whenever q%l(w +1) <n.

Number of Collisions This concept was originally introduced in [25] for the ball
collision algorithm over Fo and then generalized to F, in [57]. In some algorithms we
want to check if a certain condition is verified and only then we would proceed. This
condition depends on two vectors x and y living in some sets. Hence the algorithm
would go through all the vectors x and then through all the vectors y in their respective
sets and check if the condition is satisfied for a fixed pair (x,y). If this is the case, such
a pair is called a collision. For all subsequent steps of the algorithm one would need
to perform them for all the collisions, thus multiplying the cost of these steps with the
size of the set of all (x,y).

Instead, we can compute the average number of collisions we can expect. Let us
also give an example for this technique; assume that we only proceed whenever

xty=s,

for a fixed s € IF’; and for all x € IF’; of Hamming weight v and all y € F’; of Hamming
weight w. To verify this condition we have to go through all possible x and y, thus
costing

() (}) @ v ming.o+ wyogsta)

v/) \w
binary operations. As a subsequent step one would compute for all such (x,y) the
vector Ax — By, for some fixed A € FZX’“ and B € IFZXk. Usually one would do this
for all elements in S = {(x,y) | X,y € F},wty(x) = v, wty(y) = w}, giving this step
a cost of

v w

<k> (k> (¢ — )" min{k, v+ w}n (logs(q) + logs(¢)?) -

With the concept of average number of collisions we only have to perform the
subsequent steps as many times as on average we expect a collision, i.e., a pair (x,y)
such that x +y = s. Assuming a uniform distribution, this amount is given by

51 QNN (1) () e,

q” q” v w

Thus computing Ax — By for all (x,y) € S costs on average

<k>(k>(q_1y+w7qmn“%v+u@n(bgﬂqy+ngQF)

v w

binary operations, which is clearly less than the previous cost.
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Intermediate Sums This concept, like the previous, was introduced as well in [25]
over Fy and generalized to Fy in [57]. We will first give the original idea over Fy and
then show its generalization to F,.

In some algorithms we have to do a certain computation for all vectors in a certain
set. The idea of intermediate sums is to do this computation in the easiest case and
to use the resulting vector to compute the results for harder cases. This will become
clear with an example.

Let A € IFIZCX” and assume that we want to compute xA for all x € F§ of Hamming
weight ¢. This would usually cost nt binary operations, for each x. If we have to
compute this for all x € F& of Hamming weight ¢, then we would end up with a cost of

(k)
nt

t
binary operations.

However, using the concept of intermediate sums helps to speed up this computa-
tion: we first compute xA for all x € F5 of Hamming weight 1, thus just outputting
the rows of A which comes with no cost. As a next step, we compute xA for all x € F§
of Hamming weight 2, which is the same as adding two rows of A, thus coming with
a cost of (g)n binary operations. As a next step, we compute xA for all x € F5 of
Hamming weight 3, which is the same as adding one row of A to one of the already
computed vectors from the previous step, thus this costs (lg)n binary operations. If we
proceed in this way, until we compute xA for all x € F5 of Hamming weight ¢, this
step costs

nL(k,t)
binary operations, where we define
" [k
Lk, t) = ; (l>

This is a speed up to the previous cost, since

When generalizing this result to F,, to compute xA for all x € ]F’; of Hamming
weight 1, does not come for free anymore but is rather given by computing A - A for all
A € F, which costs kn Mog,(g)]” binary operations. Further, if we want to compute
xA for all x € IE"; of Hamming weight 2, we have to add two multiples of rows of
A. While there are still (g) many rows, we now have (¢ — 1)? multiples. Thus, this

step costs (g) (¢ —1)%n [logy(q)] binary operations. Proceeding in this way, the cost of
computing xA for all x € F’; of Hamming weight ¢, is given by

Ly (k, t)n [logs(q)] + kn [logs(q)]”
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binary operations, where we define

t
k i
Lotk =3 (Va1
=2
Instead of the previous cost of

() 0= 10t0t (Roeata)T® + o)

binary operations.

40



Chapter 4

Information Set Decoding in
the Hamming Metric

In this chapter we provide the algorithms of Prange, Lee-Brickell and Stern over F,
endowed with the Hamming metric, we also emphasize the special case of Fy, where
the algorithms were originally proposed.

4.1 Prange’s algorithm

Prange’s algorithm [93] was introduced in 1962 and marks the first ISD algorithm over
the binary. Sometimes it is referred to as plain ISD algorithm. Although there have
been many improvements proposed on this plain ISD, Prange’s algorithm should still
be considered today. Indeed, on one hand, these improvements only give slight speed
ups, and on the other hand, Prange’s algorithm might be the fastest one on a capable
quantum computer [22].

In Prange’s algorithm we assume that there exists an information set I that is
disjoint to the support of the error vector Supp(e), i.e.,

I'NSupp(e) = 0.

Of course, such an assumption comes with a probability whose reciprocal defines how
many iterations are needed on average, if the algorithm ends. Observe that Prange’s
algorithm is indeed not deterministic, i.e., there are instances which Prange’s algo-
rithm can not solve. For an easy example, one can just take an instance where
wty(e) =t > n—k =| I |. For a more elaborate example, which also allows
unique decoding, assume that we have a parity-check matrix, which is such that each
information set includes the first position. Then an error vector with non-zero entry
in the first position could never be found through Prange’s algorithm.

More in detail, the structure of this algorithm is as follows: we first find an infor-

mation set, then bring the parity-check matrix into systematic form according to this
information set and when we apply the same row operations on the syndrome and its
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weight matches the target weight, the modified syndrome is indeed the wanted error
vector.

To illustrate the algorithm, let us assume that the information set is I = {1,...,k},
and let us denote by J = I¢. To bring the parity-check matrix H € IFEJ""“)X" into
systematic form, we multiply by an invertible matrix U € Fg"_k)x(”_k). Since we
assume that no errors occur in the information set, we have that e = (0, e ) with
wtp(ey) =t. We are in the following situation:

eH'U" = (0, ey) ( Al ) =sU'
Idnfk ’

for A € F M7k,

It follows that e; = sUT and hence we are only left with checking the weight of
sUT.

We will now give the algorithm of Prange in its full generality, i.e., we are not
restricting to the choice of I and J that we made before for illustrating the algorithm,
thus we make use of the notation, such as Hy, introduced in Section 2.3.

Algorithm 1 Prange’s Algorithm over I, in the Hamming metric

Input: H € Fy* " s e Frk t e N.
Output: e € Fy with eH' =s and wty(e) =t.

1: Choose an information set I C {1,...,n} of size k and define J = I°.

2: Compute U € Fén_k)x("_k), such that

(UH); = A and (UH), =1d,_j,

where A € an_k)m.
Compute s’ =sUT.
if wtg(s’) =t then
Return e such that e; = 0;, and e; = 5.

AR

Start over with Step 1 and a new selection of I.

We now provide a complexity estimate of Prange’s algorithm over F, in the Ham-
ming metric.

Theorem 4.1.1. Prange’s algorithm over Iy requires on average
n — k -1 n )
< t ) <t> (n = k)*(n +1)([log,(q)] + ogy(q)1%)
binary operations.

Proof. One iteration of Algorithm 1 over F, only consists in bringing H into systematic
form and to apply the same row operations on the syndrome; thus, the cost can be
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assumed equal to that of computing U (H ST), i.e.,

(n = k)*(n + 1)([logs(q)] + [loga(a)1%)

binary operations.

The success probability is given by having chosen the correct weight distribution of
e.

In this case, we require that no errors happen in the chosen information set, hence

such a probability is given by
n—k\ /n\ "
t t)

Then, the estimated overall cost of Prange’s ISD algorithm over [, is given as in
the claim. O

Corollary 4.1.2. Prange’s algorithm over the binary endowed with the Hamming met-

ric costs (") B (7)o =02+ )

For the algorithm over 5 and its complexity analysis we refer the interested reader
to the appendix, i.e., Section A.2.

binary operations.

4.2 Lee-Brickell’s algorithm

Lee-Brickell’s algorithm [65] is an improvement to Prange’s algorithm by reducing the
number of iterations needed and increasing the cost of one iteration. This algorithm
was originally proposed over the binary and then generalized to F, by Peters in [90].

Different to Prange’s algorithm, where no errors were allowed inside the information
set, in Lee-Brickell’s algorithm, we assume that there exists an information set, such
that v errors happen inside the information set and ¢ — v outside. Similar to Prange’s
algorithm also the algorithm by Lee-Brickell is non-deterministic, as the parameter v
is fixed as an input of the algorithm.

We give Lee-Brickell’s algorithm over F, in Algorithm 2. But first we elaborate on
the structure of the algorithm. We first find an information set, then bring the parity-
check matrix into systematic form according to this information set and go through all
vectors of length k£ and Hamming weight v. We can now define the remaining error
vector of length n — k, and check if it is has the remaining Hamming weight ¢ — v.

As before, we will fix a choice of information set to illustrate the algorithm. Let us
assume that the information set is I = {1,...,k}, and hence J = {k+1,...,n}. By
multiplying with some U we can bring H into systematic form. Let us write the error
vector as e = (ey,ey), with wty(er) =v and wty(ey) =t —v. We hence get that

T
eHTUT = (e] eJ) ( A ) = SUT,
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where A € F* ™Rk,

If we go through all e; € IF’; of Hamming weight v, it follows that e; = sUT —e;AT.
Hence we are only left with checking the weight of e.

We will now give the algorithm of Lee-Brickell in its full generality, i.e., without
restricting to the choice of I and J.

Algorithm 2 Lee-Brickell’s Algorithm over Fy in the Hamming metric

Input: H € Fén_k)xn, s € IFZ*’“, t € N and v < min{t, k}.
Output: e € FI with eH" = s and wty(e) = t.

1: Choose an information set I C {1,...,n} of size k and define J = I°.

. Compute U € FY" ™=k such that

[\

(UH); = A and (UH); = 1Id,_p,

where A € F{">F,
3: Compute s’ =sU".
4: for ey ¢ IFZ with wty(e;) = v do
5: if wty(s' —erAT) =t —v then
6 Return e such that e; = ey and ey =s' —e;A'.
7: Start over with Step 1 and a new selection of I.

The following theorem provides a complexity estimate of Algorithm 2.

Theorem 4.2.1. Lee-Brickell’s algorithm over F, requires on average

(6 6) (oo Qe
-min {n —k, q%(t —v+ 1)} v) (Ioga(a)] + Mogy(a)1?)

binary operations.

Proof. Let us first consider the cost of one iteration. As a first step, we bring H into
systematic form and to apply the same row operations on the syndrome. This can again
be assumed to be equal to that of computing U (H ST), hence a broad estimate for
the cost is

(n—K)*(n+1) (logs(a)] + Nlogs()]°)

binary operations.
Then, we go through all e; € IF’; of Hamming weight v, and compute s’ — e;AT.
This would usually require

<k> (¢q—1)"(n—k)v (ﬂog2(fJﬂ + (10g2(q)12)

v
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binary operations, since e; has support of size v. However, the algorithm only proceeds
if the Hamming weight of s’ — e;AT is t — v. Hence we can use the concept of early
abort. Assuming that the resulting vector is uniformly distributed, we have that one
entry of the resulting vector adds Hamming weight 1 to the weight of the full vector,
with probability 2. Thus, we have to compute on average ﬁ(t — v + 1) many
entries of the resulting vector before we can abort. Computing one entry of the vector

s’ —e;AT costs
v (Ioga(a)] + Mogy(a)1?)

binary operations. Therefore, by applying early abort, we get that this step costs on
average
k q 2

(5) @ 1= v 20 (Tloms (0] + Momala)?)
binary operations.

Finally, we compute the average number of iterations needed. In this case, we
require that v errors happen in the chosen information set and the remaining ¢t — v
outside, hence the success probability is given by

k\ (n—k\ (n\ "

v/ \t—v )\t '
Thus, by multiplying the cost of one iteration with the reciprocal of the success prob-
ability, we get the claim. O

The binary case is very similar to the g-ary one, hence we will only give here the
cost. For the algorithm over the binary and the complexity analysis we refer to the
appendix, i.e., Section A.2.

Corollary 4.2.2. The cost of Lee-Brickell’s algorithm over the binary is given by

(i) - (;‘:f)l (?) ((n —k)2(n+1)+ (i) min{n — k,2(t — v + 1)}0)

binary operations.

4.3 Stern’s algorithm

Stern’s algorithm [100] is one of the most used ISD algorithms, as it is considered one of
the fastest algorithms on a classical computer. Stern’s algorithm is an improvement on
Lee-Brickell’s and Prange’s algorithm that decreases the number of iterations needed
on average and in turn has a higher cost of one iteration. Also Stern’s algorithm was
generalized to Fy by Peters in [90].

In Stern’s algorithm we use the idea of Lee-Brickell and allow errors inside the
information set and in addition we partition the information set into two sets and ask
for v errors in both of them. Further, we also use the idea of Leon [67] to have a
zero-window of size £ outside the information set, where no errors happen.
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Similar to Lee-Brickell’s and Prange’s algorithm also Stern’s algorithm is non-
deterministic.

We will give Stern’s algorithm in Algorithm 3. But first we explain the algorithm
and illustrate it for an easy choice of the information set and the zero-window.

We first find an information set, then bring the parity-check matrix into systematic
form according to this information set. We partition the information set into two sets
and define the sets S and T', where S takes care of all vectors living in one partition
and T takes care of all vectors living in the other partition. We can now check whether
two of such fixed vectors give us the wanted error vector.

To illustrate the algorithm, we assume that the information set is I = {1,...,k} and
that the zero-window is Z = {k +1,...,k + £}. Further, let us define J = (I U 2) =
{k+¢+1,...,n}. We again denote by U the matrix that brings the parity-check
matrix into systematic form and write the error vector partitioned into the information
set part I, the zero-window part Z and the remaining part J, as e = (er, 0y, e), with
wty(er) = 2v and wty(ey) =t — 2v. Thus, we get the following:

AT BT
G)HT[JT = (e[ 0y eJ) Id@ Oéx(n—k—é) = (Sl SQ) = SUT,
On—k—tyxe Idn—k—s

where A € ]Ff;Xk and B € [E‘((Z"—k—f)xk.
From this we get the following two conditions

efAl =5, (4.3.1)

eIBT + ey =ss. (432)

We partition the information set I into the sets X and Y, for the sake of clarity,
assume that k is even and m = k/2. Assume that X = {1,...,m} and Y = {m +
1,...,k}. Hence, we can write e; = (ex, ey ), and Condition (4.3.1) becomes

Ux(ex)AT =81 — O'y(ey)AT. (433)

Observe that the ox is needed, as ex has length m but we want to multiply it to
AT € F’;Xf. In the algorithm we will not use the embedding ox but rather ]F’;(X),
thus ex will have length &, but only support in X.

In the algorithm, we will define a set S that contains all vectors of the form
ox(ex)AT, i.c., of the left side of (4.3.3) and a set T that contains all vectors of
the form s; — oy (ey)A T, i.e., of the right side of (4.3.3). Whenever a vector in S and
a vector in T coincide, we call such a pair a collision.

For each collision we define e; such that Condition (4.3.2) is satisfied, i.e.,

e;j=sy—e€ IB—r
and if the weight of e is the remaining ¢ — 2v, we have found the wanted error vector.
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Algorithm 3 Stern’s Algorithm over F, in the Hamming metric

Input: He F

GRS € Bk, t €N, k= my +ma,€ <n—k and

v < min{my, ma, | ]}

2

Output: e € F? with eH™ = s and wty(e) = t.
q

1:

3: Compute U € F,

Choose an information set I C {1,...,n} of size k and choose a zero-winow Z C I¢
of size ¢, and define J = (I U Z)°.

Partition I into X of size m; and Y of size mq = k — my.

(nfk)x(nfk), such that

A Id, OzX(n_H))
UH), = (&), (UH), = d (UH), = 7
(TR <B> (U2 <O(nk:Z)><Z> and (UH), ( Idy_p—s

where A € FY** and B € F{kmOxk,

4: Compute sUT = (s; s;), where s; € F) and s, € Fj—+F.

10:
11:

Compute the set S
S ={(exA' ex)|ex €Fi(X) wty(ex) =0}
Compute the set T’
T={(s1—eyAT,ey)|eyc F’;(Y),WtH(eY) = v}

for (a,ex) € S do
for (a,ey) € T do
if wty(sy — (ex +ey)BT) =1t — 2v then
Return e such that e; = ey +ey, ez =0, and e; =s; — (ex +ey)B'.

Start over with Step 1 and a new selection of I.

We will now give the algorithm of Stern in its full generality, i.e., we are not re-

stricting to the choice of I, J and Z, that we made before for illustrating the algorithm.

Algorithm 3 has a complexity estimate given as follows.
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4.3. Stern’s algorithm

Theorem 4.3.1. Stern’s algorithm over F, requires on average
() () (249C)
((n = k)20 +1) (Mog(@)] + Noga(a)1*) + (1 +ma)¢ Mogs ()]’
o (Lymno) + 2ymac) + (") (0= 1)) Toea(a

() ("11;2;5(] —D* min {n —k—{,

v (Moga(a)1* + Noga(a)1) )

binary operations.

n 1(t—2v+1)}

q—

Proof. Similar to the previous algorithms, as a first step we bring H into systematic
form and apply the same row operations on the syndrome; a broad estimate for the
cost is given by

(n = k)*(n+ 1) (Moga(a)] + Nogs(@)]°)

binary operations.

To compute the set S, we can use the technique of intermediate sums. We want to
compute ex AT for all ex € F’; (X) of Hamming weight v. Using intermediate sums,
this costs

Ly(ma, v)¢ [logy ()] + mat [logy(q)]”

binary operations.
Similarly, we can build set T: we want to compute s; — ey AT, for all ey € IF’; (Y)
of Hamming weight v. Using intermediate sums, this costs

Ly, )¢ g (0)] + mat logs(@1” + (%) fa = 1" o (o)

binary operatlons Note, that the Lg (1, v)! [logy(q)]+mal [log,(¢)]” part comes from
computing ey AT, whereas the (" )( 1)?2 [logy(q)] part comes from subtracting from
each of the vectors ey AT the vector s;.

In the remaining steps of the algorithms we go through all (a,ex) € S and all
(a,ey) € T, thus usually the cost of these steps should be multiplied by the size of
S x T. However, since the algorithm first checks for a collision, we can use instead
of | S || T | the number of collisions we expect on average. More precisely: since S
consists of all ex € IFZ (X) of Hamming weight v, S is of size ("'')(¢—1)" and similarly
T is of size (";z)(q —1)”. The resulting vectors ex AT, respectively, s; — ey AT live in
IFZ, and we assume that they are uniformly distributed. Hence, we have to check on
average

(3D ()@= 1)
qé
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Chapter 4. Information Set Decoding in the Hamming Metric

many collisions. For each collision we have to compute so — (ex + ey)B—'—7 which would
usually require

(n— k — )20 (Tlogy(a)]” + Mogy(a)])

binary operations. However, the algorithm only proceeds if the weight of so — (ex +
ey)B' is t — 2v, hence we can use the concept of early abort. Computing one entry of
the vector s, — (ex + ey )BT costs

20 (Moga (@)1 + Moga(a)1 )

binary operations. Thus, by applying early abort, we get that this step costs on average

ﬁ(t —2v+1)2v ([logz(qﬂ2 + UOgQ(Qﬂ)

binary operations.
Finally, the success probability is given by having chosen the correct weight distri-
bution of e; this is exactly the same as over Fy and given by

mi\ [msa\ [n—k—20\ [n -1
v v t—2v t '
Thus, we can conclude. O

Note that we usually set in Stern’s algorithm the parameter m; = |%|. Hence
assuming that k is even we get a nicer formula for the cost, being

() (7500 () (nosstan + s
: ((n —k)*(n+1) + <k£2)2(q — 1)2~' min {n k-t %(t — 2w+ 1)} 21))

e o+ (22,0/2,0 + (M) - 107 osata)

binary operations.

Corollary 4.3.2. Stern’s algorithm over the binary costs
my -1 mo n—k—0\"'/n
v v t—2v t

. ((n — k)2 (n+ 1)+ <L(m1,v) ¥ L(ma,v) + <m2>>

v

+ % min{n —k — £,2(t — 2v + 1)}21})

binary operations.

The only difference in the binary is the concept of intermediate sums, as explained
in the Section 3.3. For the algorithm over the binary and its full complexity analysis
we refer the reader to the appendix, i.e., Section A.2.
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Chapter 5

Information Set Decoding in
the Lee Metric

In this chapter we change our focus to the Lee metric and to ring-linear codes. For
this we will first recall the background on ring-linear coding theory, where we treat the
special case of Z/4Z separately. We then translate the techniques used for speed-ups
in the complexity of ISD algorithms. Finally, we provide the three ISD algorithms
(namely Prange, Lee-Brickell and Stern) in the quaternary case and later generalize
this to the case Z/p°Z endowed with the Lee metric with a special emphasis on the
case s = 1.

5.1 Preliminaries

Coding Theory in the Lee Metric In this section we want to introduce the Lee
metric. For this we are going to change the ambient space, in which the codes live,
from a finite field to a finite ring R. In particular, we will focus on Galois rings Z/p°Z,
where p is a prime and s is a positive integer.

Let us assume that R is a finite commutative ring with identity, although the
following definition stays true in the non-commutative case.

Note that the since over finite rings there is no notion of dimension, we need the
definition of type.

Definition 5.1.1 (R-Linear Code). Let n be a positive integer. A submodule C of
R™, with | C |= h, is called an R-linear code of length n and type h.

The most studied case of ring-linear coding theory is given by integer residue rings
Z/mZ, for some positive integer m.

In this case a Z/mZ-linear code C of length n is an additive subgroup of (Z/mZ)™.
We still have the notion of generator matrix, as the matrix which has the code as image,
and of parity-check matrix, which has the code as kernel.

Also the definition of information set is still valid, i.e., for a Z/mZ-linear code C of
length n, we call I C {1,...,n} an information set, if | C |=| Cy |.
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5.1. Preliminaries

In traditional finite field coding theory we endow F, with the Hamming metric to
define the weight of a vector wty and the distance between two vectors dg. In ring-
linear coding theory over Z/mZ we could use the Hamming metric as well, the Lee
metric, the homogeneous metric, the Euclidean metric and so on, for an overview see
[46]. If we use the Lee metric the corresponding codes are referred to as Lee metric
codes.

The Lee weight of an element generalizes the Hamming weight over the binary field,
but in contrast to the Hamming weight over Z/mZ, which only counts the number of
nonzero entries, the Lee weight also takes into account the entry itself and its Lq-
distance to zero.

Definition 5.1.2 (Lee Weight). For « € Z/mZ, the Lee weight of x is defined to be
wtp(z) = min{x,m — z}.

Similarly, for x € (Z/mZ)"™, the Lee weight of x is defined to be
wtr(x) = Zth(mi).
i=1

The Lee weight induces a distance, called Lee distance.

Definition 5.1.3 (Lee Distance). For x,y € (Z/mZ)™, the Lee distance between x
and y is given by
dr(x,y) = wtp(x —y).
To illustrate the Lee metric, let us look at the toy example m = 8:
Ezample 5.1.4 (Z/8Z).

wtr(z)

Figure 5.1: Lee weight in Z/8Z.
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Chapter 5. Information Set Decoding in the Lee Metric

When representing Z/mZ not as {0,...,m — 1} but rather symmetrically, i.e.,

{- LmTAJ et L%J }, the connection to the Li-norm becomes evident:
|z |=wt(z), forall w € {— [27L],..., [ 2]}
wt ()
a °
[ J 34 [ J
° = °
o °
T

Figure 5.2: Lee weight in Z/8Z represented symmetrically.

Let us now restrict to Galois rings Z/p°Z. The type of a code C in (Z/p°Z)™ is
given by
[Cl=(*) (")

Thus, an information set is of size K =Y ._, k.
Observe, that the Lee weight of an element @ € Z/p*Z can be between 0 and L%J .
Similarly, the Lee weight of an element x € (Z/p°Z)™ can be between 0 and ¢ {%SJ,

where ¢ denotes the support size of x, i.e., the Hamming weight of x.

Note that we usually distinguish between p® being even or odd, since in the even
case there exists exactly one element in (Z/p°Z) \ {0} having Lee weight % and for all
smaller weights there exist two such elements and in the odd case, for all possible Lee
weights in (Z/p°Z) \ {0}, there exist exactly two elements achieving this Lee weight.

We can also define the minimum Lee distance of a code.

Definition 5.1.5 (Minimum Lee Distance). Let k < n be positive integers and let C
be a linear code over Z/p*Z. Then, the minimum Lee distance of C is defined as

dr(C) = min{d.(x,y) | x,y €C,x #£y}.

Since the Lee distance is induced by the Lee weight, the minimum Lee distance of
a code is also given by

dr(C) = min{wt(x) | x € C,x # 0}.
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5.1. Preliminaries

In addition, the following proposition gives the systematic form for the generator
matrix and the parity-check matrix.

Proposition 5.1.6 (Systematic Form). Let C be a linear code over Z/p*Z of length
n and type | C |= (p*)k(p*~1)k2 ... pks. Then C is permutation equivalent to a code
having the following systematic generator matrix G of size K X n

Idy, A, Ajg - A Al
Oryxk, pldr, DAz -+ pAs, DA 11
Okyxky  Okgxky, P?Ide, -+ D?As P*Asz i1 7 (5.1.1)
Ok.xky, Okixks Okoxky -+ P 'Idk, p 1 Agep1

where A; 511 € (Z/p 12k < =K) and A, ; € (Z/p*T1 2Rk for j < s.
And C is permutation equivalent to a code having the following systematic parity-
check matriz H of size (n — k1) xn

By, B o Bisoa B, Id,—x
pB21 pBa 2 <o pBaos 1 pIdy, Ok, x (n—K)
p’Bs p°Bso o pPIde,, Ok._yxk. Ok, x(n—k) , (5.1.2)
P IBe1 pP T Ik, o Opgxkely Okoxk, Okyx(n—k)

where By j € (Z/p*Z) ") *ki and B, ; € (Z/p* 1 Z)ks—i+2xki for i > 1.

The systematic form of the parity-check matrix (5.1.2) plays a crucial role in ISD
algorithms.
For the Lee metric there exists an analogue to the Singleton bound.

Theorem 5.1.7 (Singleton Bound in the Lee metric, [96], Theorem 2). Let C be a Lee
metric code over Z/p°Z of length n, let k = log,.(| C |) and minimum Lee distance dr,.
Then it holds that

S

dy, < V’QJ (n—[k] +1).

Other important concepts of coding theory for ISD include the number of vectors
of a given length and a given weight, and the average weight of an element. Let us
start with the latter. In the following lemma, resulting from a Plotkin-type bound in
the Lee metric, we compute the average Lee weight of an element in Z/p*Z.

Lemma 5.1.8 ([95], Problem 10.15). Let x be chosen randomly in Z/p°Z. The expected

Lee weight of x is
Ly = %g ) pr = 23
b ifp#2

Proof. If p =2 and hence p® is even, then summing up all weights in Z/p°Z gives

P8

—2

2 ] s s _ 2)ps S
23 it ? _ @ =2)p +%:p
i=1

2s

2 4 4"
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If p # 2 and hence p® is odd, then we get

p°

2 s s 2s
(P -DE+1)  pr-1
2 E = .
i=1 Z 4 4

1

To get the average we divide both cases by p® and get the desired formula.

Next, we want to count the vectors in (Z/p*Z)™ having Lee weight w, with
S
0<w<n V;J ,

F(n,w,p®) =] {x € (Z/p°Z)" | wtp(x)=w}].

i.e., we want to determine

Up to our best knowledge, a closed and exact formula was first given in [105]

by the author in collaboration with Massimo Battaglioni, Paolo Santini, Anna-Lena
Horlemann-Trautmann and Edoardo Persichetti.

We will consider two cases: either p°® is even, or p°® is odd. Indeed, in the former
case there exists only one element in Z/p*Z having Lee weight {ﬁ

5 J, whereas in the
latter case there exist two such elements. We will first count the vectors in (Z/p°Z)"
having Lee weight w and a fixed size of support ¢. For this, we introduce

fn, liw,p®) = {x € (Z/p°Z)" | wtg(x)="{, wtp(x)=w}|.

For n,f,w € N, with 1 < £, < w, let us denote by C(w, ¢, 1) the number of
compositions of w into ¢ parts, such that each part is at most of size u, which can be
computed as

oS (),

as shown in [1]. Let us assume that C'(0,0,u) = 1.

Proposition 5.1.9 ([105], Proposition 8). Let n,¢,w € N such that 1 <w <n {%J
and ¢ < min{n,w}. Then,

o if p® is even:

min{Z,L?)—%’J} i
Fobwpt)= Y (”_ )2“("

P’ P’
AR Y |
2 \U—k k)c(“’ SRR )

f(n, 6w, p*) = (Z) 2l (w,z, V’QD .
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Proof. When p® is odd, there are two different elements in Z/p*Z having the same

Lee weight 1 < v < l%SJ, namely v and p°* — v. Therefore, in order to compute the

number of vectors in (Z/p°Z)™ with Lee weight w and support size ¢, it is sufficient to

consider all the compositions of w into ¢ parts with no parts larger than {%SJ, which

are C (w,ﬁ, {%J), all their possible dispositions in the n entries, which are (z) and
the fact that there are 2 choices with the same Lee weight for any part, yielding the
factor 2¢.

In the case where p® is even, instead, there exists only one element in Z/p*Z having

Lee weight % So, we must separately consider all the compositions of w into ¢ parts
2w
e

than % For each case we have to take into account all the possible dispositions and

consider that there are two choices with the same Lee weight for each part smaller than

ps p>

%, and only one choice for each part equal to &-. Let us suppose that %- appears k
times in a given composition of w into ¢ parts, which can happen in (Z) ways. The

containing the element % exactly 0,1,...,min{¢, =2} times and no elements larger

remaining weight w—k%s can be composed into £—k parts in C (w — k%s, {—k, % -1

different ways. The ¢ — k parts can be disposed in the remaining n — k positions in
(’Z:}:) ways and for each part (all the remaining parts are smaller than %-) there are

2 choices with the same Lee weight, yielding a factor 2¢~%. The total amount is then
obtained by summing all these separate contributions.
O

Finally, to get the amount of vectors in (Z/p°Z)"™ having Lee weight w, we only
have to sum all f(n, £, w,p*) from £ =1 to £ = min{n, w}.

Corollary 5.1.10 ([105], Corollary 9). Letn € N, and let 1 <w <n {%J Then,

min{n,w}

F(n,w,p%) = Z f(n, ¢, w,p*). (5.1.3)
=1
Then, the size of a Lee ball is easily seen to be
| BL(w,n,ps) |: ZF(TL7Z,pS)
i=0

Lastly, we want to give the Gilbert-Varshamov bound also in the Lee metric, for
prime finite fields.

Theorem 5.1.11 (Gilbert-Varshamov bound [95], Theorem 10.12). Let p be an odd
prime and let k < n and dp, be positive integers, such that
pnkarl -1 | VL(dL — 17nap) ‘ -1
> .
p—1 2

(5.1.4)

Then there exists a [n, k] linear Lee code over F,, with minimum Lee distance at least
dr,.
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In the case of s > 1, we have the following Lee analogue of the Gilbert-Varshamov
bound.

Theorem 5.1.12 (Lee Metric Gilbert-Varshamov Bound, [19], Theorem 13.73). Let n
and dy, be positive integers. There exists a linear Lee code C of length n and minimum
Lee distance dy, over Z/p*Z, such that

1. if p# 2, then
(*)"

< T B@=tnp) D2 D =1

2. if p=2, then
()"
(I BL(d—1,n,p%) | =1)(p* — 1)

Note that the classical Gilbert-Varshamov bound gives a lower bound on the code
size and implies the existence of any (not necessarily linear) code. The bound given
above is hence a more restricted version which gives a sufficient condition for the
existence of a linear code.

[Cl<

The Quaternary Case Similar to the binary case in the Hamming metric, the case
Z/4Z is a special case for the Lee metric, hence we will treat this case here separately.

Definition 5.1.13 (Quaternary Code). We say that C is a quaternary code of length
n, if C is an additive subgroup of (Z/4Z)™.

The reason why the quaternary case is special, is due to the Gray map, which gives
a connection between traditional finite field theory and Z/4Z-linear coding theory.

Definition 5.1.14 (Gray Isometry). The Gray map is an isometry between Z/47Z
equipped with the Lee weight and F3 equipped with the Hamming weight and is defined
as follows:

¢ (ZJAZ, wtr) — (F2, wty)

(
(

1~ (0,1),
(

The Gray map can be extended componentwise to
¢ : ((Z/AZ)",wtr) — (F3", wty).

Note, however, that the Gray map does not preserve linearity, i.e., the image of a
quaternary linear code is generally not linear over Fs.
In the quaternary case, the type of a code C C (Z/4Z)™ is given by

| C |= 4kr2kz,

The following proposition defines the quaternary systematic form of the generator
matrix and the parity-check matrix.
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Proposition 5.1.15 (Quaternary Systematic Form). Let C be a quaternary linear code
of length n and type 4¥12F2 . Then, C is permutation equivalent to a code having the
(k1 + k2) X n generator matriz

Idy, A B
G= L , 5.1.5
(om,ﬂ 21dy, 20) (5.1.5)

where A € F& %2 B e (7/47)h*(n—ki=k2) gnd C € FE2*"F7k) 4 parity-check
matriz of C is the corresponding permutation of the (n — k1) X n matriz

D E Idy—#, & )
H— 1—k2 7 5.1.6
(2F 21dk,  Okyx(n—k1—ks) ( !

where D € (Z/AZ) ("~ k1—k2) <k F ¢ Fénikl*lm)mg and F € Fh2*kr,

To compute the number of vectors in (Z/4Z)™ having Lee weight w, we have to
sum over all choices of i entries having Lee weight 2, of course only until {%-‘ For the
rest of the n — 7 entries we are missing a Lee weight of w — 2i. We will achieve this
with entries of Lee weight 1, where for each of the w — 2¢ entries, there are two choices:
either 1 or 3. We will introduce the following notation for the amount of these vectors:

(4] .
o =3 () a)

=0

With the Gray isometry, we have that the number of vectors in (Z/4Z)™ having
Lee weight w is the same as the number of vectors in F3" having Hamming weight w,
which is simply given by ( ") In fact, one can also check that

%
o(n, w) = (25)

Thus, we can easily derive the Gilbert-Varshamov bound for quaternary codes en-
dowed with the Lee metric.

Proposition 5.1.16 (Gilbert-Varshamov Bound, [19], Theorem 13.73). Let k < n
and dp, be positive integers. There exists a linear quaternary code C of length n and
minimum Lee distance dy,, such that

"
(it e —1)3+1

The nice formula for the size of the Lee ball over the quaternary and the Gray
isometry will in fact also influence the ISD algorithms that we will provide in this
chapter. Hence it makes sense to keep the quaternary case separate also for the ISD
algorithms.

Note that in [55] the author in collaboration with Anna-Lena Horlemann-Trautmann
gave the adaption of the McEliece cryptosystem and the Niederreiter cryptosystem over

|C|<
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the quaternary case. This can be done almost in a straight-forward manner, except
for the fact that some parts of the generator matrix G live in Fq, while others live
over Z/4Z, which implies that also the message should be split in the same manner. A
full description of the frameworks over the quaternary can be found in the appendix,
namely Section A.3.

Syndrome Decoding Problem in the Lee Metric Analogously to the SDP in
the Hamming metric, we can define the Lee syndrome decoding problem, as follows.

Problem 4 (Lee - Syndrome Decoding Problem (L-SDP)). Let p® > 4, k,n be positive
integers. Given H € (Z/p°Z)"~*)*" s ¢ (Z/p*Z)" %\ {0,_1} and t € N, is there a
vector e € (Z/p*Z)"™ such that wtz(e) <t and eH' =s?

This problem was proven to be NP-complete in [105] by the author in collabora-
tion with Massimo Battaglioni, Paolo Santini, Anna-Lena Horlemann-Trautmann and
Edoardo Persichetti.

Note that the restriction p® > 4 is not a problem, since in the cases p® = 2,3 the
Lee metric and the Hamming metric coincide.

5.1.1 Techniques

In order to present the adaption of the ISD algorithms, we have seen in Chapter 4, to
the Lee metric, we first need to translate the techniques we have introduced in Section
3.3 to the Lee metric.

Note that over the Hamming metric the binary case was a special case, e.g. for the
intermediate sums. In the Lee metric the case of Z/47 is similar to the binary, as it is
the most studied ambient space for Lee metric codes. Therefore, most of the theory of
Lee metric codes is known for Z/47Z. This is mainly due to the Gray isometry, which
will also be a very helpful tool for the techniques we use in ISD. In turn, we get that
for the ISD algorithms as well, the quaternary case should be treated separately, as
some techniques only apply there and not over general Galois rings Z/p°Z.

In this section we hence introduce the techniques that we will use throughout this
chapter. We will first introduce the techniques for Z/47Z, then we will show how they
work over Z/p®Z, if they work at all, and if needed also treat the special case s = 1.

Let us again fix first the cost of operations we will use throughout this chapter.
We assume that one addition over Z/pZ costs [log,(p®)] binary operations and one
multiplication costs [log, (psﬂ2 binary operations. Again, we are not using the fastest
algorithms known, which will give a broad estimate of the real cost. Over Z/47 we
have the special case, that both the addition and the multiplication just cost 2 binary
operations, i.e., computing a + b for a,b € Z/47Z costs 2 = [log,(4)] binary operations
and also computing a - b for a,b € Z/47 costs only 2 binary operations since it reduces
to either a-2=a+a or a-3 = —a, since b =0 and b = 1 come with no cost.

Number of Iterations As over the Hamming metric, also in the Lee metric, we
have to compute the average number of iterations needed for an ISD algorithm. This is
given by the reciprocal of the success probability of one iteration where we have fixed
an information set.
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The success probability, depending on the weight distribution of the error vector
that we assume in this ISD algorithm, is given by how many vectors there are which
satisfy the assumed weight distribution, divided by the total number of vectors of the
given Lee weight.

As we have seen in the preliminaries, over Z/4Z, the number of vectors of length n
and Lee weight 0 < ¢ < 2n is simply given through the Gray isometry as

2n
L)
For the general case of Z/p*Z we do not have such a nice formula. Nevertheless,
we can use the closed and exact formula given in Corollary 5.1.10: for F'(n,t,p®).
For example, we are looking for an error vector of length n and Lee weight ¢.

Assuming that the error vector has Lee weight w in k positions and the remaining Lee
weight t — w in the remaining n — k positions, the success probability of such a weight

distribution is given by
2K\ (2(n — k) [2n\ "
w t—w t

F(k,w,p*)F(n—k,t —w,p®)F(n, t7ps)_1

over Z/4Z and by

over Z/p°Z.
And in turn, the number of iterations needed on average would be given by

BECRING

F(k,w,ps)_lF(n —k,t— w,ps)_lF(n,t,pS)

over Z/4Z and by

over Z/p°Z.
The case s = 1 does not need to be treated as a special case for the number of
iterations, one can just set s =1 in the formula over Z/p°Z.

Early Abort The concept of early abort can easily be adapted to the case of the Lee
metric. Over Z/47Z, there is one element having Lee weight 0, two elements having Lee
weight 1 and one element having Lee weight 2, hence on average a random element in
7./47Z has Lee weight 1.

We have seen in Lemma 5.1.8, that the average Lee weight of a random element in
Z/p°Z is given by pps. It is enough to provide an example for the general case Z/p°Z,
since pq is in fact 1.

We provide an example also for this technique: assume that we have to compute
xA, for x € (Z/p*Z)* of Lee weight t and A € (Z/p*Z)**™. Usually computing xA

would cost at most nmin{t, k} ([logy(p*)]* + [logy(p®)]) binary operations, since x

has support at most min{¢, k}.
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However, our algorithm only proceeds if wt;,(xA) = w, and thus after computing
u;} (w4 1) entries, we should have exceeded the target weight w and can abort. Since
computing only one entry of the resulting vector costs

min{t, k} (f10g2(ps)]2 + ﬂng(psﬂ)

binary operations, the maximal cost of this step is given by

fi (w + 1) min{t, k} ([logz (p*)]* + [log, (psﬂ)

binary operations, instead of the previous
nmin{t, k} (Mogy(n°)1” + Nogy (»*)1) .

This only provides a speed up, if u;}(w + 1) < n, hence in the algorithms we will
usually have as a cost

min{p, (w + 1),n} min{t, k} (Noga(p)]” + Noga(p*)1)

binary operations.

Number of Collisions Also the concept of the average number of collisions can be
adapted to the Lee metric.

The condition that the resulting vectors are uniformly distributed is easily verified
for the case s = 1, but might need justification over Z/p*Z. Assume that the systematic
form of the parity-check matrix is given by the following (n — k1) X n matrix

H— (A Id,_x ) ’
B Ok ki)x(n-K)

where A € (Z/p*Z)"~F)*K and B € (Z/p*~'Z)K~F#)*K_ Clearly, in an ISD algo-
rithm we assume that the matrix H was completely random, but know that we have
K — k; rows that are divisible by p. We can hence assume that A, as well as B, are
random. Thus e;A T should remain random, as it is adding and subtracting random
rows of AT.

Let us also give an example for this technique; assume that we only proceed in the
algorithm if

X+y=s,

for a fixed s € (Z/p*Z)* and for all x € (Z/p*Z)* of Lee weight v and all y € (Z/p°Z)*
of Lee weight w. To verify this condition we have to go through all (x,y) € S
{(x,y) € (Z/p*Z)* | wt(x) = v,wt(y) = w}. Thus giving a cost of

F(k,v,p*)F(k,w,p®) min{k, v + w} [logy(p*)]

binary operations over Z/p°Z and in the special case where p® = 4 this costs

(25) (i’f) 2min{k,v +w}
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binary operations. Assume that as a subsequent step we have to compute for all such
(x,y) € S the vector Ax — By, for fixed A € (Z/p*Z)"** and B € (Z/p*Z)"**.
Usually this would cost

F(k,v,p")F(k, w,p*) (mindk, v} + min{k, w}n (log, (p*)] + log,(p")1*)

binary operations. However, using the concept of average number of collisions, we only
have to go through

S\ F(kavaps)F(kvw7ps)p_sn
(p°)

many collisions on average. Thus this step would require

F(k,v,p*)F(k,w,p®)p~*" (min{k, v} + min{k, w})n (flogQ(psﬂ + flogz(psﬂz)

binary operations over Z/p*Z and

(2k> (i’f) 472 (min{k, v} + min{k, w})

v

binary operations over Z/4Z.

Intermediate Sums Unfortunately, we only know how to adapt the concept of in-
termediate sums in the quaternary case. To adapt this concept also to the case Z/p°Z
remains an open problem. Hence, we will now restrict to Z/4Z.

Let A € (Z/4Z)F*™, and assume that we want to compute xA for all x € (Z/4Z)*
of Lee weight t. This would usually cost 2n min{¢, k} binary operations, for each x. If
we have to compute this for all x € (Z/4Z)* of Lee weight ¢ then we would end up

with a cost of
2k
2n min{t, k}< ) )

binary operations.

However, we can first compute xA for all x € (Z/4Z)* of Lee weight 1, thus just
outputting the rows of A and —A, which comes with no cost, for this we get 2k resulting
vectors.

As a next step, we compute XA for all x € (Z/47)* of Lee weight 2. If the support
size of x is 2, then this is the same as adding two distinct rows of +A, thus coming
with a cost of less than (22k) 2n binary operations. If the support size of x is 1, then we
just have to add a row of A to itself, costing k£2n binary operations.

As a next step, we compute XA for all x € (Z/4Z)" of Lee weight 3. Again, if the
support size of x is 3, then this is the same as adding a new row of £A to yA, for y
having Lee weight 2 and support size 2, which we already computed, hence this comes
with a cost of less than (23k) 2n binary operations. If the support size of x is 2, then
we have to add yA for y having Lee weight 2 and support size 1 (which we already
computed) to a row of +A. Hence this costs (23k) 2n binary operations, as well.
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If we proceed in this way, until we compute xA for all x € (Z/47Z)* of Hamming
weight ¢, the cost of this step can be bounded from above by

27114(](7, t)

binary operations, where we define

t

- 2k
L = .
e =3 (%)
1=2
Over the general case Z/p°Z, keeping track of all possible support sizes, hence all
partitions of j < ¢, is too cumbersome. Thus, over Z/p°Z we will use the cost

F(n, t,p*) mindk, thn (Tlogy (v°)] + log,(p*)1?)

binary operations for this step.

5.2 Information Set Decoding over Z, in the Lee
Metric

Since the case Z/47 is a special one for the Lee metric, we will first focus on this case,
where we also have more tools available.

Information set decoding over Z/47 equipped with the Lee metric was studied in
[55] in collaboration with Anna-Lena Horlemann-Trautmann.

5.2.1 Prange’s algorithm

In this section we formulate Prange’s algorithm over Z/4Z equipped with the Lee
metric.

Recall that in Prange’s algorithm we assume that there exists an information set
that is disjoint to the support of the error vector Supp(e).

The structure of Prange’s algorithm over Z/47Z is similar to the original algorithm
of Prange. A crucial difference is the systematic form of the parity-check matrix over
Z./4Z, hence we will illustrate the algorithm again for the choice I = {1,... k1 + ka},
and let us denote by J = I¢. To bring the parity-check matrix H € (Z/4Z)("—k1)xn
into systematic form, we multiply H by an invertible matrix U € (Z/4Z)("—F1)x(n—Fk1)
Since we assume that no errors occur in the information set, we have that e =
(Oky +k,,€5) with wtr(ey) =t. We are in the following situation

AT 2CT >
Idnfklka 0(7L—k1—/f2)><k2
= (Sl 252) = SUT,

eHTIJT = (0k1+k2 e,]) (

where A € (Z/47)(n—Fi=k2)x(kitke) C ¢ (7,/27)F2*(F1+k2) and
s1 € (Z/AZ)" =Pz sy € (Z/27)F>.
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It follows that ey = s; and O, = so, and hence, we are only left with checking that
the Lee weight of s; is ¢ and that the Lee weight of s, is zero.

We will now give the algorithm of Prange in its full generality, i.e., we are not
restricting to the choice of I and J, that we made before to illustrate the algorithm.

Algorithm 4 Prange’s Algorithm over Z/47 in the Lee metric

Input: H € (Z/4Z)"=*)*n g c (Z/4Z)" %1 t € N.
Output: e € (Z/4Z)" with eHT = s and wty(e) = t.

—_

: Choose an information set I C {1,...,n} of size k; + ks and define J = I€.

2. Compute U € (Z/4Z)(—F1)x(n=k1) "sych that
A Idy g,
(UHI:( )andUHJ:< le),
) 2C ( ) Okgx(n—kl—kg)
where A € (Z/47)(n—Fi—k2)x(kitke) \C ¢ (7,/27,)F2* (kitks),
3: Compute sUT = (s 2sy), where sy € (Z/4Z)"F1=%2 and s, € (Z/2Z)*>.
4: if wty(s1) = ¢ and wtr(sg) = 0 then
5: Return e, such that e; = 0k, 1%, and ey = s;.
6: Start over with Step 1 and a new selection of I.

We now provide a complexity estimate of Prange’s algorithm over Z /47 in the Lee
metric.

Theorem 5.2.1. Prange’s algorithm over Z/47 equipped with the Lee metric requires

on average (2(n _ ]11 — k2)> - <2t”) 2(n —k1)*(n+1)

binary operations.

Proof. One iteration of Algorithm 4 over Z/4Z only consists in bringing H into sys-
tematic form and to apply the same row operations on the syndrome; thus, the cost
can be assumed equal to that of computing U (H ST), i.e.,

2(n—k1)*(n+1)

binary operations.

The success probability is given by having chosen the correct weight distribution of
e. In this case, this is given by the amount of vectors which have Lee weight ¢ in the
redundant set of size n — k1 — ko, divided by the amount of vectors of length n and Lee

weight t, i.e.,
2(71—/451 —/412) 2n -1
t t ’

Then, the estimated overall cost of Prange’s ISD algorithm over Z/4Z is given as in
the claim. O
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5.2.2 Lee-Brickell’s algorithm

In this section we want to formulate the algorithm of Lee-Brickell in Z/47Z equipped
with the Lee metric. Such a formulation was provided in [55] in collaboration with
Anna-Lena Horlemann-Trautmann. In the following we will use a slightly modified
version of the cost, in order to match the rest of the algorithms.

For this recall that in Lee-Brickell’s algorithm we assume that there exists an in-
formation set such that v errors happen inside the information set and ¢t — v outside.

The idea of the algorithm over Z/47Z coincides with the original idea over the bi-
nary, nevertheless, due to the more complicated systematic form, we will illustrate the
structure for the choice I = {1,...,k; + ko}, and J = I¢. As usual, we bring the
parity-check matrix H € (Z/4Z)™~%1)*" into systematic form by multiplying by an
invertible matrix U € (Z/4Z)"~F1)*(n=k1) We can write the error vector partitioned
into the information set part I and the non-information set part J as e = (er,ey),
with wtz (e;) = v and wty(e;) =t — v. Hence, we get

AT 2CT )
Idn—kl—kz 0(n—k1—1€2)><k2
=(s1 2s) = sUT,

(E!HTUT = (e[ eJ) (

where A € (Z/4Z)(n—F1=k2)x(kithz) C ¢ (7,/27Z)k2* (F1tk2) and
s1 € (Z/AZ)"F1—k2 gy € (Z)27)2.
From this we get the following two conditions

eIAT +ej =8y, (5.2.1)
2e;CT = 2s,. (5.2.2)

For Condition (5.2.2) to be satisfied we go through all e; of length k; + ko and
Lee weight v and check if 2e;CT = 2s5. For Condition (5.2.1) to be verified we define
e; =s; —e;AT, hence we are only left with checking the Lee weight of e;.

We will now give the algorithm of Lee-Brickell in its full generality.

In the following theorem we provide a complexity analysis of Lee-Brickell’s algo-
rithm over Z/4Z equipped with the Lee metric.

Theorem 5.2.2. Lee-Brickell’s algorithm over Z/AZ in the Lee metric requires on

average
(2<k1 + k2>) - (2<n — k- ’@)) - <2”) (2(n — k1)*(n + 1)

v t—wv t
— 2(k1 + k
+L4(k1+k2,1})2k2+ ( ( L 2)) min{tvarl,nfklsz}
v
- 2min{v, k; + ka})

binary operations.
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Algorithm 5 Lee-Brickell’s Algorithm over Z/47Z in the Lee metric

Input: H € (Z/4Z)"~Fk)>n s € (Z/AZ)" %1, t € N, v < min{t, 2(k; + k2)}.
Output: e € (Z/4Z)" with eH' = s and wty(e) = t.

1: Choose an information set I C {1,...,n} of size ki + ko and define J = I°.
2: Compute U € (Z/4Z)(=F)x(n=k1) "such that

A Idp—g—k
UH); = d (UH); = 1T
(UH); (20) and (UH), <Ok2><(nk1k2)) ,

where A € (Z/47)("—F1—k2)x(kitk2) and C € (Z/22)k>* (kitk2),
: Compute sUT = (s; 2s3), where s1 € (Z/AZ)" "1 ~F2 and s, € (Z/2Z)*.
: for er € (Z/4Z)k1+*2 with wtr(e;) = v do
if e;,CT = s, then
if wtr(s; —e;AT) =1t —v then
Return e, such that e; = ey and e; =s; — e/ A.

: Start over with Step 1 and a new selection of I.

Proof. As usual, the first step of the algorithm is to bring the parity-check matrix into
systematic form by multiplying by U and computing sUT. A broad estimate of this
cost is given by
2(n —k1)*(n + 1)

binary operations.

In the next step, we go through all e; € (Z/47Z)*1+*2 of Lee weight v, and check if
e;CT = s,. This would usually require 2min{v, k; + ko }k2 binary operations for each
er. Hence, in total this step would cost

(2(k1 + k)

>2 min{v, kl + k2}k2
v

binary operations. However, we can use the concept of intermediate sums over Z/47Z
to compute e;C' for all e; € (Z/4Z)*1*2 of Lee weight v, which costs

L4(k1 + ko, ’U>2k2
binary operations, instead of the previous

(2(k:1 + k)

v >2min{v,k1 +k‘2}k‘2

binary operations.
Finally, we compute s; — e;A T, for all e; € (Z/4Z)*1+*2 of Lee weight v. This
would usually require

v

(Z(kl + k2))2min{v, ki + ko}(n — k1 — k2)
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binary operations, since ey has support size of at most min{v, k1 + ko}. However, the
algorithm only proceeds if the Lee weight of s; — e;A T is t — v, hence we can use
the concept of early abort. Since computing one entry of the vector s; — e;AT costs
2min{v, k1 + ko } binary operations, this step costs on average

v

(Q(kl + k2)) (t — v+ 1)2min{v, k1 + k2 }

binary operations.
The success probability is given by

()

By multiplying the number of iterations needed, i.e., the reciprocal of the success
probability, with the cost of one iteration, we get the claim. O

5.2.3 Stern’s algorithm

In this section we want to formulate Stern’s algorithm over Z/4Z equipped with the
Lee metric. Such an algorithm was provided in [55] in collaboration with Anna-Lena
Horlemann-Trautmann. The cost we provide here will be slightly different to the one
in the paper, in order to match the other costs.

Recall that in Stern’s algorithm we have partitioned the information set into two
sets and ask for Lee weight v in both of the sets. Further, we assume that there is a
zero-window of size ¢ outside the information set, where no errors happen.

As for the previous algorithms, we will illustrate also Stern’s algorithm for the
choice of information set being I = {1,...,k; + k2}, and the zero-window being Z =
{k1 +ko+1,...,k + ky + ¢}, and finally the remaining set J = (I U 2)°.

Assume that U € (Z/4Z)(—*)x(=k1) s such that UH is in systematic form.
We can write the error vector partitioned into the information set part I, the zero-
window part Z and the remaining part J as e = (ey,0¢,e;), with wty(e;) = 2v and
wtr(es) =t — 2v. Therefore, we can write

eH'UT
AT BT 2CT
=(e; 0, ey) Id, 00x (n—ky—ky—0) Orxk,
On—tky—ko—0)xe  Idn—ky—ko—t  O(n—k;—ks—t)xko

= (51 So 253) = S-U-T7
where A € (Z/4Z)"*(Fitk2) B ¢ (Z/4Z) (" Fi—ke=O)x(kitkz)
C € (Z/27)F>*(kitk2) and sy € (Z/AZ)!,sq € (Z/AZ)"~F1—k2=t 53 € (Z)27)"=.

From this we get the following three conditions
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efAT =5, (5.2.3)
e/B" +ey=sy, (5.2.4)
2e;CT = 2s3. (5.2.5)

We partition the information set I into the sets X and Y, for the sake of clarity,
assume that ki +ko is even, m = (k1 +k2)/2, X ={1,...,m}and Y = {m+1,... k1 +
ka}. We can hence write e; = (ex,ey), and Condition (5.2.3) and Condition (5.2.5)
become

T T

=s1 —oy(ey)A ',

= S3 — Jy(ey)CT.

O’X(ex)A

. (5.2.6)

Jx(ex)c

Observe that the ox is needed, as ex has length m, but we want to multiply it to
AT € (2/47)F+k2) %L respectively to CT € (Z/2Z)F1tk2)xkz - In the algorithm we
will not use the embedding ox but rather (Z/4Z)* T*2(X), thus ex will have length
k1 + ko, but only support in X.

In the algorithm we will define a set S that contains all vectors of the form
ox(ex)AT and ox(ex)CT, i.e., of the left side of (5.2.6) and a set T' that contains all
vectors of the form s; — oy (ey)A T and s3—oy (ey)CT, i.e., of the right side of (5.2.6).

Whenever a vector in S and a vector in T' coincide, we call such a pair a collision.

For each collision we define ey such that Condition (5.2.4) is satisfied, i.e.,

eJ:SQ_e]BT

and if the Lee weight of e; is the remaining ¢t — 2v, we have found the wanted error
vector.

We will now give the algorithm of Stern in its full generality, i.e., we are not re-
stricting to the choice of I, J and Z, that we made before for illustrating the algorithm.
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Algorithm 6 Stern’s Algorithm over Z/4Z in the Lee metric

Input: H € (Z/4Z)"~ k)" s € (Z/AZ)"*1, t € N,

ky

+ ky =mq +ma,f <n—ky — ke and v < min{2my, 2ma, L%J}

Output: e € (Z/4Z)" with eHT = s and wtz(e) = t.

1:

Choose an information set I C {1,...,n} of size k1 + k2 and choose a zero-window
Z C I€ of size £, and define J = (I U Z)°.
Partition I into X of size m; and Y of size mo = k1 + ky — m;.

3. Compute U € (Z/47)(—F1)x(n=k1) "sych that

A Idé Oéx(nfklszff)
(UH); = B |, (UH)z = [ Op—p,—oyxe |, (UH)y = | Idpn, ke |,
2C O, e Ok x (n—ky—ka—0)

where A € (Z/4Z7)>*itk) B ¢ (Z/47)(nFi—ke=Ox(Baitk2)  and C €
(Z/2Z)k2><(k1+k2).

Compute sUT = (51 So 253), where s, € (Z/AZ)" sy € (Z/AZ)"F1=F2= and
s3 € (Z)27)%z.

Compute the set S

S = {(eXAT,eXCT,eX) | ex € (Z/4Z)kl+k2(X), WtL(eX) = v}.
Compute the set T’
T = {(Sl — eyAT,S3 — eyCT,ey) | ey € (Z/4Z)k1+k2(Y), th(ey) = U}.

for (a,b,ex) € S do
for (a,b,ey) € T do
if WtL(SQ — (eX + ey)BT) =t — 2v then
Return e, such that e; = ey +ey,ez =0, and e; =s, — (ex +ey)B'.

: Start over with Step 1 and a new selection of I.

In the following, we give the complexity analysis of Algorithm 6.

Theorem 5.2.3. Stern’s algorithm over Z/AZ equipped with the Lee metric requires
on average

(2m1> -t <2m2> ! (Q(n —ky — kg — z)) -t (%)
v v t—2v t
: <2(n —k1)?(n+1) + (L4(m1,v) + Ly(ma,v) + <27:2>) (20 + 2k5)

o) Ch)
+ St min{t = 20+ 1on — ky — ks — £}2min{20, k1 + ko)

binary operations.

69



5.2. Information Set Decoding over Z, in the Lee Metric

Proof. Let us first compute the cost of one iteration.
A broad estimate of bringing the parity-check matrix into systematic form and
performing the same operations on the syndrome is given by

2(n—k1)*(n+1)

binary operations.

To compute the set S, we can use the technique of intermediate sums. We want
to compute ex AT and exC' for all ex € (Z/4Z)k1+*2(X) of Lee weight v. With
intermediate sums, this costs

f4(m1, 'U) (26 + 2]€2)

binary operations, where the part Ls(m1,v)2¢ comes from computing ex AT and the
part Ly(m1,v)2ks comes from computing exC .

For the set T it works similarly: we want to compute s; —ey A and s3 —eyCT,
for all ey € (Z/AZ)*17%2(Y) of Lee weight v. Using intermediate sums, this costs

Ly(ma,v)(20 + 2k2) + (27:2) (20 + 2k2)

binary operations. The L4 (ma,v)2¢ + (27:}2)26 part comes from computing s; —ey AT,
whereas the f4(m2, v)2ky + (2732)2192 part comes from computing sz — ey CT.

The remaining steps of the algorithms are in a nested for-loop where we go through
all elements in S and all elements in T', thus usually the cost of these steps should be
multiplied by the size of S x T'. However, since the algorithm only continues if the first
entry of the element in S coincides with the first entry of the element in 7', thus asking
for a collision, we can use instead the number of collisions we expect on average. Since
In the next step, we want to check for collisions between S and 7. Note that S is of
size (2’;“) and similarly T is of size (2732). The resulting vectors ex A T, respectively,
s; — ey AT live in (Z/4Z)", whereas the second part of the resulting vectors exC T
and s3 — ey C' live in (Z/4Z)** and we assume that they are uniformly distributed.

Hence, we have to check on average

2m 2m
o) o)
4Z+k2
many collisions. For each collision we have to compute so — (ex + ey)BT, which would
usually require
(Tl — k'l — kg — €)2 min{2v, kl + kg}

binary operations. However, we can use the technique of early abort, since the algo-
rithm only continues if the weight of s, — (ex + ey )BT is t — 2v. Note that assuming
the resulting vector is uniformly distributed, we have that one entry of the resulting
vector adds Lee weight 1 to the weight of the full vector, with probability 1. Hence
we have to compute on average (¢t — 2v + 1) many entries of the resulting vector before
we can abort. Computing one entry of the vector sy — (ex + ey )BT costs 4v binary
operations. Thus, by applying early abort, we get that this step costs on average

(t — 2v + 1)2min{2v, k1 + ko}
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binary operations.
The success probability is given by

() e

Thus, we get the claimed complexity. O

5.3 Information Set Decoding over Z/p°Z in the Lee
Metric

Let H € (Z/p*Z)("~*)*" he a parity-check matrix of a linear code C over (Z/p°Z)"
equipped with the Lee metric and of type

[C = (") (p*= )k - ph

and hence having an information set of size K = > "7, k;.
Recall that the systematic form of the parity-check matrix H is given as

Bi1 Bi» o Bisaa B, Id,,-x
pBa 1 pBo2 - pBaos1 pldg, 01, x (n—K)
H=| PBsa p"Bsz - pPIdi, Okixk, Okixn-r) |, (5.3.1)
PP IB1 p T Ik, o Opgxkey Okgxk. Okyx(nek)

where By ; € (Z/p*Z)"~5)¥ki and B, ; € (Z/p* 1= Z)ks+2=%ki for § > 1.
For the following algorithms, however, we will only consider H to be in the following
form:

H-= (A ldn—x ) : (5.3.2)
B Ok ki)x(n-K)

for A € (Z/p°Z)"~FK)*K and B € (Z/p*~17Z) K-k <K,

Hence we only partition into the rows of H which are divisible by p, and those which
are not. This is exactly as the structure we have over Z/47, and hence we can directly
adapt the algorithms from Section 5.2 to Z/p°Z without repeating their structure. The
main difference will be the techniques that can only be applied over Z/47Z, and thus
cannot be used anymore.

We will also cover the special case, where s = 1. Since there we are over a finite
field, the structure of the algorithms are exactly the same as over F, in the Hamming
metric, see Chapter 4. Thus, we will not repeat the idea of these algorithms, but we
will give the full algorithms and their costs, as the tools we have for the Hamming
metric do not apply to the Lee metric as well.

We will then later see a generalization of the algorithms to the form (5.3.1), where
we iteratively use the algorithms considering the easier form (5.3.2) and the algorithms
over [Fp,.
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ISD algorithms over Z/p*Z equipped with the Lee metric were already studied in
[104] using the systematic form (5.3.2). The special case of s = 1 was studied in
[105]. Both of these papers are in collaboration with Massimo Battaglioni, Paolo San-
tini, Anna-Lena Horlemann-Trautmann, Edoardo Persichetti, Marco Baldi and Franco
Chiaraluce.

5.3.1 Prange’s algorithm

In this section we present Prange’s algorithm over Z/p*Z equipped with the Lee metric.
Such an algorithm was provided in [104] in collaboration with Massimo Battaglioni,
Paolo Santini, Edoardo Persichetti, Marco Baldi and Franco Chiaraluce. The cost of
the algorithm might differ from the one provided in the paper to match the techniques
used in this chapter.

Recall that in Prange’s algorithm, we assume that there exists an information set
1, that is disjoint to the support of the error vector Supp(e).

The structure of the algorithm is exactly as for Prange’s algorithm over Z/4Z, hence
we will not repeat it and instead give directly the algorithm and its complexity.

Algorithm 7 Prange’s Algorithm over Z/p*Z in the Lee metric

Input: H € (Z/p*Z) "~ F)xn s € (Z/p*Z)" %, t € N.
Output: e € (Z/p°Z)" with eH" = s and wty(e) = t.

: Choose an information set I C {1,...,n} of size K and define J = I€.
. Compute U € (Z/p*Z)"—F)x(n=F1) ‘guch that

(UH); = (p"’];) and (UH); = ( Id, -k ) ,

O(K—k1)x (n—K)

N =

where A € (Z/p*Z) "~ K)xK B ¢ (7/p*~17)(K-k)xK,
Compute sUT = (s; psz), where sy € (Z/p*Z)" % and sy € (Z/p*~'Z)* .
if wtr(s;) =t and wtz(s2) = 0 then

Return e, such that e; = 0 and e; = s;.

@ g w

Start over with Step 1 and a new selection of 1.

The average complexity of Algorithm 7 can be computed as follows.
Theorem 5.3.1. Prange’s algorithm over Z/p*Z endowed with the Lee metric requires
on average
F(n = K, t,p*) " F(n,t,p%)(n = k1)*(n + 1) ([logy (p°)] + Noga ()1
binary operations.

Proof. As for the previous algorithms considering Prange’s idea, we have that one
iteration only consists in bringing H into systematic form thus a broad estimate is
given by

(n— k) (n+ 1) (Togy(°)] + [logs(p*)1?)
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binary operations.

The success probability is given by having chosen the correct weight distribution of
e. In this case, we require that no errors happen in the chosen information set, hence
such a probability is given by

F(TL - Katps)F(n’tvps)il'

Thus, we get the claim. O

The case s =1 Prange’s algorithm over I, equipped with the Lee metric was given in
[105] in collaboration with Massimo Battaglioni, Paolo Santini, Anna-Lena Horlemann-
Trautmann and Edoardo Persichetti.

For the special case, where s = 1, we are over the finite field I, and hence the
systematic form of the parity-check matrix is given by

H=(A Id, ),

for A € Fénik)x}c.
The structure of the algorithm is exactly as over IF, equipped with the Hamming
metric, we hence refer to Section 4.1.

Algorithm 8 Prange’s Algorithm over F,, in the Lee metric

Input: H € Fy* " s e FrF t e N.
Output: e € Fy with eH" =s and wty(e) = t.

1: Choose an information set I C {1,...,n} of size k and define J = I¢.

2. Compute U € FY"¥*"™) “such that

(UH)[ = A and (UH)J = Idn_k,

where A € IE‘Z(,n_k)Xk.
: Compute s’ =sU".
if wtr(s') =t then
Return e, such that e; = 0, and e; = ¢’.

: Start over with Step 1 and a new selection of I.

The average complexity of Prange’s algorithm over ), endowed with the Lee metric
is as follows.

Theorem 5.3.2. Prange’s algorithm over I, equipped with the Lee metric requires on
average

F(n—k,t,p) " F(n,t.p)(n — k)(n +1) ([log (p)] + [logs(p)]%)
binary operations.

73



5.3. Information Set Decoding over Z/p*Z in the Lee Metric

Proof. Bringing the parity-check matrix into systematic form and applying the same
operations on the syndrome costs

(n— k)20 + 1) (Nloga(p)] + Mogy (1)1

binary operations.
The success probability is given by

F(n - katvp)F(Thtap)il'

Hence, we get the claim. O

5.3.2 Lee-Brickell’s algorithm

In this section we want to formulate the algorithm of Lee-Brickell in Z/p*Z equipped
with the Lee metric. The structure and idea of Lee-Brickell’s algorithm over Z/p°Z in
the Lee metric was already given in [105] in collaboration with Massimo Battaglioni,
Paolo Santini, Anna-Lena Horlemann-Trautmann and Edoardo Persichetti.

For this recall that in Lee-Brickell’s algorithm we assume that there exists an in-
formation set such that v errors happen inside the information set and ¢ — v outside.

Since, the structure of the algorithm is exactly as for Lee-Brickell’s algorithm over
7./47., we refer for an illustration to Section 5.2.2.

Algorithm 9 Lee-Brickell’s Algorithm over Z/p*Z in the Lee metric

Input: H € (Z/p°Z)"—F)xn s € (Z/p*Z)" ", t €N, v < min{KLf%j,t}.
Output: e € (Z/p*Z)" with eH" = s and wty(e) = t.

—_

: Choose an information set I C {1,...,n} of size K and define J = {1,...,n}\ I.

2: Compute U € (Z/p*Z)"—Fx(n=F) ‘such that
A Id,_x
UH); = and (UH); = " ,
(UED: (PB> (UEDs <O(K—k1>x<n—K>)
where A € (Z/p*Z)"~F)*xK and B € (Z/p*~17)K-k)xK,
3: Compute sUT = (51 pSQ), where s; € (Z/p*Z)" ¥ and sy € (Z/p*~1Z)KF1.
4: for ey € (Z/p*Z)¥ with wty(e;) = v do
5: if ;BT = s, then
6: if wtz(s; —e;AT)=t—v then
7 Return e, such that e; =e; and ey =s; —e;AT.
8 Start over with Step 1 and a new selection of I.

We now provide a complexity estimate of Lee-Brickell’s algorithm over Z/p°Z
equipped with the Lee metric.
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Theorem 5.3.3. Lee-Brickell’s algorithm over 7 /p*7Z requires on average
F(K,v,p*)'F(n— K,t —v,p*) ' F(n,t,p*) ((n — k1)*(n + 1)
+ F(K,v,p*) min{v, K }(K — k1)
+F(K,v,p%) min{uz}l(t —v+1),n— K} min{v, K})

- (108 (p*)] + 1o (p*)1%)

binary operations.
Proof. The first step is to bring the parity-check matrix into systematic form, which is
given by
(n— k)*(n+ 1) (Tlogy(°)] + o, (p*)17)
binary operations.

In the next step, we go through all e; € (Z/p*Z)X of Lee weight v, and check if
e;BT = s,. This requires

min{v, K}(K — k1) (logy(p")] + [oga(n)1%)

binary operations for each e;. Hence, in total this step costs

F(K,v,p") minfo, K}(K = k1) ([logs(p*)] + [loga(p)]°)

binary operations. Note that here we have to use the full cost, as there is no known
concept of intermediate sums for the Lee metric over Z/p*Z.

Finally, we compute s; —e; A", for all e; € (Z/p*Z)¥ of Lee weight v. This usually
would require

F(K, v,p") minfv, K} (n — K) ([ogs(p*)] + [logs(p)]°)

binary operations, since e; has support size of at most min{v, K'}. However, the
algorithm only continues if the Lee weight of s; — e;A T is t — v. Assuming that the
resulting vector is uniformly distributed, we have that a random element has average
Lee weight 1. Hence we have to compute on average u;} (t — v+ 1) many entries
of the resulting vector before we can abort. Since computing one entry of the vector

s; —erAT costs min{v, K} ([logQ(pSﬂ + [1og2(p5ﬂ2) binary operations, by applying

early abort, we get that this step costs on average

F(K,v,p") i (¢ = v+ 1) min{v, K} (Nlogy(p")] + logs(p")1°)

binary operations.
The success probability is given by having chosen the correct weight distribution of
e, which is given by

F(K,v,p°)F(n— K,t —v,p*)F(n,t,p*)"".

By multiplying the average number of iterations needed to the cost of one iteration,
we get the claimed complexity. O
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The case s = 1 Such an algorithm was provided in [105] in collaboration with
Massimo Battaglioni, Paolo Santini, Anna-Lena Horlemann-Trautmann and Edoardo
Persichetti.

We also want to consider the special case where we are over a finite field F,,. In
this case the systematic form of the parity-check matrix is easier and the structure of
the algorithm is exactly as for Lee-Brickell’s algorithm over [F,, in the Hamming metric,
hence we refer to Section 4.2.

Algorithm 10 Lee-Brickell’s Algorithm over ), in the Lee metric

Input: H € Fy* " s e F7% t € N, v < min{t, 251 k}.
Output: e € Fj with eH" =s and wty(e) = t.

1: Choose an information set I C {1,...,n} of size k and define J = I°.

: Compute U € Fz(,n_k)x("_k), such that

N

(UH); = A and (UH); =1Id,_p,

where A € IFZ(,n_k)Xk.
3: Compute s’ =sUT.
4: for ey e ]F’; with wtr(er) =v do
5: if wtz(s' —e;AT)=t— v then
6 Return e, such that e; = ey and ey =s’ —e;AT.
7: Start over with Step 1 and a new selection of I.

The average complexity of Lee-Brickell’s algorithm over F,, endowed with the Lee
metric is given as follows.

Theorem 5.3.4. Lee-Brickell’s algorithm over IF), equipped with the Lee metric requires
on average

F(k}v’(}’p)ilF(’n, - kat - va)ilF(nvtvp) ((n - k)2(n + 1)
+ F(k,v,p) min{ps, (¢ = v+ 1),n — k} minfv, k}) ([logs(p)] + [logs(p)1*)
binary operations.

Proof. Bringing the parity-check matrix into systematic form has a broad cost estimate
of

(n = k)2(n+ 1) (Tlogy ()] + Nlogs(p)]°)

binary operations.
In the next step, we go through all e; € IF’; of Lee weight v, and compute s’ —e;A .
This would usually require

F(k, v,p)(n — k) min{v, k} (Nlogy(p)] + MNoga(p)1*)
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binary operations, since ey has support of size at most min{v, k}. However, using the
concept of early abort, this step requires on average

F(k,v,p)y " (t = v + ) min{v, k} ([logs(p)] + [logs(p)]?)

binary operations.
Since we require that v errors happen in the chosen information set and the remain-
ing t — v outside, the success probability is given by

F(k,v,p)F(n —k,t —v,p)F(n, t,p)_l.

Then, the estimated overall cost of Lee-Brickell’s ISD algorithm over F,, equipped with
the Lee metric is given as in the claim. O

5.3.3 Stern’s algorithm

In this section we formulate Stern’s algorithm over Z/p°Z equipped with the Lee met-
ric. Such an algorithm was provided in [104] in collaboration with Massimo Battaglioni,
Paolo Santini, Marco Baldi, Franco Chiaraluce and Edoardo Persichetti. For consis-
tency reasons, the cost of the algorithm provided in this section might differ from the
one provided in [104].

Recall that in Stern’s algorithm we partition the information set into two sets. We
assume that v errors happen in both of the sets and that there is a zero-window of size
¢ outside of the information set where no errors happen.

Since the structure of Stern’s algorithm over Z/p*Z, when only considering H having
the form (5.3.2) is exactly as over Z/4Z. Hence we refer for the structure to Section
5.2.3.

In the following we provide a complexity estimate of Stern’s algorithm over Z/p*Z
equipped with the Lee metric.

Theorem 5.3.5. Stern’s algorithm over Z/p°Z equipped with the Lee metric requires
on average

F(my,v,p°) ' F(mg,v,p®) ' F(n — K — £,t — 2v,p*) "' F(n,t,p*)
- (TNoga(p*)] + Noga(p*)17) (0 — ka)*(n+ 1)

+(K = k1 + €)(F(ma, v, p°) min{v, m1} + F(mz,v,p*) min{v, ma})

F(m17 Uaps)F(m27 Uaps)

+ (ps )£+K—k1

min{u;sl (t—2v+1),n — K — £} min{2v, K})

binary operations.

Proof. We first compute the cost of one iteration. As usual, bringing the parity-check
matrix into systematic form has a broad cost estimate of

(n = k)*(n+ 1) (Togy(°)] + Nlogs(p*)1?)
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Algorithm 11 Stern’s Algorithm over Z/p*Z in the Lee metric

Input: H € (Z/p*Z)"=F)xn s € (Z/p*Z)" %1, t €N, K = my +mgy,{ < n — K and

v < min{| 252 Jmy, |25 mo, L%J}.
Output: e € (Z/p*Z)"™ with eH' = s and wty(e) = t.

1: Choose an information set I C {1, ...,n} of size K and choose a zero-window Z C I¢
of size ¢, and define J = (I U Z)°.

2: Partition I into X of size m; and Y of size my = K — m;.

3: Compute U € (Z/p*Z)(—F)x(n=k1) "such that

A Id, 0y (n—K—r)
(UH); = | B |, (UH)z = [ O0(—x—r)x¢ | » (UH); = Id,—x—¢ ,
pC O(K—k1)xe O(K—k1)x(n—K—0)

where A € (Z/p*Z)* 5 B € (Z/p°Z)"~E=OxK and C € (Z/p* 1 Z)(K-k)x K,
4: Compute sUT = (s; sy ps3), where s; € (Z/p*Z)",ss € (Z/p*Z)" K¢ and
S3 € (Z/ps—lz)K—kl_
5: Compute the set S

S = {(eXAT,eXCT7eX) lex € (Z/p°Z)" (X), wtr(ex) = v}.
6: Compute the set T’
T = {(Sl — 6yAT,Sg — eyCT,6y) | ey € (Z/pSZ)K(Y), WtL(ey) = U}.

7: for (a,b,ex) € S do

8: for (a,b,ey) € T do
9: if wtz(s2 — (ex +ey)BT) =t — 20 then

10: Return e, such that e; = ey +ey,ez =0, and e; =s, — (ex +ey)B'.

11: Start over with Step 1 and a new selection of I.

binary operations.
For the set S we want to compute ex AT and exC' for all ex in (Z/p*Z)% (X) of
Lee weight v. This step requires

Fm1,v,p°)(K — by + €) min{v,ma} (Togy ()] + [loga ()17

binary operations, where the part
min{v, m1 }¢ (Nlogy(p*)] + Nog, (v*)1°)
comes from computing ex AT and the part
(K — kr) min{v, m1} (Tlogy (p°)] + [Noga(n)1%)
comes from computing exC .
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Similarly, we can build set T: we want to compute s; — eyAT and s5 —eyCT, for
all ey € (Z/p*Z)X(Y) of Lee weight v. This costs

Flma, v,p")(K — by + €) min{v, s} (logy (p°)] + Moga(0)]°)
binary operations, where the
emin{v,ms} (Mogs (p*)] + gy (v*)17)
part comes from computing s; — eyA—'—7 whereas the
(K — ky) minfo, mo} (Togy(p°)] + Mog, (v°)1°)

part comes from computing s3 — eyC'.

In the next step, we want to check for collisions between S and T'. Since S consists
of all ex € (Z/p*Z)¥(X) of Lee weight v, S is of size F(my,v,p*) and similarly T
is of size F(ma,v,p*). The resulting vectors ex AT, respectively, s; — ey AT live in
(Z/p°7)*, whereas the second part of the resulting vectors exCT and s3 — ey C' live
in (Z/p°Z)E—*1) and we assume that they are uniformly distributed. Hence we have
to check on average

F(mh v, pS)F(m27 v, ps)
(ps)€+K—k1

many collisions. For each collision we have to compute so — (ex + ey)BT7 which would
usually require

(n— K — ) min{20, K} (Mogy(p*)] + Noga(»)1%)

binary operations. However, using the concept of early abort, this step requires on
average

i (¢ = 20 + 1) min{20, K} ([ogy(p")] + Nloga(p*)1?)

binary operations.
The success probability is given by

F(mi,v,p°)F(ma2,v,p°)F(n — K — £,t — 2v,p*)F(n, t,ps)_l.

Multiplying the reciprocal of this, i.e., the number of iterations needed on average, to
the cost of one iteration, we get the claim. O

The case s = 1 Stern’s algorithm over F, equipped with the Lee metric was pro-
vided in [105] in collaboration with Massimo Battaglioni, Paolo Santini, Anna-Lena
Horlemann-Trautmann and Edoardo Persichetti.

As for the previous algorithms, we want to consider also for Stern’s algorithm the
special case where s = 1 and hence we are over a finite field IF,,. Since we are over a finite
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Algorithm 12 Stern’s Algorithm over F, in the Lee metric

Input: H € IFI(,”*’“)X”, s € IF;,’_’“, teN, k=mi;+mo,f<n—kand

v < min{ 25 my, B tma, [ 5]}
Output: e € Fy with eH" =s and wty(e) = t.

1: Choose an information set I C {1,...,n} of size k and choose a zero-winow Z C I¢
of size ¢, and define J = (I U Z)¢

2: Partition I into X of size m; and Y of size ma = k — my.

3: Compute U € IF(" k) (n= k), such that

A Ide OZX(n—k_g)
UH); = , (UH)z = 4 (UH), — |
o <B> (OH)z <O(nkz)xz> and (UH); ( Idy—r—¢
where A € F&** and B € IF(” k—0)xk-
4: Compute SUT _ (51 s ) where s; € Ff, and s, €
5: Compute the set S

n—k—~
okt

S = {(exATan) | ex € FI;(X), WtL(ex) = 'U}.
6: Compute the set T
T = {(Sl — eyAT’ey) ‘ ey € IFZ(Y)7 WtL(ey) — ’U}.

7. for (a,ex) € S do

8: for (a,ey) € T do
9: if wtz(s2 — (ex +ey)BT) =t —2v then
10 Return e, such that e; = ey +ey,ez =0, ande; =s, — (ex +ey)B'.

11: Start over with Step 1 and a new selection of I.

field, we have the classical systematic form for the parity-check matrix. The structure
of the algorithm will hence be exactly as for Stern’s algorithm over ), equipped with
the Hamming metric. For an illustration of the idea of the algorithm we hence refer to
Section 4.3.

The average complexity of Stern’s algorithm over F,, equipped with the Lee metric
is as follows.
Theorem 5.3.6. Stern’s algorithm over I, equipped with the Lee metric requires on
average

F(my,v,p) "F(ma,v,p) *F(n —k —£,t — 2v,p) ' F(n,t,p)
- (TMoga(p)] + Moga(p)1?) (0 — K)*(n +1)
+ ¢(F(mq,v,p) min{my,v} + F(ma,v,p) min{ms,v})

F(mhv p)F(mQa 7p)
+ 4

mln{ﬂ_l(t —2v+1),n—k — £} min{k, 21}})

kS
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binary operations.

Proof. As a first step, we bring H into systematic form and perform the same operations
on s. This cost can be estimated by

(n = k)2(n+ 1) (Tlogy ()] + Nlogs(p)]°)

binary operations.
In the next step, we compute the set S, i.e., we want to compute ex A" for all
ex € Fi(X) of Lee weight v. This costs

F(my,v,p)¢min{my, v} (Nloga(p)1* + Nlogs(p)] )

binary operations.
Similarly, we can build set T, by computing s; — ey AT, for all ey € IE"; (Y) of Lee
weight v. This costs

F(ma, v,p)¢min{ms, v} (Nloga(p)] + Mogy(p)1?)

binary operations.

As a last step, we want to check for collisions between S and T. Note, that § is
of size F(my,v,p) and similarly 7T is of size F((mg,v,p). The resulting vectors ex AT,
respectively, s; —ey AT live in IFf), and we assume that they are uniformly distributed.
Hence, on average we have to check

F(my,v,p)F(ma,v,p)
Pl
many collisions. For each collision we have to compute so — (ex + ey)BT, which would
usually require

(n— k — ) mink, 20} (Nlogy(p)]* + [log(p)1)

binary operations. However, we can use the concept of early abort, as the algorithm
only proceeds if the Lee weight of sy — (ex + ey )BT is t — 2v. Note that computing
one entry of the vector s, — (ex + ey )BT costs

min{k, 2v} ( [logs(p)] ’ 4 [logy(p)] )

binary operations. Therefore, we get that this step costs on average

(¢ = 20 + 1) min{k, 20} (Tlog, (p)]” + [Noga (p)])

binary operations.

Since we require that v errors happen in the set X and v in the set Y and the
remaining ¢ — 2v outside the information set and the zero-window, we get that the
success probability is given by

F(mlvvap)F(mQavap)F(n —k— gvt - 2v,p)F(n,t,p)71.
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5.3.4 (Generalization

Even though the algorithms from Section 5.3 work over Z/p°Z equipped with the
Lee metric, they are not taking into account the special structure of the parity-check
matrix over the finite ring. In this approach we only consider the rows of H that are
not divisible by p and the rows which are, i.e., the code parameter k;. Considering
all the code parameters k;, for i € {1,...,s} would give an overly complex algorithm.
However, for generalizing the algorithms, we will see that the case where we only
consider the special structure of H together with the special case over F, are enough.

Note that this iterative algorithm was presented in [105], though without an example
and a complexity analysis, which we will provide in this section.

For the generalization we need a condition involving p, thus we can only generalize
Lee-Brickell’s and Stern’s algorithm.

In Lee-Brickell’s algorithm and in Stern’s algorithm we have the condition pe;BT =
psa, respectively pe;CT = pss. This equation can be reduced to e;BT = sy, respec-
tively e;CT = s3, over Zps—1 which is again like the initial syndrome decoding problem
but over a smaller finite ring, i.e., Z,s—1, and with a smaller matrix size. Thus, an
improvement on the cost of the algorithms could be to iteratively reduce the size of the
problem to the smallest instance and then update the solution with this partial solution.

Even though the underlying idea is simple, the algorithm is not. In the following,
we will only focus on Lee-Brickell’s algorithm but it is possible to adapt also Stern’s
algorithm accordingly.

The iterative algorithm is best seen as a recursive function.

Let f(M,s,s,w) be the following function: first bring M over Z,- into the form

A 1Id
um- (5 o)

and
SUT = (81 pSQ) .

Then, the function goes one step further and already checks whether for some invertible
V, it holds that VB is of the form (A’ Id) , for some A’. If this is the case, the
function solves

nNT
elBTVT = (e’1 e’2) ((-Ald) ) =s' = SQVT.

. -1 .
Then, it saves egs ) = (e}, €eh) as a solution.

If VB is not of this form, then egsfl) = f(B,s3,s — 1,w).
As last step (in both of the cases) it solves

T AT BT
eMTUT = (eg Y +e1ps_1 82) (Id pO ) = (Sl pSQ) = SUT;

using the previous solution e{"™".
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Note that in this very rudimentary algorithm we partition e according to the
columns of H being divisible by p* and assume that each part of the error vector
has Lee weight w.

Algorithm 13 Iterative Lee-Brickell over Z,s in the Lee metric

Input: The matrix M € ZZSXb, the vector s € Zj. and the positive integers s, and w.
Output: e € ZZS with eM' = s and wty(e) = t.

1: Find U € Z;X" an invertible matrix, such that J is the largest set (with | J |= ¢
and K = J©) satisfying UM = (pAB) and UM = (I(éc> )

2: Compute sU' = (51 pSQ).

3: Find V € Zz(ﬁ_c)x(a_c) an invertible matrix, such that J’ is the largest set with

li

| J/ ‘: c/ and K’ = (J/)C Satisfying VBK’ = (p%/) and VBJI — (Ic(l)c/) .

4: if B’ = 0 then

5: Compute s,V =¢'.

6: for e} € Zg:fl_c, with wty(e}) =w do

7 if wtr (s’ —ej(A)7T) = w then

5 (" )i = ef and (e]' V) =5 — ef(A)]

9: else

10: e(ls_l) = output of Algorithm 13 on inputs B,ss,s — 1,#,w

11: for e € ZZ’C do
1. if wig(s; — (e 4+ &p* )AT) =w then

13: Return (e1)x = " " +&p*~1 and (e;); =s; — (e{* V) + &p>~1)AT

This might look confusing, hence we want to give here a toy example, for s = 3.
Let C be a linear code equipped with the Lee metric over Z/p3Z, of length n and

type
1cl= (") ()" p".

Let us denote K = ky + ko + k3.
We have that the systematic form of the parity-check matrix H € (Z/p3Z)n—k)xn
is given by

A B C Id,,_x

pD  pE  pldg; Opyxn-x) | >

Pp’F p?Idk, Opyxiy  Opyx(n—k)
where A € (Z/p*Z)"—K)*k B ¢ (Z/p?Z)nK)xk2 C ¢ (Z/p°Z)"~F)*ks D €
(Z)p*Z)Fs>* [ E € (Z/p*Z)*s**2 and F € (Z/pZ)k=>F1.

Thus, splitting also the error vector e into the corresponding k1, ko, k3 and n — K

parts and the syndrome into the corresponding n — K, k3 and ko parts, we have the
following situation
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AT pDT p2FT

BT pET p? Idy,

eH'™ = (e e e €,_ 2
(or er ek, ©) c’ pldg, Oy ks

Idn—K O(n—K)ng O(n—K)ng
= (Sn—k DSk, D?Sk,) =s.
Let us assume that wtrz (e, ) = v, wtr(ex,) = ve, wtr(ex,) = v3 and wty(e,_x) =

t—V, for V. =v; + vy + v3. We thus get the following three conditions

en, AT +e,B" +e,CT +e,_x =s,_x,
pei, DT + per, ET + pey, = psy,,
pPer, F' +pep, = psp,.
As a first step, we set Hy € F’;zx(kl+k2) as
H, = (F Idkz) .
We can apply Lee-Brickell’s algorithm over ), equipped with the Lee metric to get
e = (91 92)

such that wtz(e1) < vi, wtr(e2) < ve and

FT
(e1 e2) <Idk2> = Sp,-

As a second step, we then set Hy € (Z/p?Z)(k2tks)xK a5

(D Id,
Hs = (sz 0k2><k3) ’
where D’ = (D E).

Set e}, = e’ + pé, with the e’ from the previous step and & € (Z/pZ)**+*2 which is
unknown.

Hence we can use part of Lee-Brickell’s algorithm over Z/p*Z to get

e = (e’2 e3) , such that wty,(e}) < vy + ve, wtr(e3) < vz and

DI T pHT
() e3) <(1d,33 0k3X2k2)_(Sk3 PSks) -

Observe that the condition
pebHy = p(e’ + pé)H, = psy,
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is already verified from the previous step. Hence we are only left with the condition
eh(D)T +e3=(e +p&)(D)" 4 e3 =sp,.

Thus, the part of Lee-Brickell’s algorithm over Z/p?Z that we need is going through
all & € IF’;H"“? and check if
sk, — (€' +p&)(D')"

has Lee weight less than or equal to vs.
We get as output the error vector €’ = (e’ +pé es).
As third and last step, we set H € (Z/p3Z)("—k)xn a5

( A’ Idn—K )
H = :
PH3 Oyt ks)x (n—K)

where A’ = (A B C).

Set ey = e’ + p?&', with the e” from the previous step and & € (Z/pZ)¥, which is
unknown.

Hence we can use part of Lee-Brickell’s algorithm over Z/p3Z to get

e= (eg en_K) , such that wty(e}) = V,wtr(e,—x) =t —V and

A/)T pHT >
el e, ( 3 — (s, _ s/ ,
(e5 enx) (Idn—K 0(rn—K)x (ka+ks) (Sn—rc 1)

where s’ = (sp, psk,) -
Observe that again the condition

pesHi = p(e” +p*&')Hy = ps’
is already verified from the previous step. Hence we are only left with the condition
es(ANT e, k= (e +p*&) AN te, k =s, k.
Thus, we go through all & € FJ* and check if
sn_x — (e +p*&)(A)T

has Lee weight t — V.
We get as output the error vector

e= (e +p%¢ e, k)
=((e/+pe e3)+p’e e,_k)
=(((e1 e2)+pe e3)+p*¢ enk).

Observe that this output vector satisfies all the conditions, i.e., wty(e) = ¢ and
eH' =s.
We can also provide the complexity analysis of the iterative algorithm.
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5.3. Information Set Decoding over Z/p*Z in the Lee Metric

Note that for simplicity we have set in the iterative algorithm v; = w, for all 7.
Nevertheless, in the example we have set wtr(eg,) = v; and wtr(e,—x) =t — V, for
V =377, v;. We will also use the different v;’s in the complexity analysis.

For this define the function

el v,5) = pHhmingy! (0 + 1), 7} (oga(0°)] + Nlogy(p)1?)

Furthermore, let us denote by LB(r,k,v1,vs2) the cost of Lee-Brickell’s algorithm
over I, for H € ]F;Xk and wty(e) = vy + ve, where v; is the parameter v.

Theorem 5.3.7. The cost of the iterative Lee-Brickell algorithm over Z/p°Z is given
by

S

i—1
LB(ky,ky + kg, v, 00) + Y e [ ki, kjvii—1| +c(n— K, K,t—V,s)
i=3 j=1
binary operations.
Proof. Recall, that we want to find e € (Z/p°Z)™, such that

e=(ey € - € en_g),

with wtz(ex,) = v;, for all i € {1,...,s} and wtp(e,—x) =t —V, where V. =3"7_, v;

and such that eH'™ = s, where s = (San DSk, - ps_lsk2).
The first step of the iterative algorithm is to perform Lee-Brickell’s algorithm over
F, on the inputs H € Flgzx(k1+k2)7 syndrome sy, and wtr(e) = v1 + va, where vy is the

parameter v. Thus, we get a cost of LB(ks, k1 + k2, v1,v2) binary operations.

The next steps, will all be computing s — eA " for s € (Z/p'Z)", A € (Z/p'Z)"**,
for i € {2,...,s}. Since in the iterative algorithm we go through all e € Z/p°ZF of
Lee weight v, using early abort we get the cost of this step is ¢(r, k, v, s). On the i-th
step of the iterative algorithm, we are on the inputs r = k;, k = Z;;ll kj,v = v; and
s =14 — 1. Hence, we get the cost

s i—1
E C ki, E kj,’l)i,’i—l
=3 j=1

In the last step of the algorithm, we are computing again s —eA " for s € (Z/p*Z)"
and A € (Z/p*Z)"**, which is given by c(r, k,v,s), with the inputs r = n — K,k =
K,v=1t—-V,s=s. Hence we get the claimed cost. O
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Chapter 6

Comparison

In this chapter, we want to compare the workfactors of the considered algorithms. For
this we provide the SAGE [101] code to compute the complexities of the algorithms in
https://www.math.uzh.ch/aa/uploads/media/ISD.sage.

This can be done either by fixing the workfactor of the algorithms and comparing
then the size of the input parity-check matrix, or by fixing the size of the considered
parity-check matrix and comparing the cost of the algorithms.

Clearly, if applied in a code-based cryptosystem, the workfactor corresponds to the
security level and the size of the input matrix corresponds to the public key size.

Note that since the input size and the workfactor are relative to each other, we will
focus here only on fixing the workfactor and comparing the input sizes.

We denote by p°® the size of the underlying ring, where p is a prime and s is a
positive integer, we denote by n the length of the code and by k = log,. (| C |) and the
rate of the code is then given by R = @

Whenever we are over Z/p°Z with s > 1, we assume that the code has type | C |=

(ps)k1 (ps_l)kz, since in the algorithms provided in Section 5.3 we only focus on a
simplified form of the parity-check matrix, i.e.,

(A Id,—k
)
Thus, we also have the parameters k, and ks. The size of the information set is
given by K = ki + ko, while & = k; + ko/s. In addition, we denote by d the min-
imum distance in the respective metric and by t the error correction capacity, i.e.,
t = |%1]. We denote by v the optimal choice for the internal parameter of Stern’s

and Lee-Brickells’ algorithm and by ¢ the optimal choice for the size of the zero-window
in Stern’s algorithm.

When fixing the workfactor, we optimize the size of the input matrix (i.e., as small

as possible) achieving this workfactor. Thus, the programs have to fix certain relations
between the parameters. We will go through all lengths n, after a defined starting
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point, we fix the rate of the code to be 1/2 and thus choose & = [ 5| and we fix the
minimum distance d such that it achieves the Gilbert-Varshamov bound in the con-
sidered metric. To assume that the considered codes achieve the Gilbert-Varshamov
bound has several reasons; on one hand, if the parameters achieve this bound we have
the existence result of codes and on the other hand, a random code achieves the asymp-
totic Gilbert-Varshamov bound with high probability.

Observe that over Z/p°Z with s > 1 there are several choices for k. We will thus
always provide two choices: one with a small k1 and one with a large k;. Usually, it
holds that decreasing k1 decreases the input size for a fixed workfactor, and vice versa.
Thus, the input size for any choice of k; should be between the two extremal provided
cases.

In the following we denote by H.m. the Hamming metric, by L.m. the Lee metric
and by L.B. the algorithm of Lee-Brickell. We provide a comparison for a fixed work-
factor of 280 binary operations, i.e., corresponding to a security level of 80 bits in Table
6.1 and for a fixed workfactor of 2128 binary operations in Table 6.2.

To compare the Lee metric with the Hamming metric, we could compare several
different parameter sets. In what follows, we focus on the algorithms over the same
ambient spaces or at least spaces with the same amount of elements. In Table 6.3 and
6.4 we compare the provided algorithms over Fio; in the Lee metric and the Hamming
metric. One can clearly see, that over prime fields the Lee metric provides much lower
input sizes than the Hamming metric. More in detail, we expect a reduction of the
input size of over 89%.

In Table 6.5 and 6.6 we compare the Hamming metric over Fys with the Lee metric
over Z/287. The Lee metric results again in lower input sizes. Of course, the com-
parison is not the most fair, as the finite field structure aids the ISD algorithm and
thus a larger input matrix has to be used to gain the same workfactor. In fact, the key
size reduction of using the Lee metric in this comparison is at least 91%. We can also
observe the range of the input size depending on the choice of k1 over Z/287Z equipped
with the Lee metric. Clearly, with decreasing k; we also decrease the input sizes and
except for Stern’s algorithm, the smallest possible non-trivial choice for k; achieves an
input size which is half of the input size given by the maximal choice of k;.

It makes most sense to compare the quaternary algorithms with the algorithms over
the binary, due to the Gray isometry that connects them. Thus, in Table 6.7 and 6.8
we compare the algorithms over Z/47 in the Lee metric with the algorithms over the
binary field equipped with the Hamming metric. The same behavior as before can also
be observed in these tables, although much more extreme. For the minimal non-trivial
choice of k1 the reduction of input size compared to the Hamming metric is 99.9%,
which is remarkable. For the maximal choice of k; we still have a fair reduction of
46%. And thus in this comparison the range of the input size depending on the choice
of ki is also very large, i.e., the input size for the minimal % is a reduction of 90%
from the input size for the maximal k.
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The given comparisons lead to several general remarks.

1. First of all, we can see that the algorithms by Lee-Brickell and Stern really are
improvements to Prange’s algorithm also over the Lee metric. Which implies that
we have correctly translated the corresponding speed-up techniques. However,
for Stern’s algorithm the optimal choice of ¢, which indicates the size of the zero
window is remarkably low. Since in the Lee metric we substantially increase the
error correction capacity, the errors are also more likely to spread densely over
the whole vector.

2. Secondly, in all cases the Lee metric provided an enormous key size reduction.
The reason for this is most likely that for the same parameters the Lee metric
can correct many more errors.

3. Lastly, in all comparisons over finite rings endowed with the Lee metric, it appears
that a small k; is preferable for cryptographic purposes, as there we have the
largest workfactor of the algorithms and in turn the smallest input size is needed
to achieve a given cost. Having many codewords which live in a non-zero prime
ideal seems to be more difficult for the algorithms. Note that this, however, might
give an adversary some advantage for a structural attack.

Let us examine one of these examples in the tables more closely. In Z/2%Z, i.e.,
p =2 and s = 3, we consider a linear Lee metric code C of length n = 29 and type
| C |= 4122 Thus k = ki + kg/s = 14 = | %] and the information set is of size
K = ki + ko = 28. If we choose d;, = 91, then there must exist a linear Lee metric
code with such parameters, since they achieve the Gilbert-Varshamov bound as

| Br(dg — 1,n,p°) |> 11495 - 10*°

and (28)29
(I B(90,29,2%) [ —1) (28 — 1)

Thus, this code can correct an error vector with Lee weight up to ¢y = 45. For
Prange’s algorithm we assume that all these errors are located outside the information
set, thus in n — K = 1 position. This might seem odd, but in this one position the Lee

weight can go up to L%J = 128.

This particular set of parameters appears twice in Table 6.1, once for Prange’s
algorithm and once for Lee-Brickell’s algorithm. However, this does not imply that in
the Lee metric Lee-Brickell’s algorithm is not an improvement of Prange’s algorithm.
In fact, the cost of Prange’s algorithm for these parameters is given by 104.29 binary
operations, while the cost of Lee-Brickell’s algorithm for the same parameters is given

by 96.49 binary operations.

412918 —| ¢ |<
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Table 6.1: Cost of ISD algorithms in the Hamming and Lee metric, for fixed workfactor 80
bits.

ISD metric | p | s n k k1 t v | £ | input size (bits)
Prange | H.m. 2 | 1| 895 | 447 51 200256
L.B. H.m. 2 | 1] 1077 | 538 61 | 2 289982
Stern H.m. 2 | 1] 1224 | 612 69 | 3 | 26 374544
Prange | Hm. | 101 | 1 | 251 | 125 46 104866
Prange | H.m. 2 | 8] 233 | 116 45 108576
L.B. Hm. | 101 | 1| 279 | 139 51 | 1 129568
L.B. H.m. 2 | 8] 259 | 129 50 | 1 134160
Stern Hm. | 101 | 1 | 307 | 153 5 | 2 | 5 156880
Stern H.m. 2 | 8| 276 | 138 53 | 2 | 5 152352
Prange | L.m. 2 2| 101 50 ) 12 1050
Prange | L.m. 2 2| 464 | 232 | 231 | 52 107646
L.B. L.m. 2 2| 120 60 1 14 | 13 238
L.B. L.m. 2 | 2] 555 | 277 | 276 | 62 | 2 154010
Stern L.m. 2 | 2] 22 |110] 1 25 |12 | 0 438
Stern L.m. 2 | 2] 628 | 314|313 | 70 | 3 |12 197190
Prange | Lm. | 101 | 1 74 37 70 9115
Prange | L.m. 2 18] 29 14 12 | 45 3360
Prange | L.m. 2 | 8] 51 25 | 24 | 77 6656
L.B. Lm. | 101 | 1| 89 44 86 | 86 13183
L.B. L.m. 2 |81 29 14 | 12 | 45 | 44 3360
L.B. L.m. 2 | 8] 51 25 | 24 | 77 | 76 6656
Stern Lm. | 101 | 1| 101 | 50 9% | 9 | 5 16978
Stern L.m. 2 | 8| 43 21 | 18 | 66 | 31| O 7392
Stern L.m. 2 | 8] 74 37 | 36 | 107 | 20 | 2 13024
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Table 6.2: Cost of ISD algorithms in the Hamming and Lee metric, for fixed workfactor 128
bits.

ISD metric | p | s n k Ky t v £ | input size (bits)
Prange | H.m. 2 1] 1675 | 837 94 701406
L.B. H.m. 2 | 1| 1893 | 946 106 | 2 895862
Stern H.m. 2 1| 2111 | 1055 118 4 38 1114080
Prange | Hm. | 101 | 1 | 469 | 234 85 366135
Prange | H.m. 2 | 8| 437 | 218 84 381936
L.B. Hm. | 101 | 1 | 501 | 250 91 1 417802
L.B. H.m. 2 | 8] 464 | 232 89 1 430592
Stern Hm. | 101 | 1| 542 | 271 98 2 6 488985
Stern H.m. 2 | 8| 501 | 250 96 2 5 502000
Prange | L.m. 2 |2 173 86 9 20 3106
Prange | L.m. 2 2| 863 431 | 430 | 96 372382
L.B. L.m. 2 2] 201 100 1 23 | 21 598
L.B. L.m. 2 | 2| 963 | 481 | 480 | 107 | 2 463682
Stern L.m. 2 2 | 381 190 1 43 21 0 1138
Stern L.m. 2 | 21063 | 531 | 530 | 118 | 3 | 13 564982
Prange | Lom. | 101 | 1 | 135 67 127 30334
Prange | L.m. 2 8 43 21 18 66 7392
Prange | L.m. 2 8 83 41 40 | 124 16128
L.B. L.m. 101 | 1| 151 75 142 | 142 37951
L.B. L.m. 2 | 8] 43 21 18 | 66 | 65 7392
L.B. L.m. 2 | 8| 93 46 45 | 139 | 138 19928
Stern Lm. | 101 | 1] 171 85 159 | 16 | 9 48671
Stern L.m. 2 | 8] 57 28 24 | 8 | 21 | O 12992
Stern L.m. 2 | 8| 135 67 66 | 200 | 25 | 1 40256

Table 6.3: Cost of ISD algorithms in the Hamming and Lee metric, for fixed workfactor 80
bits over Fig1.

ISD metric | p n k t | v | ¢ | input size (bits)
Prange | H.m. | 101 | 251 | 125 | 46 104866
Prange | Lm. | 101 | 74 | 37 | 70 9115

L.B. Hm. | 101 | 279 | 139 | 51 | 1 129568

L.B. L.m. 101 | 89 44 | 86 | 86 13183

Stern Hm. | 101 | 307 | 153 | 56 | 2 | 5 156880
Stern L.m. 101 | 101 | 50 | 96| 9 | 5 16978
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Table 6.4: Cost of ISD algorithms in the Hamming and Lee metric, for fixed workfactor 128

bits over Fig1.

ISD metric | p n k t v | £ | input size (bits)
Prange | Hom. | 101 | 469 | 234 | 85 366135
Prange | L.m. 101 | 135 | 67 | 127 30334

L.B. H.m. 101 | 501 | 250 | 91 1 417802

L.B. L.m. 101 | 151 | 75 | 142 | 142 37951

Stern Hm. | 101 | 542 | 271 | 98 2 6 488985
Stern L.m. 101 | 171 | 8 | 159 | 16 | 9 48671

Table 6.5: Cost of ISD algorithms in the Hamming over Fos and Lee metric over Z/28Z, for

fixed workfactor 80 bits.

ISD metric | p | s | n k| k| t v | ¢ | input size (bits)
Prange | Hm. | 2 | 8 | 233 | 116 45 108576
Prange | Lm. | 2 | 8| 29 14 | 12 | 45 3360
Prange | Lm. | 2 | 8| 51 25 | 24| 77 6656

L.B. Hm. | 2| 8] 259 | 129 50 | 1 134160

L.B. Lm. |28 29 14 | 12 | 45 | 44 3360

L.B. Lm. [2]8] 51 25 | 24| 77 | 76 6656

Stern | Hm. | 2| 8 | 276 | 138 53 | 2 |5 152352
Stern Lm. [2|8] 43 | 21 | 18| 66 |31 |0 7392
Stern Lm. |2 |8] 74 37 | 36 | 107 | 20 | 2 13024

Table 6.6: Cost of ISD algorithms in the Hamming over Fos and Lee metric over Z/28Z, for

fixed workfactor 128 bits.

ISD metric | p | s | n E | k| t v | £ | input size (bits)
Prange | Hm. | 2 | 8 | 437 | 218 84 381936
Prange | Lm. | 2| 8| 43 21 | 18 | 66 7392
Prange | Lm. | 2| 8 | 83 41 | 40 | 124 16128

L.B. Hm. | 2| 8| 464 | 232 89 1 430592

L.B. Lm. | 2|8 43 21 | 18 | 66 65 7392

L.B. Lm. |28 93 46 | 45 | 139 | 138 19928

Stern | Hm. | 2| 8 | 501 | 250 96 2 |5 502000
Stern Lm. | 2]|8] 57 28 | 24 | 86 21 |0 12992
Stern Lm. | 2|8 ]135 ] 67 |66 |200 | 25 |1 40256
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Table 6.7: Cost of ISD algorithms in the Hamming over the binary and Lee metric over the
quaternary, for fixed workfactor 80 bits.

ISD metric | p | s n k ky t v | £ | input size (bits)
Prange | Hm. | 2 | 1 | 895 | 447 o1 200256
Prange | Lm. | 2 | 2| 101 50 5 12 1050
Prange | Lm. | 2 | 2| 464 | 232 | 231 | 52 107646

L.B. Hm. | 2| 1] 1077 | 538 61 2 289982

L.B. L.m. 212 120 60 1 118 | 13 238

L.B. Lm. [ 2|2 | 555 | 277 | 276 | 62 2 154010

Stern Hm. | 2| 1] 1224 | 612 69 3 |26 374544
Stern Lm. | 2|2] 220 | 110 1 25 |12 | 0 438
Stern Lm. | 2|2] 628 | 314 | 313 | 70 3 |12 197190

Table 6.8: Cost of ISD algorithms in the Hamming over the binary and Lee metric over the
quaternary, for fixed workfactor 128 bits.

ISD metric | p | s n k ky t v | £ | input size (bits)
Prange | Hm. | 2 | 1| 1675 | 837 94 701406
Prange | Lm. | 2| 2| 173 86 9 20 3106
Prange | L.m. 22| 863 431 | 430 | 96 372382

L.B. Hm. | 2| 1] 1893 | 946 106 | 2 895862

L.B. L.m. 212 201 100 1 23 | 21 598

L.B. Lm. |22 963 481 | 480 | 107 | 2 463682

Stern Hm. | 2| 1] 2111 | 1055 118 | 4 | 38 1114080
Stern L.m. 212 381 190 1 43 |21 ] 0 1138
Stern L.m. 21211063 | 531 | 530 | 118 | 3 | 13 564982
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Chapter 7

Conclusion and Future Work

In this first part of the thesis we have analyzed three ISD algorithms, namely Prange’s
algorithm, Lee-Brickell’s algorithm and Stern’s algorithm. We have provided the algo-
rithms and their complexity analysis in the Hamming metric over the binary and over
general finite fields using modern techniques for complexity speed-ups.

The main aim of this part was to provide the three algorithms in the Lee metric.
For this we have separated the cases where the ambient space is Z/4Z, a general Galois
ring of the form Z/p*Z and a prime finite field. By providing these algorithms and
their costs, we have opened the path for Lee metric code-based cryptosystems. This
seems to be an interesting and promising new direction for CBC, as in all considered
ambient spaces, the ISD algorithms in the Lee metric have a larger workfactor than
their counterparts in the Hamming metric. Thus, possible implications are lower key
sizes when using the Lee metric in CBC.

Although the Lee metric is a promising alternative for CBC, it still needs a lot of
further research. These are the first ISD algorithms in the Lee metric, thus they are
still very premature and naive. Further improvements will clearly decrease the key size
reductions we have observed in Chapter 6. In particular, one can investigate if the ISD
algorithms which follow the second splitting idea of Dumer are more appropriate for
the Lee metric. In addition, an analogue of the intermediate sum technique for the Lee
metric should substantially decrease the workfactor of the ISD algorithms. And finally,
since the Lee metric has a connection to the L;-Norm, it can not be excluded that
translating algorithms over lattices, which are endowed with the Ly-Norm, to the Lee
metric might be faster than our approach, i.e., translating algorithms endowed with
the Hamming metric to the Lee metric.

Observe that there do not exist many Lee metric codes, which satisfy all the condi-
tions we want in a public-key cryptosystem, namely: a fast decoding algorithm and a
large error correction capacity. Thus, we can provide frameworks of code-based public
key cryptosystems using the Lee metric but for a real primitive one needs to determine
and propose an appropriate Lee metric code.
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Determining a Lee metric code with favorable properties for cryptographic uses is a
crucial step changing the interests in the Lee metric from theory to actual applications.

Finally, since the rank metric, as well as the Lee metric, are promising alternatives
to the Hamming metric for cryptographic purposes, this work might inspire further
research in different metrics. In fact, if the syndrome decoding problem over a certain
metric is NP-complete and the best known solvers, i.e., ISD algorithms, have a large
cost then such a metric might provide promising applications in code-based cryptogra-
phy.

Note that the Lee metric has already found some recent applications for example
in signature schemes [14] and in single server private information retrieval [6].
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Density
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Chapter 8

Introduction

A natural question to ask, is:
How likely is it for a randomly chosen x € Z, to be in a subset T C Z?

Observe that there is no uniform probability distribution on Z. In fact, if every
element in Z has the same probability 0 < p < 1 and at the same time the probability
of the whole space Z should be 1, we get a contradiction by the countable additivity
property for disjoint sets:

1=B(z) = Y P({z}) = Y p.

TEZ TEL

If we choose p = 0, then we get 1 = 0 and if we choose p > 0, we would get 1 = co.

Therefore, the notion of natural density was introduced. Originally it was defined
over the positive integers N but it can easily be generalized to Z.

The definition of the natural density is quite canonical: one first counts how many
elements of the d-dimensional cube of length H are in the subset of interest 7', then
one divides this quantity by the size of the d-dimensional cube and finally one lets H
2o to infinity, i.e., for d a positive integer and T' C Z?, the natural density of T is given
by

d
p(T) = lim [Tn[=H Al |,
H—o00 (2H)d
if this limit exists.

Analogously, one can define the upper density p and the lower density p by ex-

changing the limit with the limit superior, respectively with the limit inferior.

Other densities have been introduced as well, for example by Dirichlet and Schnirel’man

(for more examples see [48]). In this part of the thesis, we will focus on the natural
density only.

The introduction of the natural density dates back to questions asked by Mertens
and Césaro in the 1870’s, namely:

What is the probability that two randomly chosen integers are coprime?
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8.1. Organization of this Part

Mertens [75] and Césaro [33] solved this question independently with the result

being 5. In fact, the result is ﬁ and proving that ((2) = >
n>1

as the Basel problem. We will show an elegant proof of their result in Section 10.1.

To compute the natural density there are various tools. In this thesis we will focus
on the technique provided by Poonen and Stoll [91] (also in [92]), namely the local
to global principle. This technique allows the computation of the natural density by
characterizing the target set locally, i.e., over the p-adic integers.

2 .
# = % is well known

The local to global principle can also be applied to the algebraic integers of some
number field. In fact, its analogous version was provided by Bright et al. in [28]. In-
stead of using their translation to the algebraic integers, in Section 10.4 we will provide
the technique introduced in [78], where we use a function F,, that brings us from the
p-adic integers, where we can apply the local to global principle of Poonen and Stoll, to
the set of interest in the algebraic integers. Although being less elegant, this method
provides a more straightforward application of the local to global principle to number
fields.

Furthermore, when seeing the natural density as a Z-analogue of the uniform prob-
ability distribution, a natural question is if we can also define the analogue of the mean
and the variance. In fact, using tools of analytic number theory, we will compute some
of the mean and variances of the sets of interest in Chapter 11. Realizing that these
results all follow a certain rule, that becomes visible with the local to global principle,
we provide in Chapter 12 an addendum to the principle, that allows to compute the
mean and variance directly in a more elegant way.

8.1 Organization of this Part

This second part of the thesis is organized as follows. In Section 8.3 we introduce
the notation, that we use throughout this part and in Chapter 9 we recall the basic
definitions that will be needed.

More in detail, in Section 9.2 we show some properties of the natural density and
see some first examples. In Section 9.3 we state the main tool of this thesis to compute
natural densities, namely the local to global principle, and in Section 9.4 we outline
the strategy, that we follow to apply this tool.

Then, we use the local to global principle to compute the natural density of coprime
pairs, coprime m-tuples, Eisenstein polynomials and rectangular unimodular matrices
over the integers in Chapter 10.

In Chapter 11 we introduce the notion of mean and variance with respect to the
natural density and compute them for the complement sets of the coprime pairs, co-
prime m-tuples, Eisenstein polynomials and rectangular unimodular matrices, using
tools from analytic number theory.

In Chapter 12 we give an addendum to the local to global principle, which, using
the same technique, gives directly the mean and the variance of the target object. We
then see again the examples from Chapter 11 as a corollary of the extended local to
global principle.
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Finally, in Chapter 13 we draw some concluding remarks and state some open
problems for future work.

8.2 New Results in this Part

In this part of the thesis we will focus on four sets, whose density can be computed
through the local to global principle, namely

1. the set of coprime pairs,
2. the set of coprime m-tuples,
3. the set of Eisenstein polynomials (monic and non-monic),

4. the set of rectangular unimodular n X m matrices, for n < m.

Clearly, the set of rectangular unimodular 7 x m matrices contains the set of coprime
m-tuples (by setting n = 1), which in turn contains the set of coprime pairs (by setting
m = 2). Nevertheless, we give the full results and proofs or their outlines for all sets.
On one hand for the sake of completeness and on the other hand to encourage interested
readers to apply the local to global principle to the sets in this order, as this is the best
learning practice.

In Chapter 10 we compute the densities of these four sets over Z. The results for
the sets of coprime pairs and coprime m-tuples are known (see [75, 33, 85]), but giving
the proof via the local to global principle by Poonen and Stoll [91] is, up to the best of
our knowledge, only available in this thesis. The result for the Eisenstein polynomials
is due to Dubickas [42] in the monic case, and to Heyman and Shparlinski [52] in
the non-monic case. The idea of the proof via the local to global principle is already
available in the thesis of Micheli [77].

The density of rectangular unimodular matrices was already computed in [73]. Al-
though there was a mistake in the proof, the claimed density is correct and was proven
as a corollary in [78]:

On rectangular unimodular matrices over the algebraic integers,
by Giacomo Micheli and Violetta Weger, published in STAM Journal of discrete
mathematics, Volume 33, Number 1, pages 425-437, 2019. DOI.10.1137/18M1177093

In Section 10.4 we provide the idea of applying the local to global principle over
the algebraic integers over a number field. This follows the method provided in [78].
We also state some known density results over the algebraic integers, i.e., for coprime
pairs, coprime m-tuples [44] and rectangular unimodular matrices [78]. The density
results for the Eisenstein polynomials over the algebraic integers is not known yet. In
fact, it is a ongoing project of the author, in collaboration with Simran Tinani.
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8.3. Notation

The computation of the mean and the variance with respect to the natural density
of Eisenstein polynomials was provided in [70]. Thus, the introduction of such objects
is, up to our best knowledge, also due to [70]. Following their proof, we will compute
the mean and the variance of coprime pairs, coprime m-tuples and rectangular uni-
modular matrices in Chapter 11. These results are completely new and only available
in this thesis.

Finally, Chapter 12 is based on the following article [79]:

Local to global principle for expected values,
by Giacomo Micheli, Severin Schraven and Violetta Weger, arXiv preprint
arXiv:2008.06235, 2020.

For this thesis we have added also the variance and further corollaries, providing the
application of the addendum to the four sets of interest, i.e., to the coprime pairs, the
coprime m-tuples, the Eisenstein polynomials and the rectangular unimodular matrices.
When comparing these results to the computations of Chapter 11, one can see, that
the results are consistent and clearly, the application of the addendum provides a more
elegant and shorter proof.

8.3 Notation

We denote by N the set of positive integers, by Ny the non-negative integers and by
R>o we denote the non-negative reals. For a domain R and n < m € N, we denote
either by Mat,xm(R) or by R™ ™ the set of n x m matrices over R. For a € R we
will denote by I(a), (a) or aR the ideal generated by a. If S is a set, then we denote by
25 its powerset and by S¢ its complement. We denote by P the set of natural primes.
For p € P, we denote by Q, the p-adic numbers and by Z, the p-adic integers.

Let Mg = {c0} UP be the set of all places of Q, where we denote by co the unique
archimedean place of Q.

For d € N, let i, denote the Lebesgue measure on R? and y, the normalized Haar
measure on Z.

For T a subset of a metric space, let us denote by 9(T) its boundary, by T° its
interior and by T its closure.

For a,b € R, we denote by [a,b] the set of all real numbers, larger than or equal to
a and smaller than or equal to b.
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Chapter 9

Preliminaries

9.1 Natural Density

For d € N, the natural density of a set T C Z¢ is defined by first restricting to a
d-dimensional cube of height H, thus we can count how many elements in the cube are
in T, and then dividing by the size of the cube, and finally letting H go to infinity.

Definition 9.1.1 (Density on Integers). Let d € N. The natural density of a set
T C 7% is defined to be
T [=H, H[
T)= lim ——"7—
T = i ——oma

if the limit exists. Then, one defines the upper density p and the lower density p
equivalently with the lim sup and the lim inf respectively.

In more generality, we say that D is a density, if it satisfies the following axioms,
slightly changed from the definition by Grekos in [48]. Note, that we cannot see D as
a function from 2% to [0, 1], as it is a priori not defined for every set in 2%,

Definition 9.1.2 (Density Axioms). A density D on an abelian semigroup X has to
satisfy the following density axioms:

1. D(®) =0 and D(X) =1,

2. if AC B C X, then D(A) < D(B),

3. if T C X, then D(T) € [0, 1],

4. if AC X and © € X, then D(A+ {z}) = D(A), where

A+{z} ={a+x|ac A},

5. if F' € X is finite, then D(F) =0,
6. if A, BC X with AN B =0, then D(AU B) = D(A) + D(B),
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9.1. Natural Density

assuming that D(A), D(B) and D(T) exist.
Clearly, the natural density is a density. We will include the proof for completeness.
Proposition 9.1.3. The natural density is a density.

Proof. Let p be as defined in Definition 9.1.1 on Z¢. We will show that all axioms of
Definition 9.1.2 are satisfied.

1. Clearly p(0) = 0, since

L |®ﬁ[—H,H[d|_ . 0o
pP0) = Jfim ——omd = A @ O
and p(Z%) = 1, since
oy _ o 2001 A (2H)T
PE) = i T ma R e
2. fACBC Zd, then VH € N we have that
| An[-H, H[*|<| Bn[-H, H["|
and the claim follows, as
|AN[-H,H[ _ . |[BN[-HH[
PA) = Jim o S P(B)

3. This follows directly from 1 and 2 by setting on one hand A = () and B = T, and
on the other hand setting A = T and B = Z<.

4. Let A C Z% and x € Z% and let us denote by || the height of the d-tuple, i.e.,
|z| = max{|z;| |7€{1,...,d}}. Then for H > |z| the claim follows, as

. |AN[—H, H[
p(A) = I}E%OW
o LADH o], H —Jel?] (20 — la]))?
H—o0 (2(H — |z]))¢ (2H)?
o LA ) HHE
~ H—oo (2H)d
— T T d
o LAN[CH —Jal, H 4 o)) (2(H + [o]))?
ST R + D) @)
= p(4).
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5. Let F C Z¢, with | F |< oo and let f € F be the element in F with the largest
absolute value. Since we can assume that H > f the claim follows, as

_ o N FNHH O [F|
)= Im o — A o

6. If A, B C Z¢ with AN B = 0, then

| (AuB)N[-H, H[]

p(AUB) = lim

(AN [-H H[U(BN[-H H[) |
= lim
. |AN[-H,H[Y + | BN[-H,H[¢|
lim
= p(A) + p(B).
In addition, whenever A and B are disjoint and their densities exist, also p(AUB)

exists.

O

An important difference between the natural density and a measure is, that the
natural density does not satisfy the countable additivity property. Even stronger,
Boole’s inequality, also known as union bound, does not hold, i.e.,

P (U Ai) £ ZP(Ai%
iel i€l

for I a countable set and A; subsets of Z. An easy counterexample is given by taking
I =7 and A; = {i} for all i € Z, since

p (U{i}> =p(Z)=1¢> p({i}) =0.
i€z i€Z.
Nevertheless, this does hold for finite sets I, i.e.,
p (U Ai) < ZP(Az%
el il

for I a finite set and A; subsets of Z. To see this result we can iteratively use 6 of
Definition 9.2.1.

Lastly, we recall here the well-known Riemann zeta function:

)=

n>1
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9.2. Properties

An equivalent definition was given by Euler, as

I8

9.2 Properties

Apart from the axioms of a density in Definition 9.1.2 the natural density also satisfies
further properties.

Proposition 9.2.1 (Properties of Density). Let d € N. For A, B C Z%, we have the
following properties

1. max{p(A4),p(B)} < p(AU B) < min{p(A) + p(B), 1},
2. if | ADB |< oo, then p(A) = p(B),
3. if BC A, then p(A\ B) = p(A) — p(B),

assuming that p(A) and p(B) exist.

Proof. 1. Since
| (AUB)N[-H,H[*|>| An[-H, H[%|

and also
|(AUB) N [—H, H[*>| BN [-H,H[

the first inequality follows. Since, also
| (AuB)N[-H,H[Y<| An[-H,H["|+ | BN[-H,H[|
the second inequality follows.
2. The symmetric difference AAB is defined as
(AUB)\ (ANB)=(A\ B)U(B\ A).

Since AAB is finite, A\ B and B \ A are finite as well. Recall that finite sets
have density zero. Since we have that A = (BN A)U (A\ B), and (BN A) and
(A\ B) are disjoint, we get that

| AN [-H, H[

| (BNA)U(A\B) N [-H, H[]

Il
g

o LBAAN[H H + | (A\B) 0 [-H,H
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Chapter 9. Preliminaries

The same holds for B, i.e.,

JB)— tim LA A

Ho (2H)? = p(A).

3. Since B C A, we have that A = BU (A \ B) and this union is clearly disjoint,
i.e., BN (AN BY) = (. Hence, we have that

. d
o) = g LADEEH]
[ (BU(ANBY)) N[-H, H[

=4 (2H)?

. LBALHHMUANB) [HH |
H— o0 (2H)4

I BO[HH[ + [ (ANBO) N [-H,H

T Hooo (2H)d

o IBOEHHE (AN BO) 0 HHI
H—o0 (2H)d H—o0 (2H)d

p(B) + p(A\ B).

From 3 of Proposition 9.2.1 and 1 of Definition 9.1.2 it follows directly, that
p(AC) =1 = p(A).
We can now give some examples of natural densities.
Ezample 9.2.2 (Density of P). The density of all primes P is
p(P) = 0.

Proof. Let us denote for © € N by 7(z) the amount of prime numbers smaller than x,
i.e.,
m(x) =[{pePlp<a}].
Recall, that by the prime number theorem, we have that
x

m(x) ~ (@)’

Hence, we have that

_ | Pnl-HH]
PPy = Jm ——g
L w(H)
ey
H

= 1' —
Hgnoo 2H IH(H)

lim —— =
Hoveo 21n(H)
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9.2. Properties

Example 9.2.3 (Density of Squares). The density of S = {a? | a € Z} is
p(S) = 0.
Proof. For x € N, let us denote by s(z) the amount of squares smaller than z, i.e.,
s(z) =[{a®|a € Z,a* <z} | .

Observe, that for all z we have that s(x) < \/z. Hence, we get that

p(S) = Jim 2H
- s(H)
= AN oH
vVH
< Ii —_—
p— 1 p—
o H—o0 2\/ﬁ
O
Ezample 9.2.4 (Density of Powers of 2). The density of {2" | n € N} is
p({2" [n € N}) =0.
Proof. Since | {2" | n € N} N [—H, H[|= |log,(H)], we get the claim as
n _ o {2 [neNpN[-H H|
p({2" |neN)) = Jim il
_ o [ogy(H)|
B -
O
Ezample 9.2.5 (Density of pZ). For p € P, the density of pZ is
1
pZ) = —.
po2) ==
Proof. Since | pZ N [—H, H[|= {%J, we get the claim as
| vZ0 1, H] %] 1
1 p — 11, ET Pl L_ 1
O

Ezample 9.2.6 (Density of Invertible Matrices over Z). For n a positive integer, the
density of GL,(Z), the invertible matrices in Z™*™, is

p(GLn(Z)) = 0.
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Chapter 9. Preliminaries

Proof. Let us consider A € Z"*" with entries in [—H, H[. If we fix all entries of the
n X n matrix A but one, e.g. a, ,, we have (2H)”2*1 choices for A. Let us denote by
A; ; the matrix A without the i-th row and j-th column, then the determinant of A is
given by the Laplace formula as

n n—1
det(A) =Y (~1)"Vap ;det(An ;) = Y (1) Va, ; det(Ay ;) + ann det(Ap ).
j=1 j=1

In order for this to be £1, we only have at most two choices for a, ,. Thus, we get
that
_ o |GL.(@Z) N [-H, H[™| !
P(GLa(Z)) = Jim (2H)" T Hoeo (2H)®

O

We can also give examples of target sets 7" for which the natural density does not
exist. For this we compute the upper and the lower density of T" which do not coincide.

We cover here the extreme case, where the lower density of T is 0 and the upper
density of T is 1.

Example 9.2.7. Let T'= AU B, where

A= {222”,222” 1,02 1},

n>0
B=J {—222",—222" 1, =y 1}.
n>0
Then,
p(T) =0,
AT) =1

Proof. First, let us call

A, = {222",222" £, 02 1}

B, = {—222", 92 g, oy 1}.

92n+1 92n

We have that | A, |=| B, |=2 -2

For the limit superior we get a sequence that bounds | T'N [—H, H[| from below by
choosing H = 222"“, i.e., the minimal H, such that A,, and B, are still fully inside
[-H, H|.
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. | TN[—H, H]|
1>1 _
= e 2H
2] A
= 0 g gmiT
222n+1 _ 222n
= e
_ 1 o 11m 2(22n_22n+1)
n—oo
= ]‘ - ’I’LILHC}O 222n
=1.
Hence,
_ . | Tn[-H, HJ
T) =limsup —— = 1.
p(T) msuup ST

For the limit inferior, we get a sequence that bounds | T'N [—H, H]| from above by
choosing H = 222", i.e., the maximal H, such that A4,, and B,, are not inside [—H, H]|.
Observe, that | TN [—H, HJ| is clearly smaller than

2 ‘{1,2,...,2’4’2("’”+1 _ 1}

since 22"V _ 1 is the last element in A, _1, and we have filled in all gaps between
A; and A;qq, for i <n —1.

)

| TA[-H,H]|
<l f———m—mm——
T
9 (222(n71)+1 _ 1)
S nh—{r;o 2 A 222n
22271—1 o 1
= lim 5
n—00 922m
=0 g 0
=0.
Hence,
o[ TN[-H H
T)=1 f—— =0.
o=t =0

9.3 Local to Global Principle
There are various tools to compute the natural density of a target set. In this thesis

we will focus on the local to global principle, introduced by Poonen and Stoll in [91].
This will be the main tool of this part of the thesis.
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Since the local to global principle computes the natural densities through char-
acterizing the set locally, i.e., in the p-adic integers, we will first recall some basic
definitions.

Definition 9.3.1 (p-adic Valuation). Let p be a prime, for z € Z \ {0} we define the
p-adic valuation of x to be

ordy(z) =max{v e N| 3k € Z, p” -k =z}
and ord,(0) = co. For y = § € Q, we can define the p-adic valuation of y to be
ord, (y) = ord, (a) — ord, (b).
Definition 9.3.2 (p-adic Norm). Let p be a prime, we define the p-adic norm
|- p: @ = Rxo,

as

0 else.

1 .
— ifx#0
$|p{;ﬂ dp (=) ’

Definition 9.3.3 (p-adic Numbers). Let p be a prime, then the p-adic numbers, de-
noted by Q, is the completion of Q with respect to the p-adic norm.

Definition 9.3.4 (p-adic Integers). Let p be a prime, we denote by Z, the p-adic
integers, defined as

Zy={ae€Q||al<1}.

Observe that every element o € @, has a unique p-adic expansion of the form

oo
a= E a;p’,
i=k

for any k € Z and a; € {0,...,p — 1} for all 4. Similarly, every element 3 € Z, has a
unique p-adic expansion of the form

=0

with b; € {0,...,p — 1} for all 4.

Definition 9.3.5 (Topology on Z,). We can define the following topology on the p-adic
integers, by setting all sets of the form

{a—i—apk |a€Zy, keNac {1,...,pk}}
as basis of the open sets.

Proposition 9.3.6. The set pZ, is open and closed.
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Proof. Clearly, pZ, is open by definition. We can also write

p—1

PZy, = m (i + pZ,)°©

i=1

and since (i+pZ,) is open, its complement (i +pZ,)¢ is closed and a finite intersection
of closed sets is again closed. O

Definition 9.3.7 (Haar Measure on Z,). We can define the Haar measure on Z, as
& 1
/.tp((l—Fp Zp) = ko
p
for all a € Zj.

By abuse of notation, we will denote the product measure also by p,, where we
remark that

H N;D Ul X Un)7

for U; € Zy, for all j € {1,...7n}.

Recall that by . we denote the Lebesgue measure on R? and by Mg we denote
the set of all places of Q, i.e., Mg = {oo} UP. We are now ready to state the main
tool of this part of the thesis: the local to global principle.

Theorem 9.3.8 (Local to Global Principle, [91]). Let d be a positive integer. Let Usy C
R?, such that R>o - Uss = Uso and poo(0(Uss)) = 0. Let soo = 5 ftoo (Uso N [—1,1]9).
For each prime p, let U, C Zg, such that 1, (0(Up)) = 0 and define s, = pp(Up). Define
the following map

pP:z¢ — 2o
a — {veMglacU,}.
If the following is satisfied:

lim p({a€ Z% | a € U, for some prime p > M}) = (9.3.1)

M—o0

then:
i) Y veny Sv converges.
ii) For & C 2Ma, p(P~Y(S8)) ewists, and defines a measure on 2Me,

iii) For each finite set S € 2Me we have that

p(P~ {S} HSVH (1—s),

vesS vgS

and if S consists of infinite subsets of 2M¢, then p(P~1(S)) = 0.
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To show that Condition (9.3.1) is satisfied, one can often apply the following useful
lemma, that can be deduced from the result in [102].

Lemma 9.3.9 ([91], Lemma 2 ). Let d and M be positive integers. Let f,g €
Z[z1, ..., x4 be relatively prime. Define

Su(f.g)={ae Z%| f(a) = g(a) =0 mod p for some primep > M},

then
i p(S(f,9)) = 0.
—00

Remark 9.3.10. Observe that one can exchange in the statement of [91, Lemma 1] R>g
with Rs . This modification is legitimate, since if the density of a set 7" was associated
to Uso, which is such that Uy, - Ryg = Us but U - R>g # U, then one can define
ﬁoo = Uy U {0}, which clearly satisfies [700 ‘Rxo = 500. Let i be the set, whose
density is associated to Us, then p(T') = p(T)), since finite sets have density zero.

Observe that in Theorem 9.3.8 one could always choose the finite set S to be the
empty set, which for our purposes will be convenient.

Corollary 9.3.11. For all v € Mg, let U, be chosen as in Theorem 9.3.8, correspond-
ing to a finite set S € 2Me. Let us define

U,_{UVC veSs,

v U, vé&s,

and hence

, 1-s5, ves,

S =

v Sy ves,
and define

P .zt - oMo

a — {veMgyl|la€cU/}.

Then we get

i) > s. converges.
veMg

ii) For S C 2Me, p(P'=Y(S)) exists and defines a measure on 2Me.
i) p(P"~r{0}) = I (1—s.,)=p(P~Y({S}), where P is the map as in Theorem
ve Mg

9.3.8.

Proof. If v ¢ S then U], = U, and all the properties of U, in the beginning of Theorem
9.3.8 are trivially satisfied. Hence, let us only consider v € S. If co € S, then U/ = US
and it holds that

a) Ryo UL, =UL,
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b) peo(6(UL)) = 0.

For a) we relied on Remark 9.3.10. We can assume by contradiction, that there exists a
s e UL, ie.,s & U, and there exists a n € Ry, such that n-s € UL, i.e., n-s € U
We know for every r € Uy, that A -r € Uy VA € Ry hence, also for r = - s and
A =mn"t Thus, \-r = s € Uy, which is a contradiction. For b) it is enough to
observe, that for any subset T" of a metric space its boundary 9(T") can be defined as

the intersection of its closure and the closure of the complement, i.e.,

a(T) =T N (1) = o(T°).

If a prime p € S, then U, = pc and it holds that u,(0(U,)) = 0 again by the
definition of boundary. Condition (9.3.1) is satisfied, i.e.,

. _ d .
A}linoop({a € Z* | a € U, for some prime p > M}) =0,

since if S is a finite set in 22, then there exists an M € N such that, for all p > M :
p € S, thus for all p > M : U, = U, and (9.3.1) follows. The points i) and ii) follow
directly from the Theorem 9.3.8 and to check that

p(PTH{S)) = p(P"~({0}))

is straightforward. O

9.4 Strategy

The local to global principle of Theorem 9.3.8 can be applied on a target set T, if this
set can be characterized through primes. Hence in general we have that ¢t € T, if ¢
mod p satisifies some condition C.

Using Corollary 9.3.11, we can always set S = (). Thus, if we want to compute the
density of the target set T, we want that P~1({S}) = P~1({0}) =T.

To assure this we will always choose U, as a complement of the condition in p, that
is given by the set T, i.e.,

U,={z€Z, |z mod p does not verify condition C}.

The difficulties now lie in computing s, = p,(Up) and proving that the conditions
from Theorem 9.3.8 are satisfied. To show that Condition (9.3.1) is verified, we usually
use Lemma 9.3.9 and for the condition wu,(0(Up)) = 0, it is enough to show that U,
is open and closed, and thus d(U,) = 0. For this, we will heavily rely on Proposition
9.3.6. Note that we will always choose U, = {), since we can characterize the target
sets completely via Z,. Note, that with this choice all conditions on Uy, are satisfied.
In fact,

1
Soo = 5y Hoo (U N[-1,1]) =0.

In addition, we get that R>o -0 = 0 and peo(9(0)) = poo(?) = 0. We will hence only
focus on the choice of U, in the subsequent proofs.
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Chapter 10

Density Computations over Z

In this chapter we compute the densities of the four target sets over the integers. We
start with the coprime pairs, which can be considered a toy example. The set of coprime
m-tuples usually follows in the exact same manner as the coprime pairs, thus we will
only give the result and point out the differences in the proof. We then compute the
density of non-monic Eisenstein polynomials and give the result for the case of monic
polynomials and state the differences in the proof. Finally, we compute the density of
rectangular unimodular matrices.

10.1 Coprime Pairs
This is a well-known result due to Mertens [75] in the 1870’s and has later been inde-
pendently solved by Césaro [33].
The question they wanted to answer, was of course stated a little differently, i.e.:
How likely is it that two randomly chosen integers are coprime?
The question can hence be reformulated to

What is the natural density of coprime pairs over the integers?

Theorem 10.1.1 (Density of Coprime Pairs over Z, [33, 75]). Let the set of coprime
pairs over 7, be denoted by C, i.e.,

C ={(a1,a2) € Z* | ged(ar, as) = 1}.

Then,

Up to our best knowledge, this is the only reference giving the proof of this theorem
using the local to global principle of Theorem 9.3.8.
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Proof. For p € P choose U, = (pZ,)?. By Proposition 9.3.6, we have that U, is open
and closed and thus all conditions on U, are verified. Hence, we can compute s, as
sp = pp (Up) = ig
p
Now we have to show that Condition (9.3.1) in Theorem 9.3.8 is satisfied, i.e.,

lim 7 ({(a1,a2) € Z* | (a1, az) € U, for some p > M prime) = 0.

M —o0

For this we use Lemma 9.3.9. We choose the auxiliary functions f(z1,z2) = z1 and
g(x1,22) = x9, which are clearly coprime. Now, the set Sy of f and g is given as

SM(fag) = {(a17a2) € Z2 | p ‘ f(al,ag) = Qi
and p | g(a1,a2) = as for some prime p > M}

= {(a1,a2) € Z* |(ay,as) € U, for some prime p > M}.
Thus, using Lemma 9.3.9 we have that

lim p ({(al,ag) c7? | (a1, a2) € Up for some prime p > M}) =0.

M—o0

As discussed in Corollary 9.3.11, we can choose S = (), since
P7Y{0}) = C = {(a1,a2) € Z* | ged(ay, as) = 1}.

In fact, if @ € Z? is in U, for any prime p, then p divides a; as well as az, hence they
are not coprime. As a last step, we have to compute p(P~1({0})).

(P ({01) = [ s [T - s)

ved  vgd

:(1_300)1—[(1_51))

peP

13)

peEP
1 6

¢2)
This concludes the proof.

Coprime m-tuples

This result is due to Nymann [85] in the 1970’s, hence this was answered only 100 years
after the result of Mertens and Césaro.
Let m > 2 be an integer. Let us denote by C), the set of coprime m-tuples over Z.
Clearly, we can use the following characterization of coprime m-tuples
Cm ={(a1,...,amm) €Z™ | ged(aq,. .., am) = 1}
—{(a1, . am) € Z7 | I(ar,. .. am) = Z}.
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Theorem 10.1.2 (Density of Coprime m-tuples over Z, [85]). Let the set of coprime
m-tuples over Z be denoted by C,,, i.e.,

Cm:{(aly...,llm) GZm|I(a1,...,am):Z}_

Then, .
p(Cm) = w

The proof of this theorem, using the local to global principle, is exactly in the same
manner as the proof for the density of coprime pairs. Thus, we will not repeat it here,
but rather point out the differences.

The most important difference to the proof of coprime pairs, is that we choose
U, = (pZ,)™. Hence, s, is given by

1
Sp = pim
To verify Condition (9.3.1), we use the same coprime functions, observing that the
set of all (a1, ..., am) which are in U, for p > M, is contained in Sy; and hence also

satisfying (9.3.1).

10.2 Eisenstein Polynomials

When considering Eisenstein polynomials, one differs between monic polynomials and
non-monic. The density result of the monic case is due to Dubickas [42] in 2003, and
the non-monic case is due to Heyman and Shparlinski [52], in 2013.

We cover here the non-monic case in detail, and then point out the differences for
the monic case.

Let f € Z[z] be a non-monic polynomial of degree d, i.e.,

d
fla) = Zaixi =ag+ a1z + - + aga’.
i=0
Hence we can identify f with the vector (ao,...,aq) € Z*!, via the standard basis
{1,z,...,2%}. We call this vector the associated vector or corresponding vector to f.

Definition 10.2.1 (Eisenstein Polynomial). Let f € Z[z] of degree d with the as-
sociated vector (ag,...,aq) € Z*!. Then, we call f an Eisenstein polynomial, if
p? {ag,ptaq and for all i < d, we have that p | a;, for some prime p.

Note that the criterion of Eisenstein is a sufficient condition for irreducibility, but
not a necessary condition.

For example, the polynomial 5 + 10z + 223 satisfies the criterion of Eisenstein for
the prime p = 5, and is thus irreducible. Whereas, the polynomial 1 + x2, which is
clearly irreducible, does not satisfy the criterion of Eisenstein, as there is no prime
dividing the constant term, which is one.

Let us denote the set of Eisenstein polynomials of degree d by E,;. Thus, we can
use the following characterization of Eisenstein polynomials:

Ey = {(ao,...,aq) € Z* | p* Y ag,ptaq and p | a; V i < d for some prime p}.
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Theorem 10.2.2 (Density of Eisenstein Polynomials over Z, [52]). Let the set of
Eisenstein polynomials of degree d over Z be denoted by Eg4. Then,

e 1T (1- 254°).

The idea of the proof using the local to global principle was already given in the
thesis of Micheli [77].

Proof. Observe that it is easier to compute the density of the complement, i.e., the

polynomials of degree d, which are not Eisenstein for any prime, namely Z*!\ E; =

E¢. Note that we can then easily compute the density of E, since p(Eq) = 1 —p(E9).
For all primes p, we choose

Up = (pZy \p2Zp) X (pr)d_l X (Zp \ pZLyp).

Thus, s, is given by

11\ 1 1\ (p—1)2
=@ = (5= 5a) e (175) = T

Note that all conditions on U, are satisfied, since by Proposition 9.3.6 we have that U,
is closed and open, hence 9(U,) = 0 and p,(0) = 0.

To show that Condition (9.3.1) is verified, we use Lemma 9.3.9. We again choose the
auxiliary functions f(z1,...,24+1) = 21 and g(21,...,24+1) = T2, which are clearly
coprime. Note, that the set Ay, being

An = {(ao, ..., aq) € 2% | (ap, ..., aq) € U, for some p > M prime}
is a subset of Sp/(f,g). Using Lemma 9.3.9, we have that
Jim p(Sw(f,9)) = 0.
And since Ay C Sp(f, g), it follows that
A}g};}ﬁ(/hW) < Akglop(SAl(f’g)):zo’

and hence A}im p(An) = 0. Note, that for S = 0, we get

— 00

P71{0}) = ES = {(ao, .. .,aq) € Z | p* | ag or p | ag or

i < d with p t a; for any prime p}.

In fact, if a € Z4*! is in U, for any prime p, then p divides a; for all i < d, as well
as, p? 1 ap and p { a4, hence the associated polynomial is Eisenstein for this prime p.
Finally, we compute p(P~1({0})).

p(PH{01) =[] s [T(1 =5

veld veEd
= (1= s00) [T (1= sp)
pEP
. (1)
=1 pg}(l pd+2 >
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We can conclude this proof, since

B =1 o) =1 - (P oy = 1= T (1- 2250,

Monic Case

In the monic case, we have that ag = 1. Thus, we can identify f of degree d with an
element in Z¢, instead of Z4+1!.
Recall, the definition of monic Eisenstein polynomials:

Definition 10.2.3 (Monic Eisenstein Polynomial). Let f € Z[z] be monic of degree
d, with the associated vector (aq,...,aq-1) € 74, Then, we call f a monic Eisenstein
polynomial, if p? { ag and for all i < d, we have that p | a;, for some prime p.

Hence we can use the following characterization of Eisenstein polynomials:

{f € Z[z] | f monic and Eisenstein and deg(f) = d}
={(ag,...,aq-1) € Z% | p*tap and p | a; ¥V i < d for some prime p}.

Theorem 10.2.4 (Density of Monic Eisenstein Polynomials over Z, [42]). Let the set
of monic Eisenstein polynomials of degree d over Z be denoted by My, i.e.,

My = {(ao,...,aq-1) €Z* | p*Yag and p | a; ¥ i < d for some prime p}.

Then,

p(Ma) =1- ][ (1—7;(;11)

pEP

The proof has a similar structure as the non-monic case, we hence only indicate
their differences.
For all primes p, one chooses

Up = (pZy \pQZp) X (pr)d_17

<1 1 > 1 p-1
Sy = - - = _———,
P P p2 pd—l pd+1

To show that all conditions on U, are verified, in particular Condition (9.3.1) is
exactly the same as in the non-monic case.

and hence

10.3 Rectangular Unimodular Matrices

Let us define rectangular unimodular matrices.
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Definition 10.3.1. Let R be a domain and n < m € N. Let M € Mat,xm(R). M
is said to be rectangular unimodular, if there exist m — n rows in R™, such that when
adjoining these rows to M the resulting m x m matrix M is 1nvert1ble i.e., det(M ) is
a unit in R.

Observe that we exclude the case n = m, since then we get the set of invertible
matrices over Z, for which we know that it has density zero, i.e.,

p(GLn(Z)) = 0.

One can imagine rectangular unimodular matrices as the Z-analogue of full rank
matrices. Since over Z, we do not have the notion of rank, we can characterize them
as the matrices, which have full rank modulo p for any prime p.

Ezxample 10.3.2. e An example for a rectangular unimodular matrix is

A=(0 1),

(1 o)

Observe that for any prime p the matrix A mod p has full rank 1.

since we can extend this matrix to

e An example for a rectangular non-unimodular matrix is
B=(2 2),

since whatever we adjoin as row to B, the determinant of B will be divisible by 2
and hence the extended matrix can not be invertible over Z. Observe that with
our characterization through primes, B mod 2 does not have full rank.
Thus, the characterization that we use to compute the density of rectangular uni-
modular matrices over Z, is as follows: for n < m positive integers the set of all
unimodular rectangular n x m matrices over the integers is given by

Unxm = {A € Mat,xm(Z) | A mod p has full rank n for any prime p}.

In [73] Maze, Rosenthal and Wagner computed the density of rectangular unimod-
ular matrices over the integers. Unfortunately, the proof of [73] Proposition 1 is flawed
as the inequality (2) is wrong, i.e., it is not true that

p (U Ai) <Y p(Ai)

i€l i€l

for I a countable set. A counterexample is simply obtained by setting A; = {i} for all

i € Z, since then
(U{z ) — o) =12 Y p({i}) =0.
1€Z i€EL
We should note that this is correct, for example, for finite unions (which is not the case
in the proof of [73] Proposition 1.)
The density result nevertheless is correct. The proof of this theorem was fixed and
can be found in greater generality in [78].
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Theorem 10.3.3 (Density of Rectangular Unimodular Matrices over Z, [78]). Let the
set of unimodular rectangular n X m matrices over the integers be denoted by Upxm,
ie.,

Unsxm = {A € Mat,xm(Z) | A mod p has full rank n for any prime p}.

Then,
n—1 1
Unxm = v
p(Unxm) 1}) RCEE

We give the proof by applying the local to global principle from Theorem 9.3.8.
Note that this proof is not exactly as in [78], as we only consider here the rational
integers.

Proof. Let us first define the map m, as

Tp ngm — ngm,

A+— A mod p.

Let £, be the set of n x m matrices over [F,, having full rank n, i.e.,
L, ={AecF,*™|rk(A) =n}.

Hence the size of L, is given by

n—1

|[jp |= H (pm_pz).
i=0

Now observe that, if X € Zp*™ is such that 7,(X) € L, then also X + pZj™ is
such that m,(X + pZp™) € L.

For all primes p , let A, be the set of all matrices over Z, such that, modulo p they
have full rank, i.e.,

Ay = {X € Z™ | m,(X) € L} + pZi™,

and choose U, = AS.

Note that we can write A, as

A= (m,N(A) +pZpm™)
AeL,

since (m, '(A) 4+ pZ™) is closed and open, and the union is finite, A, is closed and

open as well, and thus so is U,.

121
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Observe that

1 n—1
- I
1=0
n—1
1
=11 ")

Then, s, = up (Uy) =1 — py(A,) is given by

n—1 1
ss=1-]] (1—pm_i>.

=0

To show that Condition (9.3.1) in Theorem 9.3.8 is satisfied, i.e.,

N}im p({X €2"™| X € U, for some p > M prime}) =0,
—00

we use Lemma 9.3.9. Let us denote for A € Z™*™ its n X n minors by A; for ¢ €
{1,..., (’s)} Then, A € U, is equivalent to

I(A1,--~7A(m)) C (p),

n

and hence,

p | ged (Al,...,A(m)>.

n

Thus, we can choose the auxiliary functions in Z[x1, . .., Znm)], such that f gives the
first minor and g gives the second minor, i.e.,

fiZx, ... xpm] — Z,
Ay Al, and

g:Zx1, ... Tonm] — Z,
AHAQ.

Note that f and g are irreducible and since they are determinants and since they involve
different variables, they are clearly coprime. Now, the set Sy, of f and g is given as

Sulf,9) ={AeZ™™ |p| f(A) = A
and p | g(A) = Az for some prime p > M}
D> {AeZ"™ |A e U, for some p > M prime} = By,.
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Thus, by Lemma 9.3.9 we have that
Jim 7(Sh(/.4)) = 0.
—00
Since By C Sy (f,9), it follows that
Jim p(Bu) < Hm p(Sm(f.9)) =0,

and hence N}im 2(Ba) = 0. We choose S = (), since
—00

PTHAOY) = Unen = {4 €27 | 1 (A1 A ) = ()}
In fact, if A € Z"*™ is in U, for any prime p, then p divides A; for all i € {1,... Z‘)}

Thus, A is not rectangular unimodular. As a last step, we have to compute p(P~1({0})),
which is the same as p(Upxm)-

p(P_l({(Z)})) = H Sy H(l - Su)

vel v

= (1=s00) [J(01=5p)
peEP
n—1 1
I (- )
peP i=0 p

ST

L 705

Hence we get the claim. O

10.4 Generalization to Algebraic Integers

A generalization of Poonen and Stoll’s local to global principle to algebraic integers
over a number field was proposed in [28].

However, a more straightforward technique to compute the densities over algebraic
integers, using the original local to global principle, was provided in [78] in collaboration
with Giacomo Micheli.

In the mentioned article the density of rectangular unimodular n X m matrices over
the algebraic integers was computed. Thus, this article directly provides the density
results for coprime m-tuples over the algberaic integers (by setting n = 1) and for
coprime pairs (by setting n = 1 and m = 2).

Although, we will not cover the densities over algebraic integers in full detail in this
thesis, we still want to provide here the main idea and the results.

First of all, recall that a number field K is a finite field extension of Q, where we
denote by the index k = [K : Q] the degree of the extension.
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Furthermore, the integral closure of Z in K is called the ring of algebraic integers
and denoted by Og. Observe that Ok is isomorphic to Z* as Z-modules, and thus

Ok has an integral basis {ey,...,er}, which is such that each element a € Ok can be
written as i
a = Z a;€;,
i=1
for some (ay,...,ar) € Z*. Let us denote this isomorphism by E, i.e.,
E:7ZF - Ok

k
(aty...,a5) — Za,;e,;.
i=1

One of the most important properties of algebraic integers, is that they form a
Dedekind domain, and thus have a unique factorization of ideals. Note also, that for
each prime ideal p in O there exists a rational prime p, such that p intersects Z in
the ideal pZ. We then say that p is lying over p and write p | p. On the other hand,
the ideal generated by p has a unique factorization into prime ideals p; C Ok, i.e.,

pOx = pi -+ plr,

and for all ¢ € {1,...,r} the prime ideals p; lie over p. Furthermore, we have that the
residue field O /p is isomorphic to ¢ as fields, for some £. In fact, this £ is called
inertia degree and denoted by deg(p).

Let k= [K : Q] and E = {ey,..., e} be an integral basis of O. Let us denote by
[-H, H[g the Ok-analogue of [H, H|, i.e.,

k
[—H, H[p= {Z aie; | a; € [—H,H[mz}.

i=1
The density of a set T C O?( is then defined as

| Tn[-H H[E|
T)= lim ——&
pE( ) Hgnoo (QH)dk ’

if the limit exists.

Observe that a priori the density pg(T) depends on the choice of the integral basis
E. If pg(T) is independent of the choice of E, we will denote the density again by
p(T).

Lastly, we want to introduce the Dedekind zeta function over K. Let K be a number
field and Ok be its algebraic integers. Then, the Dedekind zeta function is defined as

) =TI (1~ )

PEP plp

To use the local to global principle we need functions that bring us from the p-adic
integers to the algebraic integers.
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Let k = [K : Q] and {ey,...,er} be an integral basis of Og. Let us first consider
the usual reduction modulo a rational prime p

Tp Ly — T,
which is clearly surjective. Secondly, we consider the map

E, : Fy = Ox/(p),

k
(a1,...,a5) — Zaiei,
i=1

which is a bijection. And lastly, the natural surjective map
Yy : Ok /(p) — H Ok /).
plp
Here it might be helpful to observe that

Ok /(p) = Ok /(p1* -+ pl) 2% O /(p = [[ox/».

plp

We get the following composition of maps F}, = ¢, o [E, o mp:

Zk Fk—>OK/ —)HOK/]J
plp
Using this map and its componentwise extension to d-tuples, we computed in [78]

the density of rectangular unimodular matrices over O

Theorem 10.4.1 (Density of Rectangular Unimodular Matrices, [78]). Let n and m
be positive integers such that n < m and K be an algebraic number field. The density
of n x m rectangular unimodular matrices over O is

where (i denotes the Dedekind zeta function of K.

The density result for coprime m-tuples, and thus also for coprime pairs, over the
algebraic integers was already computed in [44], using a different technique. Neverthe-
less, the proof given in [78] can be adapted to the cases n = 1 and m = 2, providing
hence a proof of the results through the local to global principle and the technique
stated here.

Theorem 10.4.2 (Density of Coprime m-tuples over O, [44]). Let the set of coprime
m-tuples over Ok be denoted by Cp,(K), i.e.,

Cm(K) = {(al,...,am) S O?{l | I(al,...,am) = OK}
Then, .
p(Cnm(K)) = W»

where (i denotes the Dedekind zeta function over K.
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Corollary 10.4.3 (Density of Coprime Pairs over Ok, [44]). Let the set of coprime
pairs over Ok be denoted by C(K), i.e.,

C(K) = {(al,ag) S O%( ‘ I(al,ag) = OK}

Then, .
p(C(K)) = @)

where (i denotes the Dedekind zeta function over K.

Interestingly, the resulting densities over Ok only differ from the densities over Z
in the zeta function, i.e., while over Z we use the Riemann zeta function, over O we
use the Dedekind zeta function. More in detail, one expects the following. Let T' C Of(
be such that the density of T exists and does not depend on the integral basis. If in
addition the density of T' can be computed through the described technique and over
the integers we have the following density

pEH(D) = [] f),

pEP
where f(p) = (1 — s,) since we use the local to global principle, then we expect that
p(T) = T T F@w'=®).
PEP plp

The careful reader might note, that we are missing a set of interest, namely the
Eisenstein polynomials. In fact, computing the density of Eisenstein polynomials over
the algebraic integers is an ongoing project in collaboration with Simran Tinani.
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Mean and Variance

11.1 Preliminaries

Seeing the natural density as the Z-analogue of a uniform probability distribution, one
might also ask for the definitions of the mean and the variance corresponding to the
density. Up to our best knowledge, this was first introduced in [70].

For this we have a target set T C Z%, which is such that T can be characterized
through a condition C},, depending on a prime p, i.e.,

T = {a € Z%| 3p a satisfies C,}.

Let us assume, that the natural density of T exists and is nonzero. Let us introduce
the function ¢ as
¥ :Z* - N,
a | {p € P | a satisfies Cp,} | .
For a positive integer H, let us denote by T(H) the elements in T, which are

bounded by H, i.e.,
T(H)=Tn[-H,H[".

Then we can define the mean and the variance corresponding to the natural density.

Definition 11.1.1. Let T C Z%, be characterized through the condition Cp, such that
p(T) # 0 exists. Then, we define the mean of ¢ as

> ¥(a)
1= lim a€T(H)
A [ T(H) |

if it exists. Further, we define the variance of i as
2
> (la) —p)

. a€T(H)
o? = lim

Hose  |T(H)|

if it exists.
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One can think of this definition as the expected value and the variance of the
”random variable” that counts for how many primes an element is in 7', i.e., satisfying
the condition C,.

For example, the analogue question to the natural density, where we asked how
likely it is that two randomly chosen integers are coprime, would be

How many primes on average divide two randomly chosen integers?

We will now introduce and recall some important definitions and notation that will
be needed for the computations of the mean and the variance.

Recall that a real valued function f is called multiplicative, if for ged(m,n) = 1,
we have f(mn) = f(m)f(n). If this holds for any m and n, then we call the function
completely multiplicative.

For a natural number n > 1, let us write n in its prime factorization, as

¢ ‘,
n:pll...pr .

Then, we can define w(n) to be the number of distinct prime factors of n, i.e.,
w(n) =r and we also set w(1) = 0.
We denote by p(n) the Mobius function, i.e.,

() = (=1)«(™ if n is squarefree,
pAn) = 0 else,

or equivalently,

—1)" il =1Vie{l,...r}
w1 {1,...r}
0 else.

Observe that 1 is considered squarefree and thus, (1) = 1 and p(n) is a multi-
plicative function. Note that the Mobius function u(n) should not be confused with
the mean p, as the mean does not take integers as input.

We denote by ¢(n) the Euler totient function, i.e.,

p(n) =| (Z/nZ)" | .

Hence ¢(n), counts the natural numbers, smaller than n and coprime to n. A
formula for ¢(n) is given by

o(n) = pri_l(pi —1).

Also, the Euler totient function is a multiplicative function. Further, due to the
Euler product, we have the following identity. Let f be a multiplicative function, then

> ) f(s) =T = F))-

s>1 peEP
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Let us recall here the Mobius inversion formula: let f and g be arithmetic functions,
i.e., having as domain Z and as codomain the complex numbers C. Let g be such that

g(n) =Y f(s),
s|n
for all n > 1, then the Mobius inversion formula states that
n
f(n) = |2u<s>g (%)

for all n > 1.
We will also heavily rely on the Landau-symbols in this chapter. For this, let f and
g be real valued functions, we say that

f(n) = O(g(n)),

if 3k > 03ng¥n > ng we have that | f(n) |< kg(n), or equivalently, if g is positive,

: | f(n) |
llnn1_>solip 9

< 0

Intuitively, this means f does not grow faster than g. For example (n+1)? = n%24+0(n).
Similarly, we say that
f(n) = o(g(n)),

if Vk > 03ngVn > ng we have that f(n) < kg(n), or equivalently, if g is positive,

lim M =0.
Intuitively, this means g grows much faster than f. For example % =o(1).

The difference between the small-o and the big-O, becomes clear in the following
example: 222 = O(z?), since 222 does not grow faster than z2, but 222 # o(z?), since
2?2 does not grow much faster than 2x2. Hence, the little-o notation implies the big-O
notation. In the following we will only use the big-O notation.

The big-O has the following properties:

e multiplying by a constant: if f = O(g) and ¢ is a nonzero constant, then cf =

O(9),

e product rule: if f = O(F) and g = O(G), then fg = O(FG), and for any h we
have hO(g) = O(hg),

e addition rule: if f = O(F) and g = O(QG), then f + g = O(max(F,G)).

Another rule that we use, denoted by the integral rule, states that for f a monotone
decreasing, non-negative function,

> sw=o( [ ).

peEP, p>H
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For example, for s > 2 we have that

pEP, p>H

On the other hand, for s > 2 we have that

> O(};):O</1H;de> :0(1:9(H1—S_1)>20(1).

pEP, p<H

And for the special case s = 1 we get that

since,
1 o1 mq
Z fnggu/ —dx < 2In(H).
p —n 1 T
pEP, p<H
The strategy, following [70], of computing the mean and the variance can be sum-
marized as follows. For s > 2 a positive integer, let
H(s,H) = {a € Z°N[-H, H[?| a satisfies C,}.
1. Compute the size of H(s, H).

 Compute Y w(a)= X |H(p.H)|

a€T(H) peEP, p<H

3. Compute > (a)? using | H(p, H) | and | H(pg, H) |.
a€T (H)

[\

>

. Compute | T(H) | using the inclusion-exclusion principle, i.e.,
H
| T(H) |= =Y uls) | H(s, H) |-
s=2
5. Lastly, compute p and o2, by putting the previous results together.

11.2 Coprime Pairs

In this section we want to compute the mean and the variance of the number of primes
that divide a non-coprime pair.

Let H € N and C(H) be the set of coprime pairs over the integers of height at most
H, i.e.,

C(H) ={a=(ar,az) € z? | max{| a1 |,| a2 |} < H,ged(ar,az) = 1}.
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Let us then denote by C“(H) the set of pairs, which are not coprime, but bounded
by H.

For s > 2 a positive integer, let us define H(s, H) to be the set of pairs over the
integers, which are of height at most H and divisible by s, i.e.,

H(s,H) = {a = (a1,a2) € 72 | max{| a1 |,| a2 |} < H,s|a1,s|as}.

Let us define

1
a=> 5

pEP

1
5:ZF~

peP
We first compute the size of H(s, H).

Lemma 11.2.1. For s < H, we have that

s, ) = HDE o (H) .

52 s
Proof. The number of admissible values of a; is

2| 2] 12 s on,

S

Hence in total we have

choices for (a1, az). O

Let us denote by ¥(a) the number of primes that divide a = (a1, a2), i.e.,

Yla)=|{p €P|plai,p|az}|.

Lemma 11.2.2. Let H € N, then

> ¥(a) = (2H)*a + O(H In(H)).

a€CC (H)

Proof. Observe that

Y. dla)= Y [HpH)|.

a€CC(H) peEP, p<H
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11.2. Coprime Pairs

Now, we can apply Lemma 11.2.1 and get

s e 3 (0 o(1)

2
acCC(H) pEP, p<H p p
1 H
=(@2H)? Y S5+ > o()
pEP, p<H p peEP, p<H p
1 1
=eH? Y 55— Y 5| +O0HnH)
pEP peP, p>H
1 1
=(2H)* Y = + (2H)*0 <H) + O(H In(H))
peEP
= (2H)’a + O(H In(H)).

For a = (a1, as) € Z2, let us define
1 ifp‘a17p|a2a
7(a,p) =
0 else.

Lemma 11.2.3. For H € N, we have that

Y. v(@)?=(2H)*(a+a® — )+ o(H In(H)).

a€CC (H)

Proof. First, we observe that ¢(a) = >  7(a,p), then
peP

Yo o w@P= Y (Do rlap)

a€CC(H) a€CY(H) \peP

= Z Z 7(a,p)7(a,q)

a€CO(H) \p.q€P

= > Y rlap)rlag).

P,q€P acCC (H)

Now, we can split this sum into p = ¢ and p # ¢, where in the first case we observe,
that 7(a,p)? = 7(a,p) and in the latter case, we have that

1 ifr(a,p) =7(a,q) =1,
0 else.

7(a,p)7(a,q) = {

Hence we have that 7(a,p)7(a,q) = 7(a, pg) and we can write
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Zw =2 > rlen+ XY rlep)

a€CC(H pEP a€CC(H) p#qEP a€CC(H)
Further, we observe that
> rlas) = H(s, H)|.
a€CC (H)

Thus, we get

> @)= > [HeH [+ > |HpgH) |

a€CC(H) pEP, p<H p#qEP, pg<H
Using Lemma 11.2.2, we know that
> | Hp H)|= (2H)a+ O(H In(H)),
pEP,p<H
and using Lemma 11.2.1, we know that

> | Hlpg H) |

p#qEP, pg<H

-2 Greel)

p#q€EP,pg<H

e Eof)

p#q€EP, pq<H p#qEP, pq<H

=2H)? ) %+O(H1n(H))

p#qEP, pq<H

=2H)? Y %-(2}1)2 > i4+0(H1n(H)).

p,q€P, pg<H pa pEP, p2<H p

Let us first consider the first summand, which we can rewrite as

2 L oy L L
(2H) Z 2 2 (2H) Z p2q2 Z Hp2q2

p,q€P, pg<H pq p,qEP p,9€P, pg>
1
=(2H)* ) iy (2H)?0 (H

p,qEP

= (2H)*a* + O(H).
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11.2. Coprime Pairs

Whereas, the second summand can be written as

H? Y S —eHRY - - en) L

p p p
peP, p2<H peEP pEP, p>VH

— R S 4 @r?o ( !

3/2
peP H/

— (2H)28+0 (HW) .

Hence we get the claim

> (a)® = (2H)’a+ (2H)?a” — (2H)*B + O(H In(H))
a€CC(H)

= (2H)*(a+a® — B) + O(HIn(H)).

Theorem 11.2.4. For H € N, we have that
| CY(H) |= (2H)*p(CY) + O(H In(H)).

Proof. Using the inclusion-exclusion principle, we get that
H
| CO(H) |= = p(s) | His, H) | .

s=2

Now, we can apply Lemma 11.2.1, to get that

H 2
() = - (ms) CI” o (H

With the help of the Euler product, we get
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Chapter 11. Mean and Variance

1

—;u<s>;=1—§u<s>$2
-

Note that this can be seen as an alternative proof for the density of coprime pairs.
We are ready to state the main theorem of this section.

Theorem 11.2.5. The mean and the variance of the function i(a), where a ranges
over all non-coprime pairs over the integers are

W(a)
— lim a€CC(H) _ (e}
F= b TTeem) | pco)
> (dla) = p)? ,
o2 — lim a€CC (H) :a+a — B — pa
Hos [ CO(H) | p(CO)

Proof. From Lemma 11.2.2 and Theorem 11.2.4, it follows directly that

Y(a)
. a€CC (H)
n= e T
p(2H)?a+ O(H In(H))
H—oo (2H)?p(C¢) + O(H In(H))

p(CY)
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11.2. Coprime Pairs

For the variance we use Lemma 11.2.2, Lemma 11.2.3 and Theorem 11.2.4, to get

((a) — p)?
o2 = lim a€CC(H)
H—o0 | CC(H) |
> (W(a)? = 2mp(a) + p?)
— lim a€eCC(H)
H—00 | Ce(H) |
> @) -2 X pla)+pP|CYH) |
— lim a€CC(H) a€CC(H)
H-00 | CC(H) |
_ oy CH(a+a® = B —2pa+ p2p(CY)) + O(H In(H))
T s (2H)2p(C) + O(H In(H))
_a+a® =B =2pa+p*p(CY)
p(CY)
_ato? == 2ua+ pogeyp(CY)
a p(C°)
_a+ a? - B — pa
p(CY)

Coprime m-tuples

Since the result for coprime m-tuples is similar, even easier, than the case of coprime
pairs, we will just give the results and point out the differences to the coprime pairs.

Let m > 2 and H be positive integers and C,,(H) be the set of coprime m-tuples
over the integers of height at most H, i.e.,

Cwm(H)={(a1,...,am) €Z™ | {rlnax }{\ a; |} < H,I(ay,...,am) =7Z}.
1€1,....om

For s > 2 a positive integer, let us define H,, (s, H) to be the set of m-tuples over
the integers, which are of height at most H and divisible by s, i.e.,

.....

sla; Vie{l,...,m}}.
An important step is to compute the size of H,, (s, H).

Lemma 11.2.6. For s < H € N, we have that

Ao (s, 1) = P Lo (Hml) .

sm sm—l

The subresults are similar to the case m = 2, with the exception that we always
have O(1), instead of O(H In(H)).
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Let us define

1
a = m’
1
b= =

Then, the mean and the variance of primes diving non-coprime m-tuples is given
by the following theorem.

Theorem 11.2.7. The mean and the variance of the function v (a), where a ranges
over all non-coprime m-tuples over the integers are

Y(a)
— lim aeCS (H) . «
TR TTOSH) | (el
S (la) - p)? )
o2 — lim acCC (H) _atoa — B — pao
H—o0 | C5(H) | p(CF)

11.3 Eisenstein Polynomials

In this section we compute the mean and the variance of the number of primes for
which an Eisenstein polynomial satisfies the criterion of Eisenstein.

For the non-monic Eisenstein polynomials this result is due to [70], where they used
the work of Heyman and Shparlinski [52]. We follow their proofs.

Since the computations for the monic case are similar, we will just give the results

and indicate the differences.
First, recall that

pls) =53 1)
m|s

and for s < H, it holds that 2*(*) = O(H), see [52].
Further, from Equation 11 in [52] we get that
H ou(s)
> ~ = o). (11.3.1)

s=2

Let us define
x(s,H)=|{a||a|< H, ged(a,s) =1} .

We need the following lemma.

Lemma 11.3.1 (Lemma 4, [52]). For 2 < s < H, we have that
2H
(s, 1) = 22 o (o)
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11.3. Eisenstein Polynomials

Proof. We can write x(s, H) as

x(s, H) = Z 1.

la|<H
ged(a,s)=1

With the inclusion-exclusion principle, we have that

X(S,H) = Z:u(m) Z 1

m|s la|<H
mla

SSCTAED

o 3 M0 (57 m) |

m|s m|s

O

Let H € N,d > 2 and E4(H) be the set of Eisenstein polynomials of degree d and
of height at most H, i.e.,

Ey(H) = {a = (ag,...,aq) € 27" | max {|a;|} <H,
1€{0,...,d}
3p p* tag,ptaq and Vi < d,p | a;}.

For s > 2 a positive integer, we define H4(s, H) to be the set of polynomials of
degree d, which are of height at most H and such that the polynomial is s-Eisenstein,
i.€.,

.....

Let us define

(rp—1)?*
B = Z p2(d+2) ’
pEP

We first compute the size of Hy(s, H).
Lemma 11.3.2 (Lemma 5, [52]). For s < H € N, we have that

2H) " (s)’ HY s
|Hd(S,H) |: (sd%—f—O (3d12 ()> .
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Chapter 11. Mean and Variance

Proof. The number of admissible values of a; for i € {1,...,d — 1} is
H 2H
2 {J +1="240(1).
s s

Whereas, the number of admissible values for a4, which are such that ged(agq,s) = 1,
is given by Lemma 11.3.1 as

x(s,H) = 72H(p(8) +0 (2“’(3)> )

S

Lastly, the number of admissible values for ag, which are such that s | ag and
ged(“, s) = 1 is given by Lemma 11.3.1 as

()25 o)
Hence in total we have
<2f + 0(1)>d1 (21292(5) +0 (2W<S>)> <2Hf(s’) +0 (2W<S>)>
(B (B (250 o
s s oo ()
. (ZHf(s) o (2w<s)))
_ <(2i)_dll o (de_22)> <(2H)82;0(5)2 ) <H2w(s)))

CHY e (H
= O =2

choices for (ag,...,aq). O

Let us denote by ¥(a) the number of primes, such that the polynomial associated
to a = (ag,...,aq) is Eisenstein, i.e.,

Y(a)=|{peP| Vi<dp|a p*fao, ptaa}|.

Lemma 11.3.3 (Lemma 4, [70]). Let H € N, then

> d(a) = (2H)"a + O(H?).

aeEd(H)

Proof. We note that

Yo W= > |Halp,H)|.

a€E (H) peP,p<H
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11.3. Eisenstein Polynomials

Hence we can apply Lemma 11.3.2 and get

RIOEEDS <(2H)d;£1271)2+O(pifizw(p)>)

a€Eq(H) peEP,p<H

— d+1
SCUAD M= S DIy

peEP,p<H peEP,p<H

d+1 (p—1)° (p—1)° d
= (2H)* Z itz Z pd+2 +O(H")
peP pEP,p>H
— (2H)*0O ( ) +O(H?)

pEP

= (2H)"a + O(Hd).
O
For a = (ag, . ..,aq) € Z, we define 7(a, p) to be the following map

1 ifVi<dpla;, p*tao, ptag
(.p) = i o P
0 else.

Lemma 11.3.4 (Lemma 5, [70]). For H € N, we have that
> ()’ = 2H)" (a+a® - B)+ O(HY).
aEEd(H)

Proof. By the definition of 7, we have that ¥(a) = > 7(a,p). Therefore, we get
peEP

Y. v@?= )Y | tp

(IGEd(H) aGEd(H) peEP

Y Y .4)-

P,q€EP a€E4(H)

Again, we can split this sum into p = ¢ and p # ¢. In the first case, observe that
7(a,p)? = 7(a,p) and in the second case, we have that 7(a,p)7(a,q) = 7(a,pq), since

7(a,p)7(a,q) = {1 if 7(a,p) = 7(a,q) =1,

0 else.

Hence we can write

o v@=> > rap+ > > 7(apa)

a€Eq4(H) PEP acE4(H) P#QEP a€EE4(H)
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Since

Z 7(a,s) =| Ha(s, H) |,

aGEd(H)

we get

> @@= > [Hap,H)[+ > |Halpg, H)|.

ac€Eq(H) pEP,p<H p#qEP,pq<H

Using Lemma 11.3.3, we know that

> | Halp, H) |= (2H)" o+ O(H?),
peP,p<H

and by Lemma 11.3.2 we have that

> | Halpg, H) |

p#q€P, pg<H

— Z (QH)d+1(p B 1)2(q B 1)2 +0 Hd Qw(pq)
pd+2qd+2 pd—l d—1

p#qEP, pq<H g

:(QH)d+1 Z (p - 1)2((] - 1)2

d+2 ,d+2
p#qE€EP, pg<H p q

Hd
b o)

p#qEP, pg<H

(p—1)%(qg—1)°
=H)™ Y g+ O(HY)
p#qEP, pq<H p 4

:(QH)d+1 Z (p - 1)2(q - 1)2

d+2 ,d+2
p,q€P, pg<H p q

_ (2H)d+1 Z (r—1)* + O(Hd).

p2(d+2)
pEP, p?<H
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The first summand gives us (2H)%1a? + O(H?), since

(QH)d+1 Z (p - 1)2((] - 1)2

d+2 ,d+2
p,q€P, pg<H p q

=yt [ Y (P—1*q-1)7 3 (r—1)*—1)

d+2 ,d+2 d+2 ,d+2
p,qEP p q p,q€P, pg>H p q
_ d+1 (p— 1)2(9 - 1)2 d+1 1
= (2H)™ Y gz GH)TO
p,qEP
2
(»—1)
= CH)"™ Y s +O(H?)
pEP p
— (2H)d+1 2 +O(H2)
Whereas, the second summand can be written as
_ 1)4
2H)d+1 (p
( pEPXp:2<H p2(d+2)
- 1! (»—1)*
yd+1 d+1
—omp Y O oy 02D
p€73 peEP, p>VH
—(2H d+1z d+2 + (2H)H10 (H d+2)
pEP
=(2H)**1B8+0 <H3/2> .
We can conclude, as
> () =2H)" o+ (2H) o - 2H) B+ 0 (H?)

a€Eq(H)
=2H)" (a+a® - B) + O(HY).

As a next step, we compute the size of Eq(H).

Theorem 11.3.5 (Theorem 2, [52]). For H € N we have that
| Ea(H) |= 2H)™ p(Eq) + O(HY).

Proof. By the inclusion-exclusion principle, we get that

| Ea(H ZM | Ha(s, H) | .
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Using (11.3.1) and Lemma 11.3.2, we get that

B |~ - Y (ms)m%f;"(s) ro ()

s=2
2}1 d+1 "
:_Z“ Sd+2 +ZO< 2”)
—(2H)*! Z d+2 C 4 O(HY)
—(2H)"! Z/“L d+2
s>2 8
d+1 w(s ) d
+ (2H) > uls) e +O(HY)
s>H+1
2H d+1 Z‘u d+2 2H)d+10 ( ) T O(Hd)
s>2
—(2H)™ (s d+2 + O(H?).
s>2

2
Since ﬁf,,il is a multiplicative function, we have that

_ __1 —
+ s
> uls) d ) > i) 2

s§>2 s>1

We can conclude, as

Note that this is an alternative proof for the density of Eisenstein polynomials.
We are ready to state the main theorem of this section.
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Theorem 11.3.6 (Theorem 2, [70]). The mean and the variance of the function ¥(a),
where a ranges over all Eisenstein polynomials are

>, Y(a)
w= lim a€E (H) . o
Hooo | Eg(H) | p(Eq)’
> (¥(a) —pw)? ,
o2 — lim a€Eq(H) :a+a — B — pa
H—o0 | Ea(H) | p(Eq)

Proof. To compute the mean we can use Lemma 11.3.3 and Theorem 11.3.5, which
give

> ()
p= lim 2EEUD
H—oo | Eq(H) |
. (2H)d+1a+O(Hd)
H-oo (2H)41p(Ey) + O(HY)
«
— p(Ea)

For the variance, we use Lemma 11.3.3, Lemma 11.3.4 and Theorem 11.3.5, to get

> (W(a) —p)?
c“ = lim a€E4(H)
H—00 | Ea(H) |
> (¥(a)® —2up(a) + )
— lim a€E4(H)
H—o0 | Ea(H) |

> w(@)?—2n 3 la)+p’ | Eo(H) |

g OEat) a€ B4 (H)

H—o0 | Ea(H) |
o CH)TH o+ a? = B = 2pa+ p?p(Eg)) + O(HY)

A QH) 1 p(Ey) + O(H)

a+a? — B —2ua+ p*p(Eq)

p(Ea)
a+a? =B —2pa+ pgs p(Eq)
p(Ea)
a+a?— B — po
p(Ea)

The Monic Case

Note that the monic case is in fact easier than the non-monic case, thus we just state
the result, and indicate differences in the proof.
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Let H € N,d > 2 and M4(H) be the set of monic Eisenstein polynomials of degree
d and of height at most H, i.e.,

My(H) ={a = (ag,...,ag-1) €Z*| max {|a;|} <H,
i€{0,...,d—1}

JpVi<dp*tag, plai}.
For s > 2 a positive integer, let us define H4(s, H) to be the set of monic polynomials

of degree d, which are of height at most H and such that the polynomial is s-Eisenstein,
i.e.,

H)={a= o agq) €78 Sy < H
Hd(57 ) {CL (0,07 » Ad 1)E ‘ze{g,na:}d(fl}{‘a |}_ )

Vi<ds]|a, gcd(ﬁ,s) :1}.
S
The main difference between the two cases, is already in the first step, when com-
puting the size of Hq(s, H).
Lemma 11.3.7. For s < H € N, we have that

2H)4p(s HL

The remaining sub-results follow in the exact same manner as for the non-monic
case. We define

p—1
a= Z pat1”
peEP
(p—1)
p= Z p2(d+D)

peEP

Theorem 11.3.8. The mean and the variance of the function v (a), where a ranges
over all monic Fisenstein polynomials are

>, W(a)
_ 11m aGMd(H) _ (0%
H H—o0 ‘ Md(H)

— lim a€EMq(H) o+ a? — B — Hno
H—0 | Ma(H) | p(Ma)

11.4 Rectangular Unimodular Matrices

In this section we want to compute the mean and the variance of the number of primes
for which a rectangular non-unimodular matrix has not full rank modulo this prime.

For simplicity we will restrict ourselves in the following to the case n < m — 1.
However, in the case n = m — 1 the results remain true with the slight difference of
having an error term of the form O(H In(H)).
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Let H € NNyn < m—1 € N and R, »(H) be the set of rectangular unimodular
matrices in Z"*™ of height at most H, i.e.,

Rym(H)=qAecZ™™| ?11ax }{| a;; |} < H, YpePrk(A modp)=n
1ed,..., n
je{l,...,m}

For p a prime, let us define H,, ., (p, H) to be the set of matrices in Z"*™, which
are of height at most H and such that the rk(A mod p) # n, i.e.,

Hom(p,H) ={AcZ™™| Jflllax }{| a;; |} < H,tk(A mod p) # n}.

1€l,...mn
je{1,....m}

This means, that all n-minors of A are divisible by p.

For p, ¢ two distinct primes, let us define H,, ,,,(p, ¢, H) to be the set of matrices in
7™ which are of height at most H and such that the rk(A mod p) # n and also
rk(A mod q) # n, i.e.,

Hom(p,q, H) ={A€Z"™™| max }{| a;j |} < H,tk(A mod p) #n,

i€{l,...,n
je{l,....,m}

tk(A mod q) # n}.

In this case all n-minors of A are divisible by p and ¢, and thus by pgq.

Thus, we can define for an integer s > 2, H,, (s, H) to be the set of matrices in
Z™*™  which are of height at most H and such that all maximal sized minors m; are
zero modulo s, i.e.,

Hom(s,H) ={AeZ"™™| max {]a;;|} <H, Vn- minors m;, m; =0 mod s}.

i€{l,...,n}
Jje{l,....m}

Clearly, Hu,m(p,q, H) = Hpn,m(pg, H).

Let us define
< n—1 1
=y (T ()
pEP =0 p

n—1 1 2
= (T ()
pEP =0
We usually would compute the size of H,, ., (s, H) for any integer s, but since we
only apply this on s = p prime and s = pq for p < ¢ primes and in addition on s a
square-free positive integer, since only then we have that u(s) # 0, we can restrict to
these cases.

For p a prime, and n < m we have that the number of full rank matrices in F*™
is

n—1

[Te™—p).

i=0
Hence we can now compute the size of H,, . (p, H).
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Lemma 11.4.1. For p < H € N, with p prime, we have that

| Mo, H) |= (2H)"™™ (1 1 (1 - p,j_i)> e (%”) .

i=0

Proof. We start by counting the number of non-full rank n x m matrices modulo p.
This given by

P — ﬁ(pm —-p")=p"" <1 - ﬁ <1 - p,i_i>> ~

=0 1=0

As a next step, we fix a choice of non-full rank matrix modulo p and lift it to [—H, H["**™,
for each fixed matrix we have (at most)

(N

choices for a lift. Hence in total we get

1= (v (1T (- 2))) (12])
- <pnm (1 - nlj[o (1 - WL)) (25 + 0(1))nm
)

With this we can now compute the size of H,, . (pg, H).

Lemma 11.4.2. For p < q primes and pqg < H € N, we have that

| Honom (pg, H) |

=(2H)"™ (1 _ﬁ (1 — pn}i>> (1 —nl:[l (1 - q,ji)> +0 (%) .

=0 =0

Proof. We start by counting the number of n x m matrices, which have not full rank
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modulo p and modulo q. With the Chinese Remainder Theorem this is given by

(”nm e ‘pi>> (q T qi>)

=0 =0

o (111 (- 7)) (- T (- 7))

As a next step, we fix a choice of such a matrix modulo pg and lift it to [—-H, H["*™,

for eaCh ﬁxed malriX we ha\/e
( )
pq

choices for a lift. Hence in total we get

| Honm(pg, H) |

(-0 (-5))- (T () (D)
=(2H)"™ (1 —:H (1 - pii>) : <1 _7:1:[0 (1 - qn}i>> +0 <%> .

Finally, we can extend Lemma 11.4.2 directly to square-free positive integers s.

Lemma 11.4.3. For s a square-free positive integer and s < H € N, we have that

| Hy (s, H) |= )™ ]| (1 _ n]:f (1 _ pwfi)) 40 (W) .

pls i=o0

To simplify this we can write

g(s)=1[ (1—?11_[1 <1—pi_i)>‘

pls =0

Note that since Y. g(p) = O (72— ), we also have that
p>H

> 00 =0 (s )

s>H

Let us denote by ©¥(A) the number of primes, such that the matrix A has not full
rank modulo this prime, i.e.,

P(A) =[{peP| k(A modp)#mn}]|.
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Lemma 11.4.4. Let H € N, then
> $(4A) = (2H)"a+0 (H").

A€R{ ,, (H)

Proof. Observe that

S W= Y [ Huw )|

A€eRS , (H) peP, p<H

Now, we can apply Lemma 11.4.1 and get

> w4

AR, ()
L (e (I ) ) o (455)

=0
:(QH)nmpeP p<H < U (1 P 1>> peRZpSHO (%)
A ()
_pep p>H< g (1 ! ))) +0 (H"™1)

sy (2

peP p
1 i ,
_ (2H)nm Z — <pnm _ H (pm o pz)> +0 (Hnm—l)
pEP, p>H p i=0
n—1
1 1
:(2H>nm Z (1 _ H 1— pmi)> 4 (2H)nm0 (Hmn> +0 (Hmn—l)

peEP =0

:(ZH)nma + O (Hnm—l) .

For A € Z"*™, let us define

T(A,p)—{l if tk(A mod p) #n

0 else.

Lemma 11.4.5. For H € N, we have that

ST (A = QH)™(a+a® — )+ O (H™Y).

AERS , (H)
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11.4. Rectangular Unimodular Matrices

Proof. Since again we have that ¢¥(A4) = > 7(A,p), we can write
peEP

> Ay

A€RS . (H) A€RS . (H) \peP

I
(]
7
N

A€RS ,,(H) \p.q€P

= > Z (A, p)7(4, q).

p,q€P AcRS . (H)

We can again split this sum into p = ¢ and p # ¢, where in the first case observe
that 7(A, p)? = 7(A, p).

Z w( => Z AP+ Y, D T(ApT(49).

AeRg , pEP ACRS ,, (H) p#q€P AcRS , (H)

Further, we observe that

> m(Ap) = Hum(p, H) |

A€R( ., (H)

and

> m(Ap)r(Aq) = Hum(pg, H) | .

A€eRS . (H)

Therefore, we have that

Yoo W= D ([ HamH) |+ D | Ham(pg, H) |

A€ERS  (H) pEP,p<H p#qEP,pq<H

n,m

Using Lemma 11.4.4, we know that

5 Sl - 01050 1),

pEP,p<H
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Chapter 11. Mean and Variance

By Lemma 11.4.2, we know that

> [ Ham(pg, H) |

p#9€P, pg<H

e G N )
o) |

e 8 I0-)) (-T2
E (e

p#q€EP, pq<H

ey (T ) (T )
+O (H" ) .
>)( I(-5))

S (O
> +0 (H"™ ).

p,q€P, pg<H

—(H)"™ Y (1—n1
0

pEP, p2<H i

Note that the first summand can be written as

e (T (=) (T )
@szq;(ﬂ(lm)( (- z>>
_<2H>“mp7qe7;)q>H< 1:[01 1)>< : ))
o 3 (1T (- 2)) (T - 25)
+(2H)"’”O(H"11_n>

=(2H)™" (Z (1 - nlf[: (1 - pi))) 2 +O (grmomEn)

peEP
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Further, the second summand can be written as

@H)"™ > <1 :ﬁ (1 - p’i—">>2

pEP, p?<H =0
n—1 2
=Q2H)"™ > (1 -11 <1 - 1_))
pEP i=0 p
n—1 1 2
- (2H)"™ Y (1 -11 (1 — m))
peP, p>VH i=0 b

—(2H)" Y (1 (- p,,f_i))Q - @)™ (s )

peEP i=0

:(QH)nmﬁ + 9] (Hnm—m+n—1/2> )
Thus, we can conclude, as

> (A =QH)""a+ (2H)""a® — (2H)""B+ O (H"™ 1)
AERSM(H)
:(QH)nm(a 4 a2 _ ,6) +0 (Hnm—l) .

Theorem 11.4.6. For H € N, we have that

| R (H) |= (2H)"" p(Ry] ) + O (H™™ 1) .

Proof. Using the inclusion-exclusion principle, we get that

H

| RS,WL(H) |: _ZM(S) | HTL,TVL(S7H) | .
s=2
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With the considerations before and Lemma 11.4.3, we can write this as

H

2H )rm—1
B0 = =2t (ot + 0 (B0 ) )
:_SZH; (s)(2H)"™g( +Zo(2H"m 1)
= QH”’"ZM () +O (H™™1)
— —(2H)"™ ;u + (2H)"™ ;H:HM(S)Q(S) +O(H"™)
= —(2H)™™" gu + (2H)"™O (;:fl) +0 (HM™ Y
—(2H "mszzu s)+O (H" ).

Since g(s) is a multiplicative function, we have that

a5 =1 el

s>2 s>1

=1-J] -9

pEP

ST

pGPz 0

1
BT

= p(Rim)'

=)

Hence, we get the claim

‘ Rg, ( | _ 2H nm g S +O (Hnm—1>

( + O Hnm 1)
O
Note, that this can be considered as an alternative proof of the density of rectangular

unimodular matrices.
We are ready to state the main theorem of this section.
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11.4. Rectangular Unimodular Matrices

Theorem 11.4.7. The mean and the variance of the function ¥(A), where A ranges
over all rectangular non-unimodular matrices are

> w(A)
oy ASREL0D _a
M aBe RS, (H)]  p(RS,)
(W(A) — p)?
02— qig RS D _at+a’—f—pa
H—o0 | RS (H) | p(RS )

Proof. We can use Lemma 11.4.4 and Theorem 11.4.6 to compute the mean:

P(4)

A€RS  (H)

.
M= W% T RS,.(H) |

B 1 (2H)nma + O (Hnm—l)

~ Hoeo (2H)"p(RS,,) + O (H™™T)

«

p(RS.,)

Further, from Lemma 11.4.4, Lemma 11.4.5 and Theorem 11.4.6, we can compute
the variance, as

(¥(4) = p)?

. AeRT,(H)
7T | RC,.(H) |
S ((A)?2 = 2up(A) + p?)
_ o ASRE.0D
e RS, (H) |

n,m

(AP =2 3 (A +p? | BT, (H) |

. A€Rg . (H) A€Rg . (H)

= [ RS, (H) |
~ lim (2H)"™ (o + a* = B — 2po + p®p(RS,,)) + O (H™™1)

o @H)" p(RG,) + O (H™ 1)

a+a? =B =20+ p?p(RE )

p(RS )
a+a® =B = 2o+ pog—p(Ry,)
p(RS )
a+a?— B — po

p(RS )
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Chapter 12

Addendum to the Local to
Global Principle

We can observe, that the mean and the variance we have computed in Sections 11.2,
11.3, and 11.4 always follow a certain rule, i.e.,

>, (a)

0= lim a€T(H) _ «
s |T(H)|  p(T)
> ((a) - p)? .
o2 — lim a€T(H) :a+a — B — pa
H—00 | T(H) | p(T) ’

for some a and 3. Now, if we compare the considered a and 8 with the Sections 10.1,
10.2, and 10.3, we can observe that

and

where we usually have s, = 0 and can thus only consider s, = u,(U,). Thus, there
is a direct connection of the mean and the variance with the local to global principle
and the U, C Z, we have chosen there.

In what follows, we will present an addendum to the local to global principle by
adding a few conditions on U, to make sure that the mean and the variance exist and
then show that the mean and the variance can be computed through s,,.

We adapt the definition of mean and variance: in the section before we have con-
sidered



Chapter 12. Addendum to the Local to Global Principle

and )
(¥(a) — )
o = lim acT(H)

where ¢)(a) was defined to be the number of primes for which a satisfies the condition
Cp. In order to define the mean and the variance of the system (U, ),enr,, we hence
use

|[{reMg|AeU,}|

instead of ¥(a).
More in detail, we will define the expected value of the system (U, ),en, to be

> {reMg|AeU}|
— lim A€[-H,H[?
=i (2H)? ’

if it exists and the variance of the system (U, ),en, to be

Y (freMg|AcU}|—p)’
o? = lim A HT

H—o00 (2H)d ’

if it exists.

One can think of these definitions as the expected value and the variance of the
“random variable” that counts how many times an element is expected to be in one of
the U, ’s.

Further, we will exclude all A’s which lie in infinitely many U,’s, as they have
density zero, and should thus not contribute to the sum.

We then introduce the mean and the variance of the system (U, ),¢ M, restricted to
some target set T" and we show that the results we get from the addendum to the local
to global principle coincide with the computations of the mean and variance we have
done before.

In fact, we get that the mean of the system (U, ),en, is given by

E Sy = @,
ve Mg
the variance of the system (U, ),en, is given by
Z Z 2
Sy — Sy, = — ﬂa
ve Mg ve Mg

and when we restrict to the target set, we get that the restricted mean is given by

P
T p(T) ~ p(T)

and the restricted variance is

P = Yene Sy~ M a+a®— B — pra
p(T) p(T) ’
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Chapter 12. Addendum to the Local to Global Principle

which are exactly as in the computations before.
We have thus found a more elegant and faster way to compute the mean and the
variance corresponding to the density.

12.1 Main Theorem

For a fixed v € Mg and U, as in Theorem 9.3.8, the density of U,NZ* can be computed
as follows.

Corollary 12.1.1. Let v € Mg and U, be chosen as in Theorem 9.3.8, then
p(U, NZY) = iy (Uy) = s,

Proof. Simply set in Theorem 9.3.8

;U V=,
R U2
and let
Pzt - 2Me
a — {veMglacU,}.
Then, compute p(P'~1({v})). O

Similarly, for v,n € Mg with v # 7, U, and U, chosen as in Theorem 9.3.8, the
density of (U, N Z%) N (U, N Z?) can be computed.

Corollary 12.1.2. Let v,n € Mg with v # n and U,,U, be chosen as in Theorem
9.5.8, then
p((U, N Zd) N (U, N Zd)) = o (Un) 1y (Up) = su80.

Proof. Simply set in Theorem 9.3.8

/
U, v =y,

lI// = Un Z// - 777
B else,
and let
Pl . Zd — 2MQ7
a — {veMglacU,}.
Then, compute p(P'~({v,n})). =

We observe that the elements A € Z¢, which are in U, for infinitely many v € Mg
have density zero.
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12.1. Main Theorem

Lemma 12.1.3. Let U, be chosen as in Theorem 9.3.8 for all v € Mg. Then, we have
that
p({A € 73| A € U, for infinitely many v € Mg}) =0.

Proof. Since U, were chosen as in Theorem 9.3.8, Condition (9.3.1) holds, i.e.,

. — d : —

N}linoop ({A € Z* | A € U, for some prime p > M}) =0.
Let us call

C’M:{AEZd|A€Up forsomeprimep>M},

1= {A € 2% | A € U, for infinitely many v € M@} .
Clearly, I C Cyy for all M € N, hence
p(I) < lim 3(Car) = 0.
O

The usual definition of expected value does not take into account the events of
probability zero. Over Z?, we will use the density to give an analogue definition.
Observe that an event with density zero will not have any influence on the expected
value, this legitimates that over Z¢ we will exclude the elements A € Z%, which are in
infinitely many U,, namely A € I. Let us define

[-H,H[¢= ([-H, H]*NZ) \ I.

Definition 12.1.4. Let H and d be positive integers and assume that (U, ), ¢, satisfy
the assumptions of Theorem 9.3.8, then we define the expected value of the system
(Uv)ven, to be
S [{reMglAcU)
_ A€[-H,H[¢
A e (2H)? ’

if it exists.

This limit essentially gives the expected value of the number of places v, such that
a random element in Z¢ is in U,. We will sometimes refer to the expected value of the
system (U, )ven, as the mean of the system (U, ),ens-

Definition 12.1.5. For a set T, for which we can compute its density via the local to
global principle as in Theorem 9.3.8, we say that a system (U, ),en, corresponds to T,

it 7¢ = P=1({0}).
Observe, that we can restrict Definition 12.1.4 to subsets, i.e., we define the expected
value of the system (U, ),en, restricted to T' to be

> |{veMg|AcU}|
~ lim A€[—H, H[¢NT
AT = i | [—H, H[¢NT | ’

if it exists. Note that this is similar to the conditional expected value.
One can easily pass from p to pur and viceversa:
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Lemma 12.1.6. If the density of T exists and is nonzero and T is such that T¢ C
P=L({0}), then ur exists and is given by p = purp(T).

Proof. We observe that

> |[{reMg|Ae€U,}|
~ im A€[-H,H[¢nT
rr = g1 | [—H, H[!NT |
> |{reMg|A€U}| )
— lim A€[-H,H[¢nT (2H)
Heso0 (2H)d | [—H,H[NT |
T MweiMoldeu)]
A€e|[—H,H[¢NT
— L .
Hovoo (2H)d o(T)

Let us define
1 A 1z
r(A,v) = { U

0 else.

Note that one can write [—H, H[¢NT as [—H, H[¢\([-H, H[NT®), doing so we
observe that we can ignore the T

2 2. T(Av)

A€[—H H[{NT vEMqg

prp(T) = Jim (2H)4
> 2 T(Aw) - 2 > T(Av)
_ A€[-H,H[¢veMq A€[-H,H[¢NTC veMg

If 7¢ C P~1({0}), then it holds that 7(A4,v) = 0 for all A € T, hence we are left
with . O

In the applications one usually chooses T¢ = P~'({()}) and computes the expected
value restricted to T'. This is a natural choice, since by the definition of T none of its
elements lie in any of the U, , thus we are only considering the subset T', where nonzero
values are added to the expected value.

Similarly, we define the variance over Z.

Definition 12.1.7. Let H and d be a positive integers and for all v € Mg we define
U, as in Theorem 9.3.8, then we define the variance of the sytem {Ul,},,eMQ to be

X (HveMglAcU}|—p)
0% = Jim 2SO

Tae [~ H. H[j] ’

if it exists.
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12.1. Main Theorem

We can restrict this definition to subsets, i.e., we define the variance of the system
(Uy)vemy restricted to T' to be

> ([{veMg|AcU}|—pr)?
9 . A€[-H,H[¢NT
op = lim

Ho300 | [—H, H[9NT | ’

if it exists.
Note that Condition (9.3.1) of Theorem 9.3.8 is not enough to ensure the existence
of the mean, for this see Example 10 in [79].

Now we are ready to state the main theorem, which is an addendum to the local to
global principle by Poonen and Stoll (9.3.8) in [91]. Note that the part on the mean
can be found in [79].

Theorem 12.1.8. Let H and d be positive integers. Let Uy, C R?, such that R>o-Ux =
Use and pos(0(Uso)) = 0. Let soo = 57400(Uso N [—1,1]%). For each prime p, let
U, C ZZ, such that p,(0(Up)) = 0 and define s, = pu,(U,). Define the following map

pP.z¢ — oMo
a — {veMglacU,}.

We assume that Condition (9.3.1) is satisfied and that for some o € [0, 00), there exists
an absolute constant ¢ € 7, and some m € N such that for all H > 1 and for all A € Z.¢

lag=|{peP|p>H*AcU,N[-H H[}}|<c (12.1.1)

and there exists a sequence (vp)pep, such that for all p < H* holds

| Uy N [-H,H[¢| <wv,(2H)%, (12.1.2)
Z Up  converges. (12.1.3)
pPEP

Then the following hold:

1. The mean of the system (U,),enm, exists and is given by

p= Y s (12.1.4)

ve Mg

2. If in addition, there exists some 3 € [0,00), we have that there exists an absolute
constant ¢’ € 7, and some m' € N such that for all H > 1 and for all A € 74

rag=|{peP|p>H’ AcU,N[-H H]}}|< (12.1.5)

and there exists a sequence (Up)pep, such that for all p,q < H? holds

| (Up N Uq) N [—H, H[CII‘ < ﬁp{)q(QH)da (12-1-6)
Z U,  converges, (12.1.7)
pEP
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then the variance of the system (U, )veny, exists and is given by:

= > s> s (12.1.8)

ve Mg ve Mg

3. If in addition, we have some T C Z¢ such that T¢ C P~*({0}) and p(T) ewists
and is not zero, then o2 exists and is given by:

o Bt H = Y en, 5o — HTH
T p(T)

(12.1.9)

Proof. Let us first consider the mean p.

1. For H, M > 0 we split

3 (WMol AT _ | 5y apy 4 sy (H, M) + s5(H, M),

Ag[-H,H[¢ (2H)¢
where
|{p€P|M<HO‘<p,A€U}\
H M) =
81( ) ) Z (2H)
A€[—H,H[¢
|[{peP|M<p< H, AeU}\
H M) =
82( ) ) Z (2H)
A€[-H,H[¢
B |{1/€73|V—oooru<MA€U}|
53(H7M)_ Z (2H)
A€[-H,H[¢

We are going to show that for j € {1,2} we have

limsup limsup |s;(H, M)| =0

M—oo H-—oo

and
lim lim s3(H, M) Z Sy,

M—o00 H—00
VEMQ

which readily implies that
2 |{veMglAcU}|

_ Ag[-H,H[¢
=g (2H)4

exists and that

w= Z Sy

vEMog
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12.1. Main Theorem

First we consider the case a # 0. From Condition (12.1.1) we have that for H > 0
and A € 74

law=|{peP|p>H* AcU,N[-H H[}} |<c (12.1.10)

Therefore, we get

0 < limsup limsup |s1(H, M)|
M—oco H—oo
< lim sup lim sup Z
Mmoo Himeo AE[7H1H[?“UM<;-€P Up
c
< lim sup lim sup Z

d
A€[—H,H[¢N Unr<per Up

= clim sup lim sup -4, H[?ﬂ UM<p€7> Uyl

o
(2H)4

= climsup p U U, | =0,
M — o0 M<peP

where the last equality follows from Condition (9.3.1). Using the Conditions
(12.1.2) and (12.1.3) we get

0 < limsup limsup |sa(H, M)|
M—oo H-—oo
Z Up N [-H, H[|
(2H)“

= lim sup lim sup
M=o H—roo pEP:M<p<H<>

< lim sup lim sup Z v, = 0.
M—oo H—oo .
PEP:M<p<H™
For a = 0 on the other hand, we have for M > 1 that
Sl(H, M) =0= SQ(H, M)
Using Corollary 12.1.1, we get
lim lim s3(H, M)

M—o00 H—00
T | [-H,H[$nU, |
(2H)?

= lim lim
M —o00 H— 00
veEMqg:v<M or v=oo

= 1. d
veEMg:v<M or v=o0

= lim E Sy
M —o0

vEMg:v<M or v=o00

- s

veMg
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2

2. For the variance o“ we are going to use a similar argument. We split for H > 1

Y ({veMg|AcU}|—-p?
A€[-H,H[¢

QH)? =T\(H) + T»(H), (12.1.11)
where
> H{rveMg|AcU}?
. A€[-H,H[¢
T\ (H) = o ’
[E [dI{VEM@|AeUV}| [z [dl

A€[-H,H Ac|—H.H

To(H) = —2 il 2 HIf
= H)’ Gy

We can use the same argument as for the mean p and Lemma 12.1.3 to obtain

lim To(H) = —2u% 4+ p? = —p2. (12.1.12)

H—oc0

We split T (H) for M > 1 into

TW(H)=Vi(H, M)+ Vo(H, M) + V5(H, M), (12.1.13)
where

Y (X r(Av)?

A€[-H,H[¢ v>M,
V#£00

V1<H7 M) = (QH)d
X (X m(4v)?
ael Tt v
%(Hv M) = (21/1?[(;3 )
> (X 7(Av)( X 7(Av)
Ae[-H,H[¢ v>M, l;SZ{\)/é,
V3(H7M): e (QH)d ’

and where 7(A4,v) =1 if A € U, and zero otherwise. We will show that

lim sup limsup V1 (H, M) = 0.

M—oco H—oo

For this we split
Vi(H,M)=Ry(H,M)+ Ry(H, M)+ 2R3(H, M), (12.1.14)
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where
B |{p,q>Hﬁ|A€UpﬂUq}|
Rl(HaM)_ Z (2H)d )
A¢c[-H,H[¢
A€Up, q>m (UpNUy)
3 {M<pq<HP|AcU,NU,} |
R2(HaM)_ Z (2H)d )
Ac[-H,H[¢
A€Up, q>m (UpNUy)
B | {M <p<H<q|AcU,NU,}|
Ae[-H,H[¢

A€Up,q>m (UpnUyg)

Note that we have omitted to write (p,q) € P? to save space and by abuse of
notation we write A € U, N U, instead of A € (U, NU,) NZ.

From Condition (12.1.5) we have that
ranm={peP|p>H’ AcU,N[-H H[}}| <,
for some absolute constant ¢. Hence

lim sup lim sup Ry (H, M)

M—oco H—oo

.q>HP | Ac (U,NU,)NZ
=lim sup lim sup Z | {p q | (dp q) } |
M—soo H-—oo 4 (2H)
Ae[—H,H[¢
A€Up, ¢>m (UpNUyg)
T%H
<lim sup lim sup ’
M—oco H—oo Z ., (QH)d
Ac[-H,H[
A€Up, ¢>m (UpNUy)
~2
C
<lim sup lim su

Ac[-H,H[¢
A€Up, ¢>m (UpNUy)

2 7. . ‘ [7H7 H[?ﬂ U;D q>M (UP N Uq) |
=¢* lim sup lim su :

<& limsupp U (UpnUy)
M — 00 pa>M

§62limsupﬁ UUP =0.
M— o0 p>M

As Ri(H, M) > 0, we get

lim sup limsup Ry (H, M) = 0. (12.1.15)

M—oco H—oo
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Using (12.1.6) and (12.1.7), we get that

lim sup limsup Ro(H, M)

M—oco H—oo

M <p,qg<HP|AcU,NU,
=lim sup lim sup Z A P4 (2H|)d » N Uq} |

M—oc0o H—oo d
A€[-H,HI[]

AeUPvQ>M(UPmUQ)

3 | (Up NUy) 0 [-H, H{|

= lim sup lim sup (2H)

M—oco H—oo

(p,q)€P?
M<p,q<H?

< lijgl sup li}rln sup Z UpUq
— 00 — 00
(p.9)€P?

M<p,q<Hﬁ
2

<lim sup Z Up =0.
M—oo \ pepp>M

Again, as 0 < Ry(H, M) we get

lim sup limsup Ro(H, M) = 0. (12.1.16)
M—oco H—oo
By (12.1.6) we have |U,N[—H, H[{| = |U,NU,N[—H, H[{| < 32(2H)". Combining
this with r4 g < ¢, we obtain

lim sup lim sup R3(H, M)

M—oco H—o00
| {M<p<H<q|AcU,NU,}|
(2H)

= lim sup lim sup E
M—oo H-—oo d
A€[-H,H[]

A€Uyp ¢>nm (UpnUy)
[ << At} || (1 <ql A2t |
> (2H)’

<lim sup lim sup
M—o0 H-—oo 4
A€e[-H,HI[]

A€Up>mUp

EP|IM<p<HP AcU
<c¢lim sup lim sup | {r | p o)

2H)d
M—oco H-—oco AG[—H,H[‘}HU,J>MUP ( )

3 | Upn[-H, H[{|

<clim sup lim sup )

M—oo H—oo pEP:M<p<HB

<climsup Z zfp2:0.

Where we used (12.1.7) to get that > 2 converges. As R3(H, M) > 0 we get

lim sup limsup R3(H, M) = 0. (12.1.17)

M—oco H—oo
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Combining (12.1.14), (12.1.15), (12.1.16) and (12.1.17) we obtain
lim sup lim sup V4 (H, M) = 0. (12.1.18)

M—o00 H—o0

Now, we deal with V5. We split
Vao(H, M) =W(H, M)+ Wy(H, M), (12.1.19)

where

2 >, T(Av)T(An)

A€[-H,H[¢ vSM,n<M,

v=oK=o0
Wi (H, M) = 5h) ,
> 2 T(Av)
A€[-H,H[¢ ';S:]gé’
WQ(HuM): (2H)d

By the same computation as for the mean, we get

lim lim Wy(H, M) = pu. (12.1.20)

M—o00 H—00

For W; we compute
lim lim Wi(H, M)

M—o00 H—00
> > T(AvT(4n)
A€[-H,H[¢ vEM,n<M,

v,
v=o0oVn=o0

=, 4B, (2H)

> (A v)T(An)

o . Ac-HLH[
=m DL (2H)d

. | [-H H[{In((U, nZ*) N (U, NZ%)) |
= Jim > A : (2H )

= lim Y p((U,NZYN (U, NZY)

= lim g S8y = g S8
M—o00 ven vem

v<M,n<M, v,n€Mgq
v#£n, v#n

where we used Corollary 12.1.2 for the second last equality. Hence

lim  lim Wy(H,M)=p*>~ > sl (12.1.21)

M—o00 H—00
veMog
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Thus, we have by (12.1.19), (12.1.20) and (12.1.21) that

JJim lim V5 (H, M) =% - ;\; 2+ p. (12.1.22)
v Q

Using the Cauchy-Schwarz inequality, we get
Vs(H, M) < /Vi(H, M) - \/Va(H, M)
and thus, we get by (12.1.18) and (12.1.22) that

hm lim sup V3(H, M) = 0. (12.1.23)

M—oo H 00

By (12.1.11), (12.1.13) we get

Y ({veMglAeU}|—p)?
A€[-H,H[¢

(2H)
=Vi(H, M) + Vo(H, M) + V3(H, M) + T5(H).

By (12.1.18), (12.1.22), (12.1.23) and the fact that Vi(H,M) > 0 we get that
limpy 0o T1(H) exists and is given by

lim Ty(H)=p>— > s2+p. (12.1.24)

H—o0
ve Mg

Hence by (12.1.24) and (12.1.12) we get that o2 exists and is given by
2
2 ([{veMg[AecU}|-p)

2 g A€[—H,H[¢
= 1m
7 T a% (2H)4
=pP= > sttp—pP=p— > s
IJEMQ IJGMQ

3. By Lemma 12.1.6, we know that pp exists and that we have yu = urp(T). We

split
> ({rveMg|A€U}|—pr)?
Ae[-H,H[¢NT
| [-H H[dﬁT| = A (H) + A2 (H),
» 41T
where
A(H) = 3 [ {veMg|AeU,} 2

|[-H,H]¢NT] ’
A€[—H,H|¢NT

Ax(H) = —2ur Z

A€[—H,H[¢NT

|[{veMy|AcU,}|
[-H,H]¢NT]

1

2 -

thr Z [-H,H)¢nT|
A€[-H H}¢nT
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Using the condition 7' C P~1({0}) and the proof of Lemma 12.1.6 we get

(2H)? |[{reMg|AcU,}|?
A(H) = ——22)
[, B2 T AE[ZH)H[? (2H)1
d
_ @#Tl(H),
|[-H,H¢NT
(2H)" [{veMg|AcU,}|
Ao(H) = —2pp— 2
AT, 2 CH)
1
2
D T

Ae[-H,H[¢NT
Using the computations in (2), yields that o4 exists and is given by

> ({veMg|AeU}|—pr)?
A€[—H,H[¢NT

o2 = lim

1 2 2 128 2
=—= |\ # - s, +p ) —2——p+ pr.
p(T) 2 p(T) T

veMog

Which implies (12.1.9).

12.2 Examples

We can apply Theorem 12.1.8 to sets, whose densities were computed via the local
to global principle of Theorem 9.3.8 and fulfill Conditions (12.1.1), (12.1.2), (12.1.3),
(12.1.5), (12.1.6) and (12.1.7).

Coprime Pairs

For example we can compute the expected number of common prime divisors of a
non-coprime pair. The rigorous statement reads as follows:

Corollary 12.2.1. Let us denote by C the set of coprime pairs in Z2. Then, the
corresponding system (U,)ven, is given as in Section 10.1, i.e., Us, = 0 and forp € P
denote by U, = (pZy)*.

Then, the expected value and the variance of the system (U,),en, exist and are
given by

p= > s,=y ]%, (12.2.1)

vE€Mg pEP

02:”_283221%_21%' (12.2.2)

veEMg peP pEP
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And the average number and the variance of primes that divide a non-coprime pair
are given by

1
2

pGPp

Uhoc = T T (12.2.3)
@)

2 2
sai(sa)-sa-(sa) e
9 peP peP peP peEP <@
Occ = i , (12.2.4)
L)

where ( denotes the Riemann zeta function.

Proof. Recall, from Section 10.1, that all conditions of Theorem 9.3.8 are satisfied for
a corresponding system (U, ),en,, that for p € P we have that s, = p% and thus,

p(C) = p(P({0}) = ﬁ

Thanks to Lemma 12.1.6, we are left with proving that the additional assumptions
on the system (U, ),en, of Theorem 12.1.8 are satisfied. For this example we choose
a = 1. Observe that I = {0} C Z?, since only the zero is in all U,. Thus, we only
exclude that a is zero. Recall, that

boy=|{p€P|p>Hac|-HHINU,}|.

Now, since for x < H nonzero, there are no primes p > H dividing z. Hence, ¢, g =0
and Condition (12.1.1) is satisfied.

For Condition (12.1.2), we want to show that there exists a sequence (v, )pep, such
that for all p < H we have that | U, N [-H, H[7|< v,(2H)?. In F} there is only one
element (a1, az) that is divisible by p, i.e., the zero element. If we lift this element to

2
[—H, H[? we get ([%—D choices, hence in total we have at most

20 \? _9H?
—+1) < —
p p
elements in U, N [—H, H[?. Thus (v,),ep can be chosen to be (}%)pep, which also
satisfies Condition (12.1.3). Hence, (12.2.1) follows and Lemma 12.1.6 implies (12.2.3).
For this example, we choose § = % Recall, that

rau =|{p€P|p>VHacU,N[-HH}}|.
For a € [—H, H[2, observe that a1, as < \/ﬁ2 and

vE©" < I »

peEP
p>VH,pla
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since all p | a, are such that p > VvV H and we have r, gy many such prime divisors.
Further, observe that

2
H p <ged(ar,a2) < VH .
pEP
p>VH, pla

Thus, we get that vH " < \/ﬁz, which implies that, for H large enough, rq g < 2.

Hence, Condition (12.1.5) is satisfied. Next, we prove that Conditions (12.1.6) and

(12.1.7) are verified for all pg < H. Note, that |U, N U, N [—H, H[?| is counting the

number of elements (a1, az) which are zero modulo p and modulo ¢, which in qu is just
2

the zero element. Thus, if we lift this element to [—H, H[? we get ([%—D choices,

hence in total we have at most

elements in U, N U, N [—H, H[?. Thus, (3,)pep can be chosen to be (p%)pep7 which
also satisfies Condition (12.1.7). O

Coprime m-Tuples

Another example is the number of common prime divisors of a non-coprime m-tuple.

Corollary 12.2.2. Let us denote by C,, the set of coprime m-tuples in Z™. Then, a
corresponding system (U,)ven, is given as in Section 10.1, i.e., Us, = ) and for p € P
denote by U, = (pZ,)™.

Then, the expected value and the variance of the system (U,,)VeMQ exist and are
given by

p= Y s, =3 pim, (12.2.5)

veMg peEP

UQ:M—ZSEZZP%—ZP%- (12.2.6)

vEMg pEP peP

And the average number and the variance of primes that divide a non-coprime m-
tuple are given by

poe = 25—, (12.2.7)

B < )
2 2
P Il B I e BB
9 pEP p peEP P peEP P peEP P 1=<om
oo = — , (12.2.8)
T ¢(m)

where ¢ denotes the Riemann zeta function.
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The proof works exactly in the same manner as for coprime pairs. A small difference
is the sequence (1) pep, which in the case of coprime m-tuples can be chosen as (;%)pep.
In fact, the only element in F}?, that is divisible by p is the zero element, and lifting
the zero element to [—H, H[}', we get at most

2H ™4
( + 1) < —(2H)™
p p

elements in U, N [-H, H[J". Whereas the sequence (¥p)pep can be chosen (p%)pep.
Since we have at most

choices for lifting the zero element in (Z/pgZ)™ to [-H, H[}".

Eisenstein Polynomials
Also the result of [70] follows directly, in a shorter and more elegant way.

Corollary 12.2.3. Let us denote by E4 the set of Fisenstein polynomials of degree
d > 2 over Z. Then, the corresponding system (U,),en, s given as in Section 10.2,
i.e., Uso = 0 and for p € P denote by

Up = (PZyp \p2Zp) X (pr)d_l X (Zyp \ pZLyp).

Then, the expected value and the variance of the system (U,),en, exist and are
given by

1\2
p= > s,=y %, (12.2.9)

vE Mg pEP
2 _ 2 _ (p—1)? (p—1)?*
vEMog peEP pEP

And the average number and the variance of primes for which an Fisenstein poly-
nomial is Fisenstein are given by

I

P, = — (12.2.11)
1- HpeP (1 - (I;d+g )
(p—1)* 2 1
pA p? - — =
2 p;P P 1=-Tlper (1_ (5d+1222)

(12.2.12)

UEd =

—1)2
1- Hpep (1 - (2‘1'2 )

Proof. Note that in Section 10.2 we have showed that all conditions of Theorem 9.3.8
are satisfied for the corresponding system (U, ),ens. Furthermore, for p € P we have

2
that s, = (1;;33 and thus
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Let us choose a = 1. Observe that I = {0} C Z*!, and thus we only exclude that
a is zero. Recall, that

lom =|{peP|p>Hac|-H HI'NU,}|.

Now, since for x < H nonzero, the are no primes p > H dividing x. Therefore, we get
that Condition (12.1.1) is verified, since ¢, g = 0.

As a next step, we want to show that there exists a sequence (vp)pep, such that for
all p < H it holds that | U, N [—H, H[$™|< v, (2H ).

The set | U, N [—H, H[?*! can be bounded with Lemma 11.3.2 by

‘ {(G'Ov"'aad) S [_HaH[KIl+1|p ‘ a; Vi < d7p2)fa0upfad} |

H)"'(p 17 (H
= pd+2 +0 d 12 ®)

<

¢ d+1
— (2H)™,
for some absolute constant c¢. Thus, (vp)pep can be chosen to be (35)pep, which

also satisfies Condition (12.1.3).
For the variance, we choose § = 1/2. For a € [fH,H[?H, we can observe again

that
a, 2
VH7 HS H pSng(QOM'wadfl)S VH .
peP
p>VH, pla;Vi<d

This implies that VH " < \/Ez, which in turn gives 7, g < 2, for H large enough.
Thus, Condition (12.1.5) is satisfied.
Next, we prove that Conditions (12.1.6) and (12.1.7) are verified for all pg < H.
Note, that the set | U, N U, N [~H, H[4™"| is bounded with Lemma 11.3.2 by

‘ {(a07"'7ad) S [_H7H[(Ii+1|p | a; Vi < dap2+a07pfa’d7
q | % Vi<daq2+a07q)fad}‘

< (QH)d+1(p — 1)2(q — 1)2 +0 H? 2w(pq)
- pd+2qd+2 pdflqdfl

C/2

d+1

=T

for some absolute constant ¢’. Thus, (vp)p,ep can be chosen to be (;—;)pep, which
also satisfies Condition (12.1.7). With Lemma 12.1.6, we can conclude.

O
The Monic Case The case of monic Eisenstein polynomials is easier than the non-
monic case, thus we will only state the result.

Corollary 12.2.4. Let us denote by My the set of monic Eisenstein polynomials of
degree d > 2 over Z. Then, the corresponding system (U,),en, is given as in Section
10.2, ie., Uy, = 0 and for p € P denote by

Up = (pZy \pZZp) X (pr)diy
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Then, the expected value and the variance of the system (U,),enm, exist and are
given by

=Y 5= %, (12.2.13)

veEMg pEP

2 _ R (p—1)?
Al DR D D D By (12:2.14)

ve Mg peP peP

And the average number and the variance of primes for which a monic Eisenstein
polynomial is Fisenstein are given by

fiag, = a —, (12.2.15)
1= H;DEP (1 h %)
2
+u2— (=1~ _ 2 1
n ng prarn M I, (l_ppd%)

(12.2.16)

2 _
UMd =

1_Hp€7’ (1 o 117)‘1;*11)

The proof is very similar to before, we use Lemma 11.3.7 to bound | U, N[—H, H[%|,
as well as | U, N U, N [—H, H[4|.

Rectangular Unimodular Matrices

As last example, we compute the expected number of common prime divisors of all
maximal sized minors of a rectangular non-unimodular matrix. We will consider n > 1,
since the case n = 1 corresponds to the coprime m-tuples.

Corollary 12.2.5. Let 1 < n < m be positive integers, and let us denote by R the set of
rectangular unimodular matrices in Z"*™. Then, the corresponding system (U,)venm,
is given as in Section 10.3, ie., Uss = 0 and for p € P denote by U, the set of all
matrices in Zy*™ whose n-minors are all divisible by p.

Then, the expected value and the variance of the system (U,)venm, exist and are
given by

n—1

1
p= > so=y (1-[[a-—=) (12.2.17)
veMq peP i=0 p
n—1
1
ot=p— Y s=p-> (- [[0- ) (12.2.18)
veMo pEP i=0 p

And the average number and the variance of primes that divide all n-minors of a
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rectangular non-unimodular matriz are given by

1

ppo = ——H (12.2.19)
1= Tl s
Il
e D R e
2 =T
2o = _ = , (12.2.20)

where ¢ denotes the Riemann zeta function.

Proof. In Section 10.3 we have showed that all conditions of Theorem 9.3.8 are satisfied
for the corresponding system (U, ),en,. Further, we have showed that for p € P, we

have
n—1

s=0- [0~ —=))

m—1
=0 p

and thus
. B n—1 1
p(R) = p(P™({0})) = i|:|0 m=)

Using Lemma 12.1.6, we are left with proving that the additional assumptions on
the system (Ul,),,eMQ of Theorem 12.1.8 are satisfied. For this let us choose again
a = 1. Recall, that

lam=|{peP|p>HAc|[-HH[INU,}|.

Denote by f; the function associating to A € Z"*™ some fixed n-minor. Then, we have

for all A € [-H, H[™ the inequality f;(A) < (2H)™ holds for all i. We exclude that
fi(A) vanishes for all 4, since then we land in I. Further, observe that

HAm < 11 »,

pEP
p>H, AcU,N[—H,H[}™

since all p > H and there are {4 y many. In addition, we have that

II p < ged((fi(A)):) < (2H)"™.
peEP
p>H, AcU,N[—H,H[}™

Hence we get that H4# < (2H)", which implies that Ly g < nfor H large enough.
With this, Condition (12.1.1) is satisfied.

In order to verify Condition (12.1.2), we want to show that there exists a sequence
(vp)pep, such that for all p < H we have that | U, N [-H, H[}™|< v,(2H)™™. The set
of non-full rank matrices over IF,, has size

n—1
pnm _ H(pm _pl) < 2npm(n—1)+n—1 _ 2np(m+l)(n—1)'
=0
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We can fix one non-full rank n x m matrix over Fy,, for which we have less or equal than
27 p(m+1)(n=1) choices. For this fixed matrix there are less than or equal (f%] )™ lifts

to Z™*™ N [-H, H[™™. Hence, we have for p < H

2H nm
| Up N [-H H[}™| < 2" qu plrne=D

< on (2H n 1) D=1
P

S 2n (3H)nmpnm—m+n—1—nm
1
< 6" HM™
p

Thus, (v,)per can be chosen to be (%)pep, which also satisfies Condition (12.1.3).
Hence (12.2.17) follows and Lemma 12.1.6 implies (12.2.19).
For the variance we choose § = 1/2. Recall, that

rau=|{peP|p>VH Ac[-H HINU,} |

and that for all A € [—H, H["™ it holds that f;(A) < (V2H)?" for all i. We again
exclude that f;(A) vanishes for all 7. Since,

\/HTA,H < H P < ng((fz(A))’L) < (\/E)Qn’
eP
p>VH, AepUpn[—HyH[?”"

we get that VH 7 < (V/2H)?". Thus, for H large enough we have that ra g < 2n
and Condition (12.1.1) is satisfied.
Next, we prove that Conditions (12.1.6) and (12.1.7) are verified for all p, ¢ < vV H.
We compute

Up N U0 [=H, H[™|
=|{A € [-H, H[}™ | all n-minors of A are divisible by pq}|

_2H_ nm
< ( — ) {B € (Z/pqZ)™*™ | all n-minors of B are 0}
pq

—2H— nm
= ( T ) {C € (Z/pZ)"*™ | all n-minors of C are 0}

x {D € (Z/qZ)"*™ | all n-minors of D are 0}|

= (2H )nm (p”m - Tﬁ(pm —pi)) ¢ — ﬁ(qm - )

pq =0

2 nm -
<4n ({D (pg) D=,
pq
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For p,q < v/H, this implies

4HN\™™ b
‘Up N Uq N [_Ha H[7m| <4" <pq> (pQ)nm et

§4nm(2H)nm(pq)—m+n—1
2nm 2nm

<Q2H)"™ ——-.

<CH"™

nm

Thus, we can pick 0, = 2p2 and Conditions (12.1.6) and (12.1.7) are satisfied.

O
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Chapter 13

Conclusion and Future Work

In this part we applied the local to global principle on four sets over the integers, namely,
the coprime pairs, the coprime m-tuples, the Eisenstein polynomials and the rectangu-
lar unimodular matrices. Note that all results, except for the rectangular unimodular
matrices, are known, but they have not been proved through the local to global princi-
ple. This work thus forms a compendium of applications of the local to global principle.

We have further provided the idea of how to generalize the local to global principle
to the ring of algebraic integers of some number field and given the respective results.
Note that the results for the coprime pairs and coprime m-tuples are known, but again
not via the local to global principle.

We have left out the densities of Eisenstein polynomials over the algebraic integers,
as this is ongoing work with Simran Tinani. Hence the first future work project of
this part of the thesis is to compute the densities of monic and non-monic Eisenstein
polynomials over Ok .

We have defined the mean and the variance corresponding to the natural density
and, using methods of analytic number theory, we computed the mean and the vari-
ance for the four sets, namely the coprime pairs, the coprime m-tuples, the Eisenstein
polynomials and the rectangular unimodular matrices. Note that only the result for
Eisenstein polynomials was already known.

By doing so, we observed that the mean and the variance follow a certain pattern,
which is coming from the local to global principle. We thus have provided an addendum
to the local to global principle, which, with a few additional conditions, allows to
compute the mean and the variance directly. We have then seen the four sets again
as corollaries to the addendum and have therefore verified the mean and variance
computations from before.

Since the local to global principle can also be applied on algebraic integers, a fur-
ther generalization of the addendum could be to compute the mean and the variance
corresponding to the density over algebraic integers. Another idea is to add higher
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moments to the addendum.

Of course, there are many more sets for which one can compute the density through
the local to global principle, (e.g. shifted Eisenstein polynomials, affine Eisenstein
polynomials and many more), but for time and space reasons we restricted ourselves to
the selected four sets. Clearly, a broader compendium of such computations could be
of interest, nevertheless, we believe that with this selection we have given the reader a
broad variety of difficulties for computing densities and expected values.
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Appendix A

A.1 Code-Based Cryptography

In this section we recall the framework of the McEliece system and the Niederreiter
system.

The McEliece Framework

Key Generation Let k < n be two positive integers and choose C an [n, k] linear
code over [y, that con correct up to ¢ errors and has an efficient decoding algorithm
D. Let G be a k x n generator matrix of C.

Choose randomly a matrix S € GLy(F,) and a n X n permutation matrix P. Com-
pute G’ = SGP.

The public key is then given by (G’,t) and the private key is given by (G, S, P).

Encryption Choose a message m € IF(’;' and a random error vector e € Fy of
Hamming weight less than or equal to ¢, i.e., wty(e) < t. The cipher is then given by

c=mG’ +e.

Decryption We first take away the permutation matrix, by computing

cP~ ! =mSG +eP L.

Note that eP~! has still Hamming weight less than or equal to ¢t and the code
generated by SG is the same as the code generated by G, thus we can use the decoding
algorithm D on cP~! to get m.

Equivalently, we can decode using the generator matrix G and obtain mS and by
multiplying with S™! we recover m.

The Niederreiter Framework
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Key Generation Let k < n be two positive integers and choose C an [n, k] linear
code over F,, that con correct up to ¢ errors and has an efficient decoding algorithm
D. Let H be a (n — k) x n parity-check matrix of C.

Choose randomly a matrix S € GL,,_;(F,) and a n X n permutation matrix P.
Compute H = SHP.

The public key is then given by (H',t) and the private key is given by (H, S, P).

Encryption Choose a message e € qu" of Hamming weight less than or equal to
t, i.e., wtg(e) < t. The cipher is then given by
c' =H'e'.
Decryption We first take away the invertible matrix by computing

S~ 'c’ = HPe'.

Note that Pe " has still Hamming weight less than or equal to t and thus we can use
the decoding algorithm D on S~'c' to get Pe' and thus we can recover the message
e.

A.2 Information Set Decoding over [ in the Ham-
ming Metric
For the sake of completeness, we will provide in this section also the original algorithms

of Prange, Lee-Brickell and Stern over the binary. However, for the complexity analysis
we will use more modern techniques instead of providing the original cost.

A.2.1 Prange

Algorithm 14 Prange’s Algorithm over Fs in the Hamming metric

Input: H e FS™M"" s e Fr ¥ teN.
Output: e € F} with eH™ = s and wty(e) = t.

1: Choose an information set I C {1,...,n} of size k and define J = {1,...,n}\ I.

2: Compute U € Fén_k)x(n_k), such that

(UH)I = A and (UH)J = Idn—]w

where A € F{" >k,
Compute s’ =sUT.
if wty(s’) =t then
Return e, such that e; = 0, and e; = s'.

@ g w

Start over with Step 1 and a new selection of 1.
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The average cost of Prange’s original algorithm [93] is given as follows.

Theorem A.2.1. Prange’s algorithm over Fo requires on average
A
(” . ) (?) (n—k)*(n+1)

Proof. One iteration of Algorithm 14 over Fy only consists in bringing H into systematic
form and to apply the same row operations on the syndrome; thus, the cost can be
assumed equal to that of computing U (H ST), i.€.,

binary operations.

(n—k)?(n+1)
binary operations.

The success probability is given by having chosen the correct weight distribution of
e. As in the g-ary case this is given by

(90

A.2.2 Lee-Brickell

Algorithm 15 Lee-Brickell’s Algorithm over Fy in the Hamming metric

Input: H € an_k)xn, s € Fg_k, t € N, v < min{k,v}.
Output: e € F} with eH'™ = s and wty(e) = t.

1: Choose an information set I C {1,...,n} of size k and define J = {1,...,n}\ I.
2: Compute U € ]Fg"_k)x("_k), such that

(UH)] = A and (UH)J = Idn_k,

where A € Fénik)x}c.
Compute s’ =sUT.
for e; € F% with wty(e;) = v do
if wty(s’'+e;AT) =t —v then
Return e such that e; = ey and ey =s' +e;A'.

NP oW

Start over with Step 1 and a new selection of I.

In the following we give the complexity analysis of Lee-Brickell’s algorithm over the
binary [65]. Note that we will use the speed-up technique of early abort.
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Theorem A.2.2. Lee-Brickell’s algorithm over Fy requires on average

(i) - (Tt‘:f) - (’;) ((n —k)2(n+1)+ (i) min{n — k, 2(t — v + 1)}1))

binary operations.

Proof. As a first step, we bring H into systematic form and apply the same row oper-
ations on the syndrome. This can again be assumed to be equal to that of computing
U (H ST)7 hence a broad estimate for the cost is

(n—Fk)?(n+1)

binary operations.
In the next step, we go through all e; € F5 of Hamming weight v, and compute
sUT 4+ e;AT. This would usually require

()i

binary operations, since e; has support size v. However, the algorithm only proceeds,
if the weight of sUT +e;AT is ¢t — v. Thus, we can apply the concept of early abort.
Since we are over Fg, and we assume that the resulting vector is uniformly distributed,
we have that one entry of the resulting vector adds Hamming weight 1 to the weight of
the full vector, with probability % Thus, we have to compute on average 2(t — v + 1)
many entries of the resulting vector before we can abort. Computing one entry of the
vector sUT + e;AT costs v binary operations. Thus, by applying early abort, we get
that this step costs on average

2(t—v+ 1)

binary operations.
The success probability is given as in the g-ary case, by

k\ (n—k\ /n\ "

v/ \t—v)\t)
Then, the estimated overall cost of Lee-Brickell’s ISD algorithm over Fs is given as in
the claim. O

A.2.3 Stern

In the following we present Stern’s algorithm over the binary [100].
We now provide a complexity estimate of Stern’s algorithm in the Hamming metric
using the techniques of early abort and intermediate sums.
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Algorithm 16 Stern’s Algorithm over Fs in the Hamming metric

Input: H € Fén_k)xn, s € ngk, teN, mi+mg =k ¢ <n—kand

v < min{my,ma, | 5]}
Output: e € F} with eH™ =s and wty(e) = t.

1: Choose an information set I C {1,...,n} of size k and choose a zero-window Z C
{1,...,n}\ I of size ¢, and define J = {1,...,n} \ (I U Z).
2: Partition I into X of size m; and Y of size mo = k — mq.

3: Compute U € an_k)x("_k), such that

(OH)r = <g> (UH)z = <0<nISZZ>xe> ’

w0, = (O 0),

where A € FéXk and B € Fé”_k_g)Xk,
4: Compute sU" = (s; s3), where s; € F§ and s, € Fy~F~*,
5: Compute the set S
S = {(exAT7eX) |ex € FQ(X), wtg(ex) = v}.
6: Compute the set T’

T = {(E)/AT + Sl,ey) | ey € FS(Y), WtH(ey) = 1}}.

7. for (a,ex) € S do

8: for (a,ey) € T do
9: if wty(sy + (ex +ey)BT) =t — 2v then
10: Return e, such that e; = ex +ey, ez =0,and e; = sy +(ex +ey)BT).

11: Start over with Step 1 and a new selection of I.

Theorem A.2.3. Stern’s algorithm over Fo requires on average
-1 -1 -1
mi mo n—k—1~{ n 9
() () (05) ()
+¢ (L(ml,v) + L(ma,v) + <m2>)
v
(W (%)
+ ”275” min{n —k — £,2(t — 2v + 1) }2v
binary operations.

Proof. Again, we assume that bringing H into systematic form and performing the
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same row operations on the syndrome can be estimated by
(n—k)*(n+1)

binary operations.

In the next step, we compute the set S, using the technique of intermediate sums.
We want to compute ex AT for all ex € F5(X) of Hamming weight v. Using interme-
diate sums, this costs

LL(mq,v)

binary operations.
Similarly, we can build set 7: we want to compute ey AT + sy, for all ey € F5(Y)
of Hamming weight v. Using intermediate sums, this costs

¢ (Lm0 + (7))

binary operations. The £L(my,v) part comes from computing ey A", whereas the
12 (”:}2) part comes from adding to each of the vectors ey AT the vector s;.

In the next step, we want to check for collisions between S and T'. Since, S consists
of all ex € F5(X) of Hamming weight v, S is of size (™!) and similarly T is of size
(mQ). The resulting vectors ex A T, respectively, ey AT +s; live in F%, and we assume

v
that they are uniformly distributed. Hence, we have to check on average

() (%)
2t
many collisions. For each collision we have to compute s2 + (ex + ey)B—'—7 which would
usually require
(n—k—10)2v
binary operations. However, the algorithm only proceeds, if the weight of ss + (ex +
ey)B' is t — 2v, hence we can use the concept of early abort. Since, we are over
F5, and we assume that the resulting vector is uniformly distributed, we have that
one entry of the resulting vector adds Hamming weight 1 to the weight of the full
vector, with probability % Hence, we have to compute on average 2(t — 2v + 1) many
entries of the resulting vector before we can abort. Computing one entry of the vector
sy + (ex +ey )BT costs 2v binary operations. Thus, by applying early abort, we get
that this step costs on average
2(t —2v+1)2v

binary operations.

The success probability is given by having chosen the correct weight distribution of
e; in this case, we require that v errors happen in the set X, v errors happen in the set
Y, and the remaining ¢t — 2v outside the information set and the zero-window, hence
such a probability is given by

(00
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A.3 Quaternary Code-Based Cryptography

In this section we state a quaternary version of the McEliece and the Niederreiter cryp-
tosystem, as it was presented in [55]. For the key generation one chooses a quaternary
code C of length n and type h = 4¥12%2 which has an efficient decoding algorithm and
is able to correct up to t errors.

Quaternary McEliece

Key Generation Let G be a (k1 + k2) X n generator matrix of C and choose
an n X n permutation matrix P. On this matrix we impose no further conditions,
since the change of columns does not affect the Fo-part of the message, whereas for the
(k1+k2) x (k1 4+ ko) invertible matrix S we need further conditions: in the classical case
over finite fields, S is just a change of basis, but in the Z/4Z case, changing the rows of
the generator matrix affects the position of Fo-part of the message. Since such a change
hinders the constructor of the cryptosystem to tell where the Fa-part of the message
should be taken, we will restrict the choice of invertible matrices to the following form:
let S; and Ss be kq x ki, respectively ko X ko invertible matrices over Z/4Z, then S is

given by
_(S; o0
s=(32).

Compute G’ = SGP and publish (k1, k2, G', t).

Encryption For the encryption let m = (m;,my), with m; € (Z/4Z)* and
my € F52 be the message and choose an error vector e € (Z/4Z)" of Lee weight
wtr,(e) < t. The cipher is computed as

c=mG’ +e.

Decryption For the decryption one computes
cP™' =mSG +eP .

Since wtr(eP~1) <t and SG generates the same code as G, we can use the decoding
algorithm of the code to recover mS and hence the message m.

Quaternary Niederreiter The quaternary version of the Niederreiter cryptosystem
is done in a similar way by using the parity-check matrix H and by computing its
syndromes for encryption. Since there is no restriction on the message space in the
Niederreiter version, there will be no conditions needed on the permutation matrix and
on the invertible matrix.

Key Generation Again, one chooses a quaternary code C of length n and type
h = 4F12F2  which has an efficient decoding algorithm and is able to correct up to t
€ITOorS.
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Let H be a (n—k1) xn parity-check matrix of C, choose an invertible (n—ky)x (n—Fky)
matrix S, i.e. det(S) € (Z/4Z)* and an n x n permutation matrix P. Compute
H' =S~ 'HP' and publish (ky, ko, H', 1).

Encryption For the encryption let e € (Z/4Z)™ be the message of Lee weight
wtr(e) < t. The cipher is computed as

c=He'.
Decryption For the decryption one computes
Sc=HP'e'.

Since wtr,(PTe') < t, we can use the decoding algorithm of the code to recover P Te'
and hence the message e.

Key Size To determine the key size we need to count the number of non-prescribed
entries of the public generator matrix. For this we assume that the generator matrix
is published in quaternary systematic form as in (5.1.5).

This allows us to compute the size of the generator matrix in the form (5.1.5), or
equivalently the size of the parity-check matrix in the form (5.1.6).

Theorem A.3.1. The size of the public key, given by the non-prescribed parts of either
the generator matriz (5.1.5) or the parity-check matriz (5.1.6), is

2(77, — kl — kg)kl + (Tl — kl — kg)kg + kle = klkg + (2]{?1 + kg)(n — kl — kg)

bits.

188



Bibliography

[

2]

Morton Abramson. Restricted combinations and compositions. Fibonacci Quart,
14(5):439, 1976.

Carlos Aguilar Melchor, Nicolas Aragon, Magali Bardet, Slim Bettaieb, Loic
Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Adrien
Hauteville, Ayoub Otmani, Olivier Ruatta, Jean-Pierre Tillich, and Gilles Zémor.
ROLLO-Rank-Ouroboros, LAKE & LOCKER. second round submission to the
NIST post-quantum cryptography call. NIST PQC Round, 2:4, 2019.

Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loic Bidoux, Olivier
Blazy, Maxime Bros, Alain Couvreur, Jean-Christophe Deneuville, Philippe Ga-
borit, Adrien Hauteville, and Gilles Zémor. Rank quasi cyclic (RQC). second
round submission to the NIST post-quantum cryptography call, 2019.

Abdulrahman Al Jabri. A statistical decoding algorithm for general linear block
codes. In IMA International Conference on Cryptography and Coding, pages 1-8.
Springer, 2001.

Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang,
John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, et al. Status
report on the second round of the NIST post-quantum cryptography standard-
ization process. NIST, Tech. Rep., July, 2020.

Gianira N. Alfarano, Karan Khathuria, and Violetta Weger. On single server
private information retrieval in a coding theory perspective. arXiv preprint
arXiv:2008.06417, 2020.

Nicolas Aragon, Philippe Gaborit, Adrien Hauteville, and Jean-Pierre Tillich. A
new algorithm for solving the rank syndrome decoding problem. In 2018 IEEE
International Symposium on Information Theory (ISIT), pages 2421-2425. IEEE,
2018.

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell,
et al. Quantum supremacy using a programmable superconducting processor.
Nature, 574(7779):505-510, 2019.

Alexei Ashikhmin and Alexander Barg. Minimal vectors in linear codes. IEEE
Transactions on Information Theory, 44(5):2010-2017, 1998.

189



Bibliography

[10]

[15]

[18]

[19]

[20]

Marco Baldi, Marco Bodrato, and Franco Chiaraluce. A new analysis of the
McEliece cryptosystem based on QC-LDPC codes. In International Conference
on Security and Cryptography for Networks, pages 246-262. Springer, 2008.

Marco Baldi, Marco Bianchi, Franco Chiaraluce, Joachim Rosenthal, and Davide
Schipani. A variant of the McEliece cryptosystem with increased public key
security. In Proceedings of the Seventh International Workshop on Coding and
Cryptography, pages 173-182. HAL-Inria, 2011.

Marco Baldi, Marco Bianchi, Franco Chiaraluce, Joachim Rosenthal, and Davide
Schipani. Method and apparatus for public-key cryptography based on error
correcting codes, November 17 2015. US Patent 9,191,199.

Marco Baldi, Franco Chiaraluce, Joachim Rosenthal, Paolo Santini, and Davide
Schipani. Security of generalised Reed—Solomon code-based cryptosystems. IET
Information Security, 13(4):404-410, 2019.

Marco Baldi, Massimo Battaglioni, Franco Chiaraluce, Anna-Lena Horlemann-
Trautmann, Edoardo Persichetti, Paolo Santini, and Violetta Weger. A new path
to code-based signatures via identification schemes with restricted errors. arXiv
preprint arXiw:2008.06403, 2020.

Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner,
Daniel Smith-Tone, Jean-Pierre Tillich, and Javier Verbel. Algebraic attacks for
solving the rank decoding and MinRank problems without Grobner basis. arXiv
preprint arXiw:2002.08322, 2020.

Alexander Barg. Some new NP-complete coding problems. Problemy Peredachi
Informatsii, 30(3):23-28, 1994.

Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding
random binary linear codes in 2"/29: How 14+ 1= 0 improves information set
decoding. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 520-536. Springer, 2012.

Thierry P. Berger and Pierre Loidreau. How to mask the structure of codes for
a cryptographic use. Designs, Codes and Cryptography, 35(1):63-79, 2005.

Elwyn Berlekamp. Algebraic coding theory. World Scientific, 1968.

Elwyn Berlekamp, Robert J. McEliece, and Henk Van Tilborg. On the inherent
intractability of certain coding problems. IEEE Trans. Information Theory, IT-
24(3):384-386, 1978.

Daniel J. Bernstein. Grover vs. McEliece. In International Workshop on Post-
Quantum Cryptography, pages 73-80. Springer, 2010.

Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defend-
ing the McEliece cryptosystem. In International Workshop on Post-Quantum
Cryptography, pages 31-46. Springer, 2008.

190



Bibliography

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[31]

[32]

[33]

[34]

[35]

Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Post-quantum
cryptography, 2009.

Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Wild McEliece. In Inter-
national Workshop on Selected Areas in Cryptography, pages 143-158. Springer,
2010.

Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding expo-
nents: ball-collision decoding. In Annual Cryptology Conference, pages 743-760.
Springer, 2011.

Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael
Misoczki, Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Peter
Schwabe, Nicolas Sendrier, Jakub Szefer, and Wen Wang. Classic McEliece:
conservative code-based cryptography. NIST submissions, 2017. URL https:
//classic.mceliece.org/nist.html.

Jessalyn Bolkema, Heide Gluesing-Luerssen, Christine A. Kelley, Kristin E.
Lauter, Beth Malmskog, and Joachim Rosenthal. Variations of the McEliece
cryptosystem. In Algebraic geometry for coding theory and cryptography, pages
129-150. Springer, 2017.

Martin Bright, Tim Daniel Browning, and Daniel Loughran. Failures of Weak
Approximation in Families. Compositio Mathematica, 152(7):1435-1475, 2016.

Anne Canteaut and Hervé Chabanne. A further improvement of the work factor
in an attempt at breaking McEliece’s cryptosystem. PhD thesis, INRIA, 1994.

Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum-
weight words in a linear code: application to McEliece’s cryptosystem and to
narrow-sense BCH codes of length 511. IEEFE Transactions on Information The-
ory, 44(1):367-378, 1998.

Anne Canteaut and Nicolas Sendrier. Cryptanalysis of the original McEliece
cryptosystem. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 187-199. Springer, 1998.

Davide Castelvecchi. IBM’s quantum cloud computer goes commercial. Nature
News, 543(7644):159, 2017.

Ernesto Cesaro. Probabilité de certains faits arithméthiques. Mathesis, 4:150—
151, 1884.

Florent Chabaud. Asymptotic analysis of probabilistic algorithms for finding
short codewords. In Furocode’92, pages 175—-183. Springer, 1993.

Florent Chabaud and Jacques Stern. The cryptographic security of the syndrome
decoding problem for rank distance codes. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 368-381.
Springer, 1996.

191


https://classic.mceliece.org/nist.html
https://classic.mceliece.org/nist.html

Bibliography

[36]

Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta,
Ray Perlner, and Daniel Smith-Tone. Report on post-quantum cryptography,
volume 12. US Department of Commerce, National Institute of Standards and
Technology, 2016.

Alain Couvreur, Philippe Gaborit, Valérie Gauthier-Umana, Ayoub Otmani, and
Jean-Pierre Tillich. Distinguisher-based attacks on public-key cryptosystems us-
ing Reed—Solomon codes. Designs, Codes and Cryptography, 73(2):641-666, 2014.

Alain Couvreur, Ayoub Otmani, Jean-Pierre Tillich, and Valérie Gauthier-
Umana. A polynomial-time attack on the BBCRS scheme. In TACR International
Workshop on Public Key Cryptography, pages 175-193. Springer, 2015.

Alain Couvreur, Ayoub Otmani, and Jean-Pierre Tillich. Polynomial time attack
on wild McEliece over quadratic extensions. IEEE Transactions on Information
Theory, 63(1):404-427, 2016.

Alain Couvreur, Irene Méarquez-Corbella, and Ruud Pellikaan. Cryptanalysis of
McEliece cryptosystem based on algebraic geometry codes and their subcodes.
IEEE Transactions on Information Theory, 63(8):5404-5418, 2017.

Jintai Ding, Jason E. Gower, and Dieter S. Schmidt. Multivariate public key
cryptosystems, volume 25. Springer Science & Business Media, 2006.

Arturas Dubickas. Polynomials irreducible by Eisenstein’s criterion. Applicable
Algebra in Engineering, Communication and Computing, 14(2):127-132, 2003.
ISSN 0938-1279. doi: 10.1007/s00200-003-0131-7. URL http://dx.doi.org/
10.1007/s00200-003-0131-7.

II’'ya Isaakovich Dumer. Two decoding algorithms for linear codes. Problemy
Peredachi Informatsii, 25(1):24-32, 1989.

Andrea Ferraguti and Giacomo Micheli. On the Mertens—Césaro theorem for
number fields. Bulletin of the Australian Mathematical Society, 93(02):199-210,
2016.

Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-
based cryptosystems. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 88—105. Springer, 2009.

Ernst Gabidulin. A brief survey of metrics in coding theory. Mathematics of
Distances and Applications, 66, 2012.

Philippe Gaborit, Olivier Ruatta, and Julien Schrek. On the complexity of the
rank syndrome decoding problem. IEEFE Transactions on Information Theory,
62(2):1006-1019, 2015.

Georges Grekos. On various definitions of density (survey). Tatra Mt. Math.
Publ, 31(17):17-27, 2005.

192


http://dx.doi.org/10.1007/s00200-003-0131-7
http://dx.doi.org/10.1007/s00200-003-0131-7

Bibliography

[49]

[50]

[51]

[52]

[53]

[54]

Lov K. Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pages 212-219, 1996.

Lov K. Grover. Quantum mechanics helps in searching for a needle in a haystack.
Physical review letters, 79(2):325, 1997.

Cheikh Thiécoumba Gueye, Jean Belo Klamti, and Shoichi Hirose. Generalization
of BIMM-ISD using May-Ozerov nearest neighbor algorithm over an arbitrary fi-
nite field F,. In International Conference on Codes, Cryptology, and Information
Security, pages 96—-109. Springer, 2017.

Randell Heyman and Igor E. Shparlinski. On the number of Eisenstein poly-
nomials of bounded height. Applicable Algebra in Engineering, Communica-
tion and Computing, 24(2):149-156, 2013. ISSN (0938-1279. doi: 10.1007/
$00200-013-0187-y. URL http://dx.doi.org/10.1007/s00200-013-0187-7y.

Shoichi Hirose. May-Ozerov algorithm for nearest-neighbor problem over F, and
its application to information set decoding. In International Conference for In-
formation Technology and Communications, pages 115-126. Springer, 2016.

Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. NTRU: A ring-based pub-
lic key cryptosystem. In International Algorithmic Number Theory Symposium,
pages 267-288. Springer, 1998.

Anna-Lena Horlemann-Trautmann and Violetta Weger. Information set
decoding in the Lee metric with applications to cryptography. Ad-
vances in Mathematics of Communications, 2019. ISSN 1930-5346.

doi:  10.3934/amc.2020089. URL http://aimsciences.org//article/id/
ab4b64c6-5£2f-4014-b0f2-eacc9058c7ct.

Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard
knapsacks. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 235-256. Springer, 2010.

Carmelo Interlando, Karan Khathuria, Nicole Rohrer, Joachim Rosenthal, and
Violetta Weger. Generalization of the ball-collision algorithm. Journal of Algebra
Combinatorics Discrete Structures and Applications, 7:195 — 207, 2020. doi:
10.13069/jacodesmath.729477.

Fedor Ivanov, Grigory Kabatiansky, Eugeny Krouk, and Nikita Rumenko. A new
code-based cryptosystem. In Code-Based Cryptography Workshop, pages 41-49.
Springer, 2020.

Heeralal Janwa and Oscar Moreno. McEliece public key cryptosystems using
algebraic-geometric codes. Designs, Codes and Cryptography, 8(3):293-307, 1996.

David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. In International Workshop on Post-Quantum
Cryptography, pages 19-34. Springer, 2011.

193


http://dx.doi.org/10.1007/s00200-013-0187-y
http://aimsciences.org//article/id/ab4b64c6-5f2f-4014-b0f2-eacc9058c7cf
http://aimsciences.org//article/id/ab4b64c6-5f2f-4014-b0f2-eacc9058c7cf

Bibliography

[61]

[62]

[72]

Karan Khathuria, Joachim Rosenthal, and Violetta Weger. Encryption scheme
based on expanded Reed—Solomon codes. Advances in Mathematics of Commu-
nications, 2019.

Karan Khaturia, Joachim Rosenthal, and Violetta Weger. Weight two masking of
the Reed-Solomon structure in conjunction with list decoding. In Proceedings of
23rd International Symposium on Mathematical Theory of Networks and Systems,
pages 309—314. Hong Kong University of Science and Technology, 2018.

Evgenii Avramovich Kruk. Decoding complexity bound for linear block codes.
Problemy Peredachi Informatsii, 25(3):103-107, 1989.

Grégory Landais and Jean-Pierre Tillich. An efficient attack of a McEliece cryp-
tosystem variant based on convolutional codes. In International Workshop on
Post-Quantum Cryptography, pages 102-117. Springer, 2013.

Pil Joong Lee and Ernest F. Brickell. An observation on the security of McEliece’s
public-key cryptosystem. In Workshop on the Theory and Application of of Cryp-
tographic Techniques, pages 275-280. Springer, 1988.

Yongwoo Lee, Jinkyu Cho, Young-Sik Kim, and Jong-Seon No. Cryptanalysis of
the Ivanov-Kabatiansky-Krouk-Rumenko cryptosystems. IEEE Communications
Letters, 2020.

Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of
large error-correcting codes. IEEE Transactions on Information Theory, 34(5):
1354-1359, 1988.

Yuan Xing Li, Robert H. Deng, and Xin Mei Wang. On the equivalence of
McEliece’s and Niederreiter’s public-key cryptosystems. IEEE Transactions on
Information Theory, 40(1):271-273, 1994.

Carl Londahl and Thomas Johansson. A new version of McEliece PKC based on
convolutional codes. In International Conference on Information and Communi-
cations Security, pages 461-470. Springer, 2012.

Shilin Ma, Kevin McGown, Devon Rhodes, and Mathias Wanner. On the number
of primes for which a polynomial is Eisenstein. arXiv preprint arXiv:1901.09014,
2019.

Alexander May and Ilya Ozerov. On computing nearest neighbors with appli-
cations to decoding of binary linear codes. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 203—228.
Springer, 2015.

Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear
codes in O(20-9%47) In International Conference on the Theory and Application
of Cryptology and Information Security, pages 107-124. Springer, 2011.

194



Bibliography

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Gérard Maze, Joachim Rosenthal, and Urs Wagner. Natural density of rectan-
gular unimodular integer matrices. Linear Algebra and its Applications, 434(5):
1319-1324, 2011.

Robert J. McEliece. A Public-Key Cryptosystem Based on Algebraic Coding
Theory. Technical report, DSN Progress report, Jet Propulsion Laboratory,
Pasadena, 1978.

Franz Mertens. Ueber einige Asymptotische Gesetze der Zahlentheorie. Journal
fir die reine und angewandte Mathematik, 77:289-338, 1874.

Alexander Meurer. A coding-theoretic approach to cryptanalysis. PhD thesis,
Ruhr University Bochum, 2012.

Giacomo Micheli. Densities over global fields, arithmetic of subfield preserving
maps and applications to cryptography. PhD thesis, University of Zurich, 2015.

Giacomo Micheli and Violetta Weger. On rectangular unimodular matrices over
the algebraic integers. SIAM Journal on Discrete Mathematics, 33(1):425-437,
2019.

Giacomo Micheli, Severin Schraven, and Violetta Weger. Local to global principle
for expected values. arXiv preprint arXiv:2008.06235, 2020.

Victor S. Miller. Use of elliptic curves in cryptography. In Conference on the
theory and application of cryptographic techniques, pages 417-426. Springer, 1985.

Lorenz Minder and Amin Shokrollahi. Cryptanalysis of the Sidelnikov cryptosys-
tem. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 347-360. Springer, 2007.

Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo SLM Barreto.
MDPC-McEliece: New McEliece variants from moderate density parity-check
codes. In 2013 IEEE international symposium on information theory, pages
2069-2073. IEEE, 2013.

Robert Niebuhr, Edoardo Persichetti, Pierre-Louis Cayrel, Stanislav Bulygin,
and Johannes Buchmann. On lower bounds for information set decoding over F,
and on the effect of partial knowledge. International journal of information and
Coding Theory, 4(1):47-78, 2017.

Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory 15, 1(6):159-166, 1986.

James E. Nymann. On the probability that k& positive integers are relatively
prime. Journal of number theory, 4(5):469-473, 1972.

Ayoub Otmani, Jean-Pierre Tillich, and Léonard Dallot. Cryptanalysis of two
McEliece cryptosystems based on quasi-cyclic codes. Mathematics in Computer
Science, 3(2):129-140, 2010.

195



Bibliography

[87]

[100]

[101]

[102]

Alexei V. Ourivski and Thomas Johansson. New technique for decoding codes
in the rank metric and its cryptography applications. Problems of Information
Transmission, 38(3):237-246, 2002.

Raphael Overbeck and Nicolas Sendrier. Code-based cryptography. In Post-
quantum cryptography, pages 95—145. Springer, 2009.

Chris Peikert. A decade of lattice cryptography. Foundations and Trends® in
Theoretical Computer Science, 10(4):283-424, 2016.

Christiane Peters. Information-set decoding for linear codes over F,. In Interna-
tional Workshop on Post-Quantum Cryptography, pages 81-94. Springer, 2010.

Bjorn Poonen and Michael Stoll. The Cassels-Tate pairing on polarized Abelian
varieties. Annals of Mathematics, 150(3):1109-1149, 1999.

Bjorn Poonen and Michael Stoll. A local-global principle for densities. In Scott D.
Ahlgren, George E. Andrews, and K. Ono, editors, Topics in Number Theory,
volume 467 of Mathematics and Its Applications, pages 241-244. Springer US,
1999. ISBN 978-1-4613-7988-1.

FEugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, pages 59, 1962.

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. Cryptographic com-
munications system and method, September 20 1983. US Patent 4,405,829.

Ron M. Roth. Introduction to coding theory. IET Communications, 47, 2006.

Keisuke Shiromoto. Singleton bounds for codes over finite rings. Journal of
Algebraic Combinatorics, 12(1):95-99, 2000.

Peter W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th annual symposium on foundations of computer
science, pages 124-134. Teee, 1994.

Vladimir M. Sidelnikov. A public-key cryptosystem based on binary Reed-Muller
codes. Discrete Mathematics and Applications, 4(3):191-208, 1994.

Vladimir M. Sidelnikov and Sergey O. Shestakov. On insecurity of cryptosystems
based on generalized Reed-Solomon codes. Discrete Mathematics and Applica-
tions, 2(4):439-444, 1992.

Jacques Stern. A method for finding codewords of small weight. In International
Colloquium on Coding Theory and Applications, pages 106-113. Springer, 1988.

The Sage Developers. SageMath, the Sage Mathematics Software System (Version
8.4), 2018. https://www.sagemath.org.

Ekedahl Torsten. An infinite version of the chinese remainder theorem. Com-
mentarii mathematici Universitatis Sancti Pauli= Rikkyo Daigaku sugaku zasshi,
40(1):53-59, 1991.

196



Bibliography

[103] Johan van Tilburg. On the McEliece public-key cryptosystem. In Conference on
the Theory and Application of Cryptography, pages 119-131. Springer, 1988.

[104] Violetta Weger, Massimo Battaglioni, Paolo Santini, Franco Chiaraluce, Marco
Baldi, and Edoardo Persichetti. Information set decoding of Lee-metric codes
over finite rings. arXiv preprint arXiv:2001.08425, 2020.

[105] Violetta Weger, Massimo Battaglioni, Paolo Santini, Anna-Lena Horlemann-
Trautmann, and Edoardo Persichetti. On the hardness of the Lee syndrome
decoding problem. arXiv preprint arXiv:2002.12785, 2020.

[106] Christian Wieschebrink. Cryptanalysis of the Niederreiter public key scheme
based on GRS subcodes. In International Workshop on Post-Quantum Cryptog-
raphy, pages 61-72. Springer, 2010.

197



	Preface
	I Information Set Decoding
	Introduction
	Organization of this Part
	New Results in this Part
	Notation

	Preliminaries
	Coding Theory
	Structure of Information Set Decoding
	Techniques

	Information Set Decoding in the Hamming Metric
	Prange's algorithm
	Lee-Brickell's algorithm
	Stern's algorithm

	Information Set Decoding in the Lee Metric
	Preliminaries
	Techniques

	Information Set Decoding over Z4 in the Lee Metric
	Prange's algorithm
	Lee-Brickell's algorithm
	Stern's algorithm

	Information Set Decoding over Z/psZ in the Lee Metric
	Prange's algorithm
	Lee-Brickell's algorithm
	Stern's algorithm
	Generalization


	Comparison
	Conclusion and Future Work

	II Density
	Introduction
	Organization of this Part
	New Results in this Part
	Notation

	Preliminaries
	Natural Density
	Properties
	Local to Global Principle
	Strategy

	Density Computations over Z
	Coprime Pairs
	Eisenstein Polynomials
	Rectangular Unimodular Matrices
	Generalization to Algebraic Integers

	Mean and Variance
	Preliminaries
	Coprime Pairs
	Eisenstein Polynomials
	Rectangular Unimodular Matrices

	Addendum to the Local to Global Principle
	Main Theorem
	Examples

	Conclusion and Future Work
	Appendix  
	Code-Based Cryptography
	Information Set Decoding over F2 in the Hamming Metric
	Prange
	Lee-Brickell
	Stern

	Quaternary Code-Based Cryptography



