

Open problems in code-based cryptography

Violetta Weger

Coding Theory Colloquium

November 8, 2023

Encryption

Trapdoor

- f easy to compute with ?
- \circ f^{-1} hard to compute with ?
- $\rightarrow f^{-1}$ easy with secret

Signature

Trapdoor

- f easy to compute with ?
- f^{-1} hard to compute with \mathcal{P}
- $\rightarrow f^{-1}$ easy with secret

Signature

Trapdoor

- f easy to compute with ?
- \circ f^{-1} hard to compute with ?
- $\rightarrow f^{-1}$ easy with secret

Attacks

- message recovery/forgery: f^{-1} without secret
- key recovery: find secret
- \rightarrow security level λ : best algo. needs 2^{λ} ops.

Constraints

- public $^{\bigcirc}$, signature small
- decrypt/sign:
 - f^{-1} with secret \mathcal{P} fast

Classic crypto

- Integer factorization: $f(p,q) = p \cdot q = n$
- DLP: $f(c) = a^c = b$ in \mathbb{F}_q or ell. curve

Classic crypto

- Integer factorization: $f(p,q) = p \cdot q = n$
- DLP: $f(c) = a^c = b$ in \mathbb{F}_q or ell. curve

Quantum algorithms

- Shor's algorithm
- → find period of function in poly. time

Classic crypto

- × Integer factorization: $f(p,q) = p \cdot q = n$
- \times DLP: $f(c) = a^c = b$ in \mathbb{F}_q or ell. curve

Quantum algorithms

- Shor's algorithm
- → find period of function in poly. time

Classic crypto

- × Integer factorization: $f(p,q) = p \cdot q = n$
- \times DLP: $f(c) = a^c = b$ in \mathbb{F}_q or ell. curve

Quantum algorithms

- Shor's algorithm
- → find period of function in poly. time

all public-key crypto is broken!

Classic crypto

- × Integer factorization: $f(p,q) = p \cdot q = n$
- \times DLP: $f(c) = a^c = b$ in \mathbb{F}_q or ell. curve

Quantum algorithms

- Shor's algorithm
- \rightarrow find period of function in poly. time

all public-key crypto is broken! still far away..

Classic crypto

- × Integer factorization: $f(p,q) = p \cdot q = n$
- \times DLP: $f(c) = a^c = b$ in \mathbb{F}_q or ell. curve

Quantum algorithms

- Shor's algorithm
- → find period of function in poly. time

all public-key crypto is broken!

still far away..

..but should transition now

Classic crypto

- × Integer factorization: $f(p,q) = p \cdot q = n$
- \times DLP: $f(c) = a^c = b$ in \mathbb{F}_q or ell. curve

Quantum algorithms

- Shor's algorithm
- → find period of function in poly. time

all public-key crypto is broken!

still far away..

..but should transition now

Post-quantum crypto

- (preferably) NP-hard problem
- quantum algos. need exp. time

Classic crypto

- × Integer factorization: $f(p,q) = p \cdot q = n$
- \times DLP: $f(c) = a^c = b$ in \mathbb{F}_q or ell. curve

Quantum algorithms

- Shor's algorithm
- → find period of function in poly. time

all public-key crypto is broken!

still far away..

..but should transition now

Post-quantum crypto

- (preferably) NP-hard problem
- quantum algos. need exp. time

NIST standardization calls

• 2016: 3 code-based encryption

Classic crypto

- × Integer factorization: $f(p,q) = p \cdot q = n$
- \times DLP: $f(c) = a^c = b$ in \mathbb{F}_q or ell. curve

Quantum algorithms

- Shor's algorithm
- → find period of function in poly. time

all public-key crypto is broken!

still far away..

..but should transition now

Post-quantum crypto

- (preferably) NP-hard problem
- quantum algos. need exp. time

NIST standardization calls

- 2016: 3 code-based encryption
- 2023: 9 code-based signatures

Classic crypto

- × Integer factorization: $f(p,q) = p \cdot q = n$
- \times DLP: $f(c) = a^c = b$ in \mathbb{F}_q or ell. curve

Quantum algorithms

- Shor's algorithm
- → find period of function in poly. time

all public-key crypto is broken!

still far away..

..but should transition now

Post-quantum crypto

- (preferably) NP-hard problem
- quantum algos. need exp. time

NIST standardization calls

- 2016: 3 code-based encryption
- 2023: 9 code-based signatures

Today's talk: open questions for these schemes

- Classic McEliece
- McEliece signature

- decoding rank-metric codes
- code equivalence problems

- o $Code \ \mathcal{C} \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace
- \circ $c \in C$ codeword
- $\circ \ G \in \mathbb{F}_q^{k \times n} \ generator \ matrix \ \ \mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$
- $\circ \ H \in \mathbb{F}_q^{n-k \times n} \ parity\text{-}check \ matrix \ \mathcal{C} = \{c \mid cH^\intercal = 0\}$
- $\circ \ s = eH^{\top} \ syndrome$

- $Code\ \mathcal{C} \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace
- \circ $c \in C$ codeword
- $\circ \ G \in \mathbb{F}_q^{k \times n} \ generator \ matrix \ \ \mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$
- $\circ \ H \in \mathbb{F}_q^{n-k \times n} \ parity\text{-}check \ matrix \ \mathcal{C} = \{c \mid cH^\intercal = 0\}$
- $\circ \ s = eH^\top \ syndrome$
- \circ *Decode*: find closest codeword

- o $Code \ \mathcal{C} \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace
- \circ $c \in C$ codeword
- $\circ \ G \in \mathbb{F}_q^{k \times n} \ generator \ matrix \ \ \mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$
- $\circ \ H \in \mathbb{F}_q^{n-k \times n} \ parity\text{-}check \ matrix \ \mathcal{C} = \{c \mid cH^\intercal = 0\}$
- $\circ \ s = eH^\top \ syndrome$
- Decode: find closest codeword
- $\circ \ Hamming \ metric: \ d_H(x,y) = |\{i \mid x_i \neq y_i\}|$

- $Code\ \mathcal{C} \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace
- \circ $c \in C$ codeword
- $\circ \ G \in \mathbb{F}_q^{k \times n} \ generator \ matrix \ \ \mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$
- $\circ \ H \in \mathbb{F}_q^{n-k \times n} \ parity\text{-}check \ matrix \ \mathcal{C} = \{c \mid cH^\intercal = 0\}$
- $\circ \ s = eH^\top \ syndrome$
- Decode: find closest codeword
- $\circ \ Hamming \ metric: \ d_H(x,y) = |\{i \mid x_i \neq y_i\}|$
- minimum distance of a code:

$$d(\mathcal{C}) = \min\{d_H(x, y) \mid x \neq y \in \mathcal{C}\}\$$

Set Up

- $Code\ \mathcal{C} \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace
- \circ $c \in C$ codeword
- $\circ \ G \in \mathbb{F}_q^{k \times n} \ generator \ matrix \ \ \mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$
- $\circ \ H \in \mathbb{F}_q^{n-k \times n} \ parity\text{-}check \ matrix \ \mathcal{C} = \{c \mid cH^\top = 0\}$
- $\circ \ s = eH^\top \ syndrome$
- Decode: find closest codeword
- $\circ \ Hamming \ metric: \ d_H(x,y) = |\{i \mid x_i \neq y_i\}|$
- minimum distance of a code:

$$d(\mathcal{C}) = \min\{d_H(x,y) \mid x \neq y \in \mathcal{C}\}\$$

 \circ error-correction capability: $t = \lfloor (d(\mathcal{C}) - 1)/2 \rfloor$

Syndrome Decoding Problem (SDP):

Given p.c. matrix $H \in \mathbb{F}_q^{(n-k)\times n}$, syndrome $s \in \mathbb{F}_q^{n-k}$, target weight t, find $e \in \mathbb{F}_q^n$ s.t.

1.
$$s = eH^{\mathsf{T}}$$
 2. $\operatorname{wt}_{H}(e) \leq t$

Syndrome Decoding Problem (SDP):

Given p.c. matrix $H \in \mathbb{F}_q^{(n-k)\times n}$, syndrome $s \in \mathbb{F}_q^{n-k}$, target weight t, find $e \in \mathbb{F}_q^n$ s.t.

1.
$$s = eH^{\top}$$
 2. $\operatorname{wt}_{H}(e) \leq t$

NP-hard

Syndrome Decoding Problem (SDP):

Given p.c. matrix $H \in \mathbb{F}_q^{(n-k)\times n}$, syndrome $s \in \mathbb{F}_q^{n-k}$, target weight t, find $e \in \mathbb{F}_q^n$ s.t.

1.
$$s = eH^{\mathsf{T}}$$
 2. $\operatorname{wt}_{H}(e) \leq t$

NP-hard

H

Information set decoding (ISD)

$$e$$
 $=$ s $=$ s

Syndrome Decoding Problem (SDP):

Given p.c. matrix $H \in \mathbb{F}_q^{(n-k)\times n}$, syndrome $s \in \mathbb{F}_q^{n-k}$, target weight t, find $e \in \mathbb{F}_q^n$ s.t.

1.
$$s = eH^{\mathsf{T}}$$

1. $s = eH^{\mathsf{T}}$ 2. $\operatorname{wt}_{H}(e) \leq t$

NP-hard

Information set decoding (ISD)

$$\circ I \subset \{1, \ldots, n\} : |\mathcal{C}_I| = |\mathcal{C}|$$

 $\rightarrow G_I$ invertible, H_{IC} invertible

H

$$wt = t$$

Syndrome Decoding Problem (SDP):

Given p.c. matrix $H \in \mathbb{F}_q^{(n-k)\times n}$, syndrome $s \in \mathbb{F}_q^{n-k}$, target weight t, find $e \in \mathbb{F}_q^n$ s.t.

1.
$$s = eH^{\mathsf{T}}$$

1. $s = eH^{\mathsf{T}}$ 2. $\operatorname{wt}_{H}(e) \le t$

 $\langle G \rangle$

Information set decoding (ISD)

$$\circ I \subset \{1, \ldots, n\} : |\mathcal{C}_I| = |\mathcal{C}|$$

$$\rightarrow$$
 G_I invertible, H_{I^C} invertible

- find error-free information set I
- $\circ \cot = \binom{n}{t} \binom{n-k}{t}^{-1}$
- assume t = (d-1)/2, d from GV
- \rightarrow cost $q^{nf(n,R)} \sim 2^{0.05n}$

Id
$$A = UH$$

$$wt =$$

NP-hard

SDP:

Given H, s, t find e with

1.
$$s = eH^{\top}$$
 2. $\operatorname{wt}_{H}(e) \leq t$

SDP:

Given
$$H, s, t$$
 find e with 1. $s = eH^{\top}$ 2. $\operatorname{wt}_{H}(e) \leq t$

Encryption scheme

- secret H (with efficient decoder)
- public scrambled H', s, t
- \rightarrow cipher = f(message)

trapdoor

$$f: \{e \in \mathbb{F}_q^n : \operatorname{wt}_H(e) \le t\} \to \mathbb{F}_q^{n-k},$$

 $e \mapsto eH'^{\mathsf{T}} = s$

SDP:

Given H, s, t find e with

1.
$$s = eH^{\top}$$
 2. $\operatorname{wt}_H(e) \leq t$

Encryption scheme

- $\stackrel{\bigcirc}{}$ secret H (with efficient decoder)
- \bigcirc public scrambled H', s, t
- \rightarrow cipher = f(message)

trapdoor

$$f: \{e \in \mathbb{F}_q^n : \operatorname{wt}_H(e) \le t\} \to \mathbb{F}_q^{n-k},$$

 $e \mapsto e H'^{\top} = s$

 $e \mapsto e\pi = s$

Which secret code to choose?

 \bigcirc secret H Goppa code

 \bigcirc public H' = SHP, S invertible, P permutation

 $\xrightarrow{\text{scrambling}}$

H

ho secret H Goppa code

public H' = SHP, S invertible, P permutation Distinguishing Problem

H • •

1. Open problem: Distinguish Goppa code from random code

- \bigcirc secret H Goppa code
 - . . .
 - • •

- $\centsymbol{^{\bigcirc}}$ public $H'=SHP,\,S$ invertible, P permutation
- Distinguishing Problem

H'

1. Open problem: Distinguish Goppa code from random code

• 4th round candidate NIST

• standardized in Germany

- \bigcirc secret H Goppa code
 - *H* • •

 $\begin{pulse} \cite{1mm} \cite{1mm} \end{pulse} \cite{1mm} \cite$

Distinguishing Problem

scrambling

1. Open problem: Distinguish Goppa code from random code

 \circ 4th round candidate NIST

• standardized in Germany

TII McEliece Challenges:

Theoretical key recovery: 10'000 \$

Distinguish Goppa Codes

Famous distinguisher: Square code

$$\circ \ a,b \in \mathbb{F}_q^n : a \star b = (a_1b_1,\ldots,a_nb_n)$$

$$\circ \ \mathcal{C}^{(2)} = \langle \{a \star b : a, b \in \mathcal{C}\} \rangle$$

Famous distinguisher: Square code

$$\circ \ a,b \in \mathbb{F}_q^n : a \star b = (a_1b_1,\ldots,a_nb_n)$$

$$\circ \ \mathcal{C}^{(2)} = \langle \{a \star b : a, b \in \mathcal{C}\} \rangle$$

$$\mathcal{C}$$
 random code $\rightarrow \dim(\mathcal{C}^{(2)}) = \min\{\binom{k+1}{2}, n\}$

Famous distinguisher: Square code

$$\circ \ a, b \in \mathbb{F}_q^n : a \star b = (a_1 b_1, \dots, a_n b_n)$$

$$\circ \ \mathcal{C}^{(2)} = \langle \{a \star b : a, b \in \mathcal{C}\} \rangle$$

$$\mathcal{C}$$
 random code $\rightarrow \dim(\mathcal{C}^{(2)}) = \min\{\binom{k+1}{2}, n\}$

$$\mathsf{GRS}(\alpha,\beta) = \{ (f(\alpha_1)\beta_1, \dots, f(\alpha_n)\beta_n) : f \in \mathbb{F}_{p^m}[x], \deg < k \}$$

$$H = \begin{pmatrix} \beta_1' & \beta_2' & \cdots & \beta_n' \\ \alpha_1\beta_1' & \alpha_2\beta_2' & \cdots & \alpha_n\beta_n' \\ \vdots & \vdots & & \vdots \\ \alpha_1^{t-1}\beta_1' & \alpha_2^{t-1}\beta_2' & \cdots & \alpha_n^{t-1}\beta_n' \end{pmatrix} \in \mathbb{F}_{p^m}^{t \times n}$$

 $\mathsf{GRS}(\alpha,\beta) \in \mathbb{F}_{p^m}^n \text{ of dim } k = n-t$

Famous distinguisher: Square code

$$\circ \ a,b \in \mathbb{F}_q^n : a \star b = (a_1b_1,\ldots,a_nb_n) \qquad \qquad \circ \ \mathcal{C}^{(2)} = \langle \{a \star b : a,b \in \mathcal{C}\} \rangle$$

$$\mathcal{C}$$
 random code $\rightarrow \dim(\mathcal{C}^{(2)}) = \min\{\binom{k+1}{2}, n\}$

$$\mathsf{GRS}(\alpha,\beta) = \{ (f(\alpha_1)\beta_1, \dots, f(\alpha_n)\beta_n) : f \in \mathbb{F}_{p^m}[x], \deg < k \}$$

$$H = \begin{pmatrix} \beta_1' & \beta_2' & \cdots & \beta_n' \\ \alpha_1\beta_1' & \alpha_2\beta_2' & \cdots & \alpha_n\beta_n' \\ \vdots & \vdots & & \vdots \\ \alpha_1^{t-1}\beta_1' & \alpha_2^{t-1}\beta_2' & \cdots & \alpha_n^{t-1}\beta_n' \end{pmatrix} \in \mathbb{F}_{p^m}^{t \times n}$$

$$\mathsf{GRS}(\alpha,\beta) \in \mathbb{F}_{p^m}^n \text{ of dim } k = n - t \qquad \rightarrow \ \dim(\mathsf{GRS}(\alpha,\beta)^{(2)}) = \min\{2k - 1, n\}$$

$$\mathsf{Goppa}(\alpha, g) \in \mathbb{F}_p^n \text{ of dim } k' = n - tm$$

- $g \in \mathbb{F}_{p^m}[x]$ irreducible
- $\circ \ \beta_i = g(\alpha_i)^{-1}$
- \circ Γ basis of \mathbb{F}_{p^m} / \mathbb{F}_p
 - $H_{\mathsf{GRS}} \in \mathbb{F}_{p^m}^{t \times n}$

 \longrightarrow

$$\longrightarrow$$

 $\xrightarrow{\Gamma}$

$$\mathsf{Goppa}(\alpha,g) = \mathsf{GRS}(\alpha,\beta) \cap \mathbb{F}_p^n$$

 $\mathsf{Goppa}(\alpha,g) = \Gamma(\mathsf{GRS}(\alpha,\beta))$

 $H_{\mathsf{Goppa}} \in \mathbb{F}_p^{mt imes n}$

$$\begin{aligned} & \operatorname{Goppa}(\alpha,g) \in \mathbb{F}_p^n \text{ of dim } k' = n - tm \\ & \circ g \in \mathbb{F}_{p^m}[x] \text{ irreducible} \\ & \circ \beta_i = g(\alpha_i)^{-1} \end{aligned} \longrightarrow \begin{aligned} & \operatorname{Goppa}(\alpha,g) = \operatorname{GRS}(\alpha,\beta) \cap \mathbb{F}_p^n \\ & \circ \Gamma \text{ basis of } \mathbb{F}_{p^m} / \mathbb{F}_p \end{aligned} \longrightarrow \begin{aligned} & \operatorname{Goppa}(\alpha,g) = \Gamma(\operatorname{GRS}(\alpha,\beta)) \\ & H_{\operatorname{GRS}} \in \mathbb{F}_{p^m}^{t \times n} & \xrightarrow{\Gamma} & H_{\operatorname{Goppa}} \in \mathbb{F}_p^{mt \times n} \\ & \to \dim(\operatorname{Goppa}(\alpha,g)^{(2)}) = \min\{n, \binom{k'+1}{2} - \ell\}, \quad \ell = \frac{mt}{2}(2t \log_2(t) - t - 1) \end{aligned}$$

Parameters Classic McEliece: $p = 2, m = 13, R = 0.75 \rightarrow \dim(\mathsf{Goppa}(\alpha, g)^{(2)}) = n$

$$\begin{aligned} \operatorname{\mathsf{Goppa}}(\alpha,g) &\in \mathbb{F}_p^n \text{ of } \dim k' = n - tm \\ &\circ g \in \mathbb{F}_{p^m}[x] \text{ irreducible} \\ &\circ \beta_i = g(\alpha_i)^{-1} \end{aligned} \qquad \longrightarrow \qquad \operatorname{\mathsf{Goppa}}(\alpha,g) = \operatorname{\mathsf{GRS}}(\alpha,\beta) \cap \mathbb{F}_p^n \\ &\circ \Gamma \text{ basis of } \mathbb{F}_{p^m} \ / \mathbb{F}_p \qquad \longrightarrow \qquad \operatorname{\mathsf{Goppa}}(\alpha,g) = \Gamma(\operatorname{\mathsf{GRS}}(\alpha,\beta)) \\ &H_{\operatorname{\mathsf{GRS}}} &\in \mathbb{F}_p^{t \times n} \qquad \stackrel{\Gamma}{\longrightarrow} \qquad H_{\operatorname{\mathsf{Goppa}}} &\in \mathbb{F}_p^{mt \times n} \\ &\to \dim(\operatorname{\mathsf{Goppa}}(\alpha,g)^{(2)}) = \min\{n, \binom{k'+1}{2} - \ell\}, \quad \ell = \frac{mt}{2}(2t \log_2(t) - t - 1) \end{aligned}$$

Parameters Classic McEliece:
$$p = 2, m = 13, R = 0.75 \rightarrow \dim(\mathsf{Goppa}(\alpha, g)^{(2)}) = n$$

Goal: Given $SH_{\mathsf{Goppa}(\alpha,q)}P$ recover α, g

SDP:

Given H, s, t find e with

1.
$$s = eH^{\top}$$
 2. $\operatorname{wt}_H(e) \leq t$

SDP:

Given H, s, t find e with

1.
$$s = eH^{\top}$$
 2. $\operatorname{wt}_H(e) \leq t$

Signature scheme

- $\stackrel{\bigcirc}{}$ secret H (with efficient decoder)
- \bigcirc public scrambled H' = HP, s, t
- \rightarrow signature $\sigma = f^{-1}$ (message)

$$f: \{e \in \mathbb{F}_q^n : \operatorname{wt}(e) \le t\} \to \mathbb{F}_q^{n-k},$$

 $e \mapsto eH'^{\mathsf{T}} = s$

SDP:

Given
$$H, s, t$$
 find e with 1. $s = eH^{\top}$ 2. $\operatorname{wt}_{H}(e) \leq t$

Signature scheme

- secret H (with efficient decoder)
- public scrambled H' = HP, s, t
- \rightarrow signature $\sigma = f^{-1}(\mathsf{Hash}(\mathsf{message}))$

$$f: \{e \in \mathbb{F}_q^n : \operatorname{wt}(e) \le t\} \to \mathbb{F}_q^{n-k},$$

 $e \mapsto eH'^{\top} = s$

SDP:

Given
$$H, s, t$$
 find e with 1. $s = eH^{\top}$ 2. $\operatorname{wt}_{H}(e) \leq t$

Signature scheme

- secret H (with efficient decoder)
- public scrambled H' = HP, s, t
- \rightarrow signature $\sigma = f^{-1}(\mathsf{Hash}(\mathsf{message}))$

$$f: \{e \in \mathbb{F}_q^n : \text{wt}(e) \le t\} \to \mathbb{F}_q^{n-k},$$

 $e \mapsto eH'^{\mathsf{T}} = s$

SDP:

Given H, s, t find e with 1. $s = eH^{\top}$ 2. $\operatorname{wt}_{H}(e) \leq t$

1.
$$s = eH^{\top}$$
 2. $\operatorname{wt}_H(e) \leq$

Signature scheme

- secret H (with efficient decoder)
- public scrambled H' = HP, s, t
- \rightarrow signature $\sigma = f^{-1}(\mathsf{Hash}(\mathsf{message}))$

$$f: \{e \in \mathbb{F}_q^n : \text{wt}(e) \le t\} \to \mathbb{F}_q^{n-k},$$

 $e \mapsto eH'^{\top} = s$

f not bijective

SDP:

Given H, s, t find e with

1.
$$s = eH^{\top}$$
 2. $\operatorname{wt}_{H}(e) \leq t$

Signature scheme

- $\stackrel{\bigcirc}{}$ secret H (with efficient decoder)
- public scrambled H' = HP, s, t
- \rightarrow signature $\sigma = f^{-1}(\mathsf{Hash}(\mathsf{message}))$
- $\mathsf{Hash}(m) = \sigma H'^\mathsf{T} = (eP)(HP)^\mathsf{T}$
- $\mathsf{Hash}(m) = eH^{\mathsf{T}} = s, \mathsf{wt}_H(e) \le t$

$$\begin{split} f: \{e \in \mathbb{F}_q^n : \mathrm{wt}(e) \leq t\} \rightarrow \mathbb{F}_q^{n-k}, \\ e \mapsto e H'^\top = s \end{split}$$

f not bijective

SDP:

Given H, s, t find e with

1.
$$s = eH^{\top}$$
 2. $\operatorname{wt}_{H}(e) \leq t$

Signature scheme

- $\stackrel{\bigcirc}{}$ secret H (with efficient decoder)
- public scrambled H' = HP, s, t
- \rightarrow signature $\sigma = f^{-1}(\mathsf{Hash}(\mathsf{message}))$
- $\mathsf{Hash}(m) = \sigma H'^\mathsf{T} = (eP)(HP)^\mathsf{T}$
- $\mathsf{Hash}(m) = eH^{\mathsf{T}} = s, \mathsf{wt}_H(e) \le t$
- \rightarrow salting the Hash \rightarrow slow

$$\begin{split} f: \{e \in \mathbb{F}_q^n : \mathrm{wt}(e) \leq t\} \rightarrow \mathbb{F}_q^{n-k}, \\ e \mapsto e H'^\top = s \end{split}$$

f not bijective

Problem

 $\mathsf{Hash}(m)$ not decodable syndrome \to Hash & Sign scheme: slow

Decodable syndromes $\sum_{i=0}^{t} {n \choose i} (q-1)^i$

 $< q^{n-k}$ All syndromes

Problem

 $\mathsf{Hash}(m)$ not decodable syndrome \to Hash & Sign scheme: slow

Decodable syndromes $\sum_{i=0}^{t} {n \choose i} (q-1)^i \text{poly}(n) = q^{n-k} \text{ All syndromes}$

Need an almost perfect code!

Problem

 $\mathsf{Hash}(m)$ not decodable syndrome \to Hash & Sign scheme: slow

Decodable syndromes

$$\sum_{i=0}^{t} {n \choose i} (q-1)^i \text{poly}(n) = q^{n-k} \text{ All syndromes}$$

Need an almost perfect code!

Idea CFS

N. Courtois, M. Finiasz, N. Sendrier. "How to achieve a McEliece-based digital signature scheme", ASIACRYPT, 2001.

Problem

 $\mathsf{Hash}(m)$ not decodable syndrome \to Hash & Sign scheme: slow

Decodable syndromes

$$\sum_{i=0}^{t} {n \choose i} (q-1)^{i} \operatorname{poly}(n) = q^{n-k} \text{ All syndromes}$$

Need an almost perfect code!

Idea CFS

N. Courtois, M. Finiasz, N. Sendrier. "How to achieve a McEliece-based digital signature scheme", ASIACRYPT, 2001.

→ square code attack works!

Problem

 $\mathsf{Hash}(m)$ not decodable syndrome \to Hash & Sign scheme: slow

Decodable syndromes $\sum_{i=0}^{t} {n \choose i} (q-1)^i \text{poly}(n) = q^{n-k} \text{ All syndromes}$

Need an almost perfect code!

Idea CFS

N. Courtois, M. Finiasz, N. Sendrier. "How to achieve a McEliece-based digital signature scheme", ASIACRYPT, 2001.

 $\stackrel{\bigcirc}{\sim}$ secret H high rate Goppa

→ square code attack works!

- 2. Open problem: Find code
 - efficiently decodable
- almost perfect

not distinguishable

\mathbb{F}_{q^m} -linear codes

- \circ $\mathcal{C} \subset \mathbb{F}_{q^m}^n$
- $\circ \ \mathcal{C} = \langle G \rangle, \ G \in \mathbb{F}_{a^m}^{k \times n}$
- \circ codewords c = xG for $x \in \mathbb{F}_{q^m}^k$

- $\circ \ \mathcal{C} \subset \mathbb{F}_q^{m \times n}$
- $\circ \ \mathcal{C} = \langle G_1, \dots, G_k \rangle, \ G_i \in \mathbb{F}_q^{m \times n}$
- $\circ C = \lambda_1 G_1 + \dots + \lambda_k G_k \text{ for } \lambda_i \in \mathbb{F}_q$

\mathbb{F}_{q^m} -linear codes

- $\circ \ \mathcal{C} \subset \mathbb{F}_{q^m}^n$
- $\circ \ \mathcal{C} = \langle G \rangle, \ G \in \mathbb{F}_{a^m}^{k \times n}$
- \circ codewords c = xG for $x \in \mathbb{F}_{q^m}^k$

basis Γ

\mathbb{F}_q -linear codes/Matrix codes

- $\circ \ \mathcal{C} \subset \mathbb{F}_q^{m \times n}$
- $\circ \ \mathcal{C} = \langle G_1, \dots, G_k \rangle, \ G_i \in \mathbb{F}_q^{m \times n}$
- $\circ \ C = \lambda_1 G_1 + \dots + \lambda_k G_k \text{ for } \lambda_i \in \mathbb{F}_q$

 $\mathbb{F}_q^{m\times n}$

\mathbb{F}_{q^m} -linear codes

- $\circ \ \mathcal{C} \subset \mathbb{F}_{a^m}^n$
- $\circ \ \mathcal{C} = \langle G \rangle, \ G \in \mathbb{F}_{a^m}^{k \times n}$
- \circ codewords c = xG for $x \in \mathbb{F}_{a^m}^k$

$$\mathbb{F}_{q^m}^n$$

- Support: $\mathcal{E} = \langle e_1, \dots, e_n \rangle_{\mathbb{F}_q} \subset \mathbb{F}_q^m$
- \circ wt_R $(e) = \dim_{\mathbb{F}_q}(\mathcal{E})$

- $\circ \ \mathcal{C} \subset \mathbb{F}_q^{m \times n}$
- $\circ \ \mathcal{C} = \langle G_1, \dots, G_k \rangle, \ G_i \in \mathbb{F}_q^{m \times n}$
- \circ $C = \lambda_1 G_1 + \dots + \lambda_k G_k$ for $\lambda_i \in \mathbb{F}_q$

- Support: $\mathcal{E} = \text{rowsp}(E) \subset \mathbb{F}_q^m$
- \circ wt_R(E) = rk(E)

\mathbb{F}_{q^m} -linear codes

- $\circ \ \mathcal{C} \subset \mathbb{F}_{q^m}^n$
- $\circ \ \mathcal{C} = \langle G \rangle, \ G \in \mathbb{F}_{q^m}^{k \times n}$
- \circ codewords c = xG for $x \in \mathbb{F}_{q^m}^k$

$$\mathbb{F}_{q^m}^n$$

- Support: $\mathcal{E} = \langle e_1, \dots, e_n \rangle_{\mathbb{F}_a} \subset \mathbb{F}_a^m$
- \circ wt_R(e) = dim_{\mathbb{F}_q}(\mathcal{E})

- $\circ \ \mathcal{C} \subset \mathbb{F}_q^{m \times n}$
- $\circ \ \mathcal{C} = \langle G_1, \dots, G_k \rangle, \ G_i \in \mathbb{F}_q^{m \times n}$
- $C = \lambda_1 G_1 + \dots + \lambda_k G_k$ for $\lambda_i \in \mathbb{F}_q$

- Support: $\mathcal{E} = \text{rowsp}(E) \subset \mathbb{F}_q^m$
- \circ wt_R(E) = rk(E)
- → SDP: NP-hard (MinRank)

\mathbb{F}_{q^m} -linear codes

- $\circ \ \mathcal{C} \subset \mathbb{F}_{q^m}^n$
- $\circ \ \mathcal{C} = \langle G \rangle, \ G \in \mathbb{F}_{q^m}^{k \times n}$
- \circ codewords c = xG for $x \in \mathbb{F}_{q^m}^k$

$$\mathbb{F}_{q^m}^n$$

- Support: $\mathcal{E} = \langle e_1, \dots, e_n \rangle_{\mathbb{F}_q} \subset \mathbb{F}_q^m$
- \circ wt_R(e) = dim_{\mathbb{F}_q}(\mathcal{E})
- \rightarrow SDP: not known if NP-hard

- $\circ \ \mathcal{C} \subset \mathbb{F}_q^{m \times n}$
- $\circ \ \mathcal{C} = \langle G_1, \dots, G_k \rangle, \ G_i \in \mathbb{F}_q^{m \times n}$
- $C = \lambda_1 G_1 + \dots + \lambda_k G_k$ for $\lambda_i \in \mathbb{F}_q$

$$\mathbb{F}_q^{m \times n}$$

- Support: $\mathcal{E} = \text{rowsp}(E) \subset \mathbb{F}_q^m$
- \circ wt_R(E) = rk(E)
- → SDP: NP-hard (MinRank)

\mathbb{F}_{q^m} -linear codes

- $\circ \ \mathcal{C} \subset \mathbb{F}_{q^m}^n$
- $\circ \ \mathcal{C} = \langle G \rangle, \ G \in \mathbb{F}_{q^m}^{k \times n}$
- \circ codewords c = xG for $x \in \mathbb{F}_{q^m}^k$

$$q^m$$

- Support: $\mathcal{E} = \langle e_1, \dots, e_n \rangle_{\mathbb{F}_q} \subset \mathbb{F}_q^m$
- \circ wt_R(e) = dim_{\mathbb{F}_q}(\mathcal{E})
- → SDP: not known if NP-hard
- Used in: ROLLO, RQC, RYDE

- $\circ \ \mathcal{C} \subset \mathbb{F}_q^{m \times n}$
- $\circ \ \mathcal{C} = \langle G_1, \dots, G_k \rangle, \ G_i \in \mathbb{F}_q^{m \times n}$
- $\circ \ C = \lambda_1 G_1 + \dots + \lambda_k G_k \text{ for } \lambda_i \in \mathbb{F}_q$

- Support: $\mathcal{E} = \text{rowsp}(E) \subset \mathbb{F}_q^m$
- \circ wt_R(E) = rk(E)
- → SDP: NP-hard (MinRank)
- Used in: MIRA, MiRitH

Rank SDP:

Given p.c. matrix H, syndrome s, weight t, find e s.t. 1. $s = eH^{\top}$ 2. $wt_R(e) \le t$

Rank SDP:

Given p.c. matrix H, syndrome s, weight t, find e s.t. 1. $s = eH^{\top}$ 2. $wt_R(e) \le t$

- 3. Open problem: Hardness of Rank SDP
 - Is Rank SDP NP-hard?

• How to solve Rank SDP?

Rank SDP:

Given p.c. matrix H, syndrome s, weight t, find e s.t. 1. $s = eH^{\top}$ 2. $wt_R(e) \le t$

- 3. Open problem: Hardness of Rank SDP
 - Is Rank SDP NP-hard?

• How to solve Rank SDP?

How to show a problem \mathcal{P} is NP-hard?

Rank SDP:

Given p.c. matrix H, syndrome s, weight t, find e s.t. 1. $s = eH^{\top}$ 2. $wt_R(e) \le t$

- 3. Open problem: Hardness of Rank SDP
 - Is Rank SDP NP-hard?

• How to solve Rank SDP?

Reduction from \mathcal{Q} to \mathcal{P} :

- 1. Pick Q NP-hard problem
- 2. I random instance of Q \rightarrow (poly. time) J instance of P
- 3. Oracle solves $\mathcal{P} \to \text{solution } t$
- 4. Solution $t \to (\text{poly. time})$ solution s of I from \mathcal{O}

Rank SDP:

Given p.c. matrix H, syndrome s, weight t, find e s.t. 1. $s = eH^{\top}$ 2. $wt_R(e) \le t$

- 3. Open problem: Hardness of Rank SDP
 - Is Rank SDP NP-hard?

• How to solve Rank SDP?

Reduction from Q to P:

- \rightarrow If we can solve \mathcal{P}
 - \rightarrow we can solve Q
- \rightarrow hardness $\mathcal{P} \ge \text{hardness } \mathcal{Q}$
- $\rightarrow \mathcal{P}$ is NP-hard

- 1. Pick Q NP-hard problem
- 2. I random instance of Q
 - \rightarrow (poly. time) J instance of \mathcal{P}
- 3. Oracle solves $\mathcal{P} \to \text{solution } t$
- 4. Solution $t \to \text{(poly. time)}$ solution s of I from Q

1. expand code \mathcal{C} to $\mathbb{F}_q^{m \times n} \rightarrow d_R(\Gamma(\mathcal{C})) = d_R(\mathcal{C})$ via basis Γ

$$\rightarrow d_R(\Gamma(\mathcal{C})) = d_R(\mathcal{C})$$

1. expand code C to $\mathbb{F}_q^{m \times n}$ via basis Γ

$$\rightarrow d_R(\Gamma(\mathcal{C})) = d_R(\mathcal{C})$$

 $\rightarrow \text{ hardness} \\ (\mathbb{F}_q^{m \times n}, \text{wt}_R) \ge (\mathbb{F}_{q^m}^n, \text{wt}_R)$

2.
$$\operatorname{wt}_R(\psi_\alpha(x)) = \operatorname{wt}_H(x)$$
 $\to d_R(\psi_\alpha(\mathcal{C})) \le d_H(\mathcal{C})$

2.
$$\operatorname{wt}_{R}(\psi_{\alpha}(x)) = \operatorname{wt}_{H}(x) \rightarrow d_{R}(\psi_{\alpha}(\mathcal{C})) \leq d_{H}(\mathcal{C})$$

→ only w.h.p. equal

3.
$$S \in \mathbb{F}_q^{n \times N}$$
, $N = \frac{q^n - 1}{q - 1}$ $\rightarrow d_R(\langle G \rangle) = d_H(\langle GS \rangle)$

3.
$$S \in \mathbb{F}_q^{n \times N}$$
, $N = \frac{q^n - 1}{q - 1}$ $\rightarrow d_R(\langle G \rangle) = d_H(\langle GS \rangle)$ $\rightarrow \text{hardness}$ $(\mathbb{F}_{q^m}^N, \text{wt}_H) \geq (\mathbb{F}_{q^m}^n, \text{wt}_R)$

 \rightarrow new NP-hard problem to reduce from?

More costly than Hamming ISD? $\binom{n}{t}_q > \binom{n}{t}$

More costly than Hamming ISD?

$$\begin{bmatrix} n \\ t \end{bmatrix}_q > \binom{n}{t}$$

Combinatorial solver:

- search for supersupport $\mathcal{F} \supset \mathcal{E}$ of dim. n-k > t in \mathbb{F}_q^n
- T = t/n, t = d/2 from rank GV
- $\circ \text{ cost: } {n \brack t}_q {n-k \brack t}_q^{-1} \sim q^{tk} = q^{n^2RT}$

$$\begin{bmatrix} n \\ t \end{bmatrix}_q > {n \choose t} \qquad q^{n^2 RT} \text{ vs. } 2^{n0.05}$$

Combinatorial solver:

- search for supersupport $\mathcal{F} \supset \mathcal{E}$ of dim. n-k > t in \mathbb{F}_q^n
- T = t/n, t = d/2 from rank GV
- $\circ \text{ cost: } {n \brack t}_q {n-k \brack t}_q^{-1} \sim q^{tk} = q^{n^2RT}$

$$\begin{bmatrix} n \\ t \end{bmatrix}_q > {n \choose t}$$

$${n \brack t}_q > {n \choose t} \quad q^{3T \log(n)^2} \text{ vs. } 2^{n0.05}$$

Combinatorial solver:

- search for supersupport $\mathcal{F} \supset \mathcal{E}$ of dim. n-k > t in \mathbb{F}_q^n
- T = t/n, t = d/2 from rank GV
- \circ cost: $\binom{n}{t}_{a} \binom{n-k}{t}_{a}^{-1} \sim q^{tk} = q^{n^2RT}$

MinRank solver:

- \circ if $t \sim \log(n)$, $T = t/\log(n)$
- \circ cost: $\sim q^{3T \log(n)^2}$
- → not the case for random codes

$$\begin{bmatrix} n \\ t \end{bmatrix}_q > {n \choose t}$$

$${n \brack t}_q > {n \choose t} \quad q^{3T \log(n)^2} \text{ vs. } 2^{n0.05}$$

Combinatorial solver:

- search for supersupport $\mathcal{F} \supset \mathcal{E}$ of dim. n-k > t in \mathbb{F}_q^n
- T = t/n, t = d/2 from rank GV
- \circ cost: $\binom{n}{t}_{a} \binom{n-k}{t}_{a}^{-1} \sim q^{tk} = q^{n^2RT}$

MinRank solver:

- \circ if $t \sim \log(n)$, $T = t/\log(n)$
- \circ cost: $\sim q^{3T \log(n)^2}$
- → not the case for random codes

$$\left[\begin{smallmatrix} n \\ t \end{smallmatrix} \right]_q > \left(\begin{smallmatrix} n \\ t \end{smallmatrix} \right)$$

Combinatorial solver:

- search for supersupport $\mathcal{F} \supset \mathcal{E}$ of dim. n-k > t in \mathbb{F}_q^n
- T = t/n, t = d/2 from rank GV
- $\circ \text{ cost: } \begin{bmatrix} n \\ t \end{bmatrix}_q \begin{bmatrix} n-k \\ t \end{bmatrix}_q^{-1} \sim q^{tk} = q^{n^2RT}$

MinRank solver:

- if $t \sim \log(n)$, $T = t/\log(n)$
- \circ cost: $\sim q^{3T \log(n)^2}$
- \rightarrow not the case for random codes

Hamming ISD:

 $\rightarrow q^{n^2RT}$ optimal

Other solvers?

linear isometry: $\operatorname{wt}(x) = \operatorname{wt}(\varphi(x)) \ \forall x \to \operatorname{Hamming metric:} \ (\mathbb{F}_q^*)^n \rtimes S_n \times \operatorname{Aut}(\mathbb{F}_q)$ code equivalence: $\mathcal{C} \sim \mathcal{C}'$ if exists lin. isometry $\varphi \colon \varphi(\mathcal{C}) = \mathcal{C}'$

linear isometry: $\operatorname{wt}(x) = \operatorname{wt}(\varphi(x)) \ \forall x \to \operatorname{Hamming metric:} \ (\mathbb{F}_q^*)^n \rtimes S_n \times \operatorname{Aut}(\mathbb{F}_q)$ code equivalence: $\mathcal{C} \sim \mathcal{C}'$ if exists lin. isometry $\varphi \colon \varphi(\mathcal{C}) = \mathcal{C}'$

LEP

Linear Equivalence Problem (LEP)

Given $G, G' \in \mathbb{F}_q^{k \times n}$, find $\varphi \in (\mathbb{F}_q^*)^n \rtimes S_n$ s.t. $\varphi(\langle G \rangle) = \langle G' \rangle$.

• LEP used in: LESS

linear isometry: $\operatorname{wt}(x) = \operatorname{wt}(\varphi(x)) \ \forall x \to \operatorname{Hamming metric:} \ (\mathbb{F}_q^*)^n \rtimes S_n \times \operatorname{Aut}(\mathbb{F}_q)$ code equivalence: $\mathcal{C} \sim \mathcal{C}'$ if exists lin. isometry φ : $\varphi(\mathcal{C}) = \mathcal{C}'$

Permutation Equivalence Problem (PEP)

Given $G, G' \in \mathbb{F}_q^{k \times n}$, find $\varphi \in S_n$ s.t. $\varphi(\langle G \rangle) = \langle G' \rangle$.

• LEP used in: LESS

linear isometry: $\operatorname{wt}(x) = \operatorname{wt}(\varphi(x)) \ \forall x \to \operatorname{Hamming metric:} \ (\mathbb{F}_q^*)^n \rtimes S_n \times \operatorname{Aut}(\mathbb{F}_q)$ code equivalence: $\mathcal{C} \sim \mathcal{C}'$ if exists lin. isometry $\varphi \colon \varphi(\mathcal{C}) = \mathcal{C}'$

Permuted Kernel Problem (PKP)

Given $G \in \mathbb{F}_q^{k \times n}$, $G' \in \mathbb{F}_q^{k' \times n}$, find perm. matrix P s.t. $\langle G' \rangle \subset \langle GP \rangle$.

PKP PEP LEP

• LEP used in: LESS

linear isometry:
$$\operatorname{wt}(x) = \operatorname{wt}(\varphi(x)) \ \forall x \to \operatorname{Hamming metric:} \ (\mathbb{F}_q^*)^n \rtimes S_n \times \operatorname{Aut}(\mathbb{F}_q)$$

code equivalence: $\mathcal{C} \sim \mathcal{C}'$ if exists lin. isometry $\varphi \colon \varphi(\mathcal{C}) = \mathcal{C}'$

Relaxed PKP Given $G \in \mathbb{F}_q^{k \times n}$, $G' \in \mathbb{F}_q^{k' \times n}$, find $x \in \mathbb{F}_q^k$, perm. P s.t. $xGP \in \langle G' \rangle$.

- LEP used in: LESS
- $\circ\,$ rel. PKP used in: PERK

linear isometry:
$$\operatorname{wt}(x) = \operatorname{wt}(\varphi(x)) \ \forall x \to \operatorname{Hamming metric:} \ (\mathbb{F}_q^*)^n \rtimes S_n \times \operatorname{Aut}(\mathbb{F}_q)$$

code equivalence: $\mathcal{C} \sim \mathcal{C}'$ if exists lin. isometry $\varphi \colon \varphi(\mathcal{C}) = \mathcal{C}'$

Relaxed PKP Given $G \in \mathbb{F}_q^{k \times n}$, $G' \in \mathbb{F}_q^{k' \times n}$, find $\mathbf{x} \in \mathbb{F}_q^k$, perm. Ps.t. $xGP \in \langle G' \rangle$.

- LEP used in: LESS
- rel. PKP used in: PERK

- 4. Open problem: Hardness of Code Equivalence
 - How hard is LEP/ relaxed PKP? How to solve LEP/ relaxed PKP?

Graph Isomorphism (GI)

Given $\mathcal{G} = (V, E), \mathcal{G}' = (V, E')$, find $f: V \to V$, s.t. $\{u, v\} \in E \leftrightarrow \{f(u), f(v)\} \in E'$.

Graph Isomorphism (GI)

Given
$$\mathcal{G} = (V, E), \mathcal{G}' = (V, E')$$
, find $f : V \to V$, s.t. $\{u, v\} \in E \leftrightarrow \{f(u), f(v)\} \in E'$.

- Hardness?
- → Assume quasi-polynomial (Babai)

Graph Isomorphism (GI)

Given $\mathcal{G} = (V, E), \mathcal{G}' = (V, E')$, find $f: V \to V$, s.t. $\{u, v\} \in E \leftrightarrow \{f(u), f(v)\} \in E'$.

- Hardness?
- → Assume quasi-polynomial (Babai)

- sub-GI NP-hard
- \rightarrow PKP NP-hard

 \rightarrow hardness LEP \geq PEP \geq GI

Graph Isomorphism (GI)

Given $\mathcal{G} = (V, E), \mathcal{G}' = (V, E')$, find $f: V \to V$, s.t. $\{u, v\} \in E \leftrightarrow \{f(u), f(v)\} \in E'$.

- Hardness?
- → Assume quasi-polynomial (Babai)

- sub-GI NP-hard
- \rightarrow PKP NP-hard

$$\begin{array}{c|c} \hline \textbf{GI} & \textbf{PEP} & \textbf{LEP} \\ \hline \mathcal{C} \cap \mathcal{C}^\perp = \{0\} & \end{array}$$

 \rightarrow hardness LEP > PEP > GI \rightarrow random codes: PEP = GI

Graph Isomorphism (GI)

Given $\mathcal{G} = (V, E), \mathcal{G}' = (V, E')$, find $f: V \to V$, s.t. $\{u, v\} \in E \leftrightarrow \{f(u), f(v)\} \in E'$.

- Hardness?
- → Assume quasi-polynomial (Babai)

$$\mathcal{G} \qquad \begin{array}{c}
2 \\
3 \\
4
\end{array}
\qquad D = \begin{bmatrix}
1 & 1 & 0 & \overline{0} \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & \underline{1}
\end{bmatrix}$$

 $G = [\mathrm{Id}_k \; \mathrm{Id}_k \; \mathrm{Id}_k \; D]$

 \rightarrow PKP NP-hard

- \rightarrow hardness LEP > PEP > GI
- \rightarrow random codes: PEP = GI
- \rightarrow if $q \le 5$ LEP = PEP

Graph Isomorphism (GI)

Given $\mathcal{G} = (V, E), \mathcal{G}' = (V, E')$, find $f: V \to V$, s.t. $\{u, v\} \in E \leftrightarrow \{f(u), f(v)\} \in E'$.

- Hardness?
- → Assume quasi-polynomial (Babai)

$$G \qquad \begin{array}{c} 2 \\ 3 \\ 1 \\ |E| = k \end{array} \qquad D = \begin{bmatrix} 1 & 1 & 0 & \overline{0} \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & \underline{1} \end{bmatrix}$$

$$G = [\operatorname{Id}_k \operatorname{Id}_k \operatorname{Id}_k D]$$

• sub-GI NP-hard

 \rightarrow PKP NP-hard

 \rightarrow hardness LEP > PEP > GI

 \rightarrow random codes: PEP = GI

 \rightarrow if $q \le 5$ LEP = PEP

 $\circ~$ LEP $q \leq 5$ = PEP random codes

 \rightarrow Babai's quasi-poly. algo. for GI

• LEP
$$q \le 5 = PEP$$
 random codes

 \rightarrow Babai's quasi-poly. algo. for GI

• LEP
$$q > 5$$
 = PEP self orthogonal codes

 \rightarrow invariant: weight distribution

$$\circ$$
 LEP $q \leq 5$ = PEP random codes

→ Babai's quasi-poly. algo. for GI

$$\circ~$$
 LEP $q > 5 =$ PEP self orthogonal codes

→ invariant: weight distribution

 $\xrightarrow{\text{ISD}}$

 c_1, \ldots, c_N of wt w > d

$$\longrightarrow$$

 $c_i = \{a, a, a, b, b, \dots, d\}$

$$\mathcal{C}'$$

 $\xrightarrow{\text{ISD}}$

 c'_1, \ldots, c'_N of wt w > d

 $c_i' = \{a, a, a, b, b, \dots, d\}$

• LEP
$$q \le 5 = PEP$$
 random codes

$$\rightarrow$$
 Babai's quasi-poly. algo. for GI

$$\circ~$$
 LEP $q > 5$ = PEP self orthogonal codes

$$C \xrightarrow{\text{ISD}} c_1, \dots, c_N \text{ of wt } w > d$$

$$\longrightarrow c_i = \{a, a, a, b, b, \dots, d\}$$

$$\pi$$

$$C'$$
 $\xrightarrow{\text{ISD}}$ $c'_1, \dots, c'_N \text{ of wt } w > d$

$$c_i' = \{a, a, a, b, b, \dots, d\}$$

• LEP
$$q \le 5 = PEP$$
 random codes

 \rightarrow Babai's quasi-poly. algo. for GI

$$\circ~$$
 LEP $q > 5$ = PEP self orthogonal codes

 \rightarrow invariant: weight distribution

$$C \xrightarrow{\text{ISD}} c_1, \dots, c_N \text{ of wt } w > d$$

$$\rightarrow c_i = \{a, a, a, b, b, \dots, d\}$$

$$\pi$$

$$C' \xrightarrow{\text{ISD}} c'_1, \dots, c'_N \text{ of wt } w > d$$

$$\longrightarrow$$

$$c_i' = \{a, a, a, b, b, \dots, d\}$$

other solvers?

Questions?

Open Problems

- 1. Distinguish Goppa codes
- 2. Find code for Hash & Sign
- 3. Hardness of Rank SDP
- 4. Hardness of Code Equivalence

Questions?

Open Problems

- 1. Distinguish Goppa codes
- 2. Find code for Hash & Sign
- 3. Hardness of Rank SDP
- 4. Hardness of Code Equivalence

Announcement:

 $CBCrypto\ 2024$

May 25-26 in Zurich

Questions?

Open Problems

- 1. Distinguish Goppa codes
- 2. Find code for Hash & Sign
- 3. Hardness of Rank SDP
- 4. Hardness of Code Equivalence

Announcement:

CBCrypto 2024

May 25-26 in Zurich

Slides

Thank you!