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Gentle Introduction to Crypto

Encryption

Trapdoor
○ f easy to compute with
○ f−1 hard to compute with
→ f−1 easy with secret

Attacks
○ message recovery/forgery: f−1 without secret

○ key recovery: find secret
→ security level λ: best algo. needs 2λ ops.

Constraints
○ public , signature small
○ decrypt/sign:

f−1 with secret fast
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Classic Crypto vs. Post-quantum Crypto
Classic crypto

○ Integer factorization: f(p, q) = p ⋅ q = n
○ DLP: f(c) = ac = b in Fq or ell. curve

Quantum algorithms

○ Shor’s algorithm
→ find period of function in poly. time

all public-key crypto is broken!

still far away.. ..but should transition now

Post-quantum crypto

○ (preferably) NP-hard problem
○ quantum algos. need exp. time

NIST standardization calls

○ 2016: 3 code-based encryption

○ 2023: 9 code-based signatures

Today’s talk: open questions for these schemes

○ Classic McEliece
○ McEliece signature

○ decoding rank-metric codes
○ code equivalence problems
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Coding Theory

Set Up

○ Code C ⊆ Fn
q linear k-dimensional subspace

○ c ∈ C codeword
○ G ∈ Fk×n

q generator matrix C = {xG ∣ x ∈ Fk
q}

○ H ∈ Fn−k×n
q parity-check matrix C = {c ∣ cH⊺ = 0}

○ s = eH⊺ syndrome

○ Decode: find closest codeword
○ Hamming metric: dH(x, y) = ∣ {i ∣ xi ≠ yi} ∣
○ minimum distance of a code:

d(C) =min{dH(x, y) ∣ x ≠ y ∈ C}

○ error-correction capability: t = ⌊(d(C) − 1)/2⌋
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Syndrome Decoding Problem

Syndrome Decoding Problem (SDP):
Given p.c. matrix H ∈ F(n−k)×n

q , syndrome s ∈ Fn−k
q ,

target weight t, find e ∈ Fn
q s.t.

1. s = eH⊺ 2. wtH(e) ≤ t

Information set decoding (ISD)

○ I ⊂ {1, . . . , n}: ∣CI ∣ = ∣C∣
→ GI invertible, HIC invertible
○ find error-free information set I
○ cost = (n

t
)(n−k

t
)−1

○ assume t = (d − 1)/2, d from GV
→ cost qnf(n,R) ∼ 20.05n

NP-hard
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Syndrome Decoding Problem

SDP:
Given H,s, t find e with
1. s = eH⊺ 2. wtH(e) ≤ t

Encryption scheme

secret H ( with efficient decoder)
public scrambled H ′, s, t

→ cipher = f(message)

trapdoor
f ∶ {e ∈ Fn

q ∶ wtH(e) ≤ t} → Fn−k
q ,

e↦ eH ′⊺ = s

Which secret code to choose?
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Classic McEliece

secret H Goppa code public H ′ = SHP , S invertible, P permutation

scrambling
ÐÐÐÐÐ→

1. Open problem: Distinguish Goppa code from random code

○ 4th round candidate NIST ○ standardized in Germany

TII McEliece Challenges:
Theoretical key recovery: 10’000 $
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Distinguish Goppa Codes

Famous distinguisher: Square code

○ a, b ∈ Fn
q ∶ a ⋆ b = (a1b1, . . . , anbn) ○ C(2) = ⟨{a ⋆ b ∶ a, b ∈ C}⟩

C random code → dim(C(2)) =min{(k+1
2 ), n}

GRS(α,β) = {(f(α1)β1, . . . , f(αn)βn) ∶ f ∈ Fpm[x],deg < k}

H =
⎛
⎜⎜⎜
⎝

β′1 β′2 ⋯ β′n
α1β

′

1 α2β
′

2 ⋯ αnβ
′

n

⋮ ⋮ ⋮
αt−1

1 β′1 αt−1
2 β′2 ⋯ αt−1

n β′n

⎞
⎟⎟⎟
⎠
∈ Ft×n

pm

GRS(α,β) ∈ Fn
pm of dim k = n − t

→ dim(GRS(α,β)(2)) =min{2k − 1, n}
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Distinguish Goppa Codes

Goppa(α, g) ∈ Fn
p of dim k′ = n − tm

○ g ∈ Fpm[x] irreducible
○ βi = g(αi)−1 ÐÐ→ Goppa(α, g) = GRS(α,β) ∩ Fn

p

○ Γ basis of Fpm / Fp ÐÐ→ Goppa(α, g) = Γ(GRS(α,β))

HGRS ∈ Ft×n
pm

ΓÐÐ→ HGoppa ∈ Fmt×n
p

→ dim(Goppa(α, g)(2)) =min{n, (k
′
+1
2 ) − ℓ}, ℓ = mt

2 (2t log2(t) − t − 1)

Parameters Classic McEliece: p = 2,m = 13,R = 0.75 → dim(Goppa(α, g)(2)) = n ☇

Goal: Given SHGoppa(α,g)P recover α, g
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Hash & Sign

SDP:
Given H,s, t find e with
1. s = eH⊺ 2. wtH(e) ≤ t

Signature scheme

secret H ( with efficient decoder)
public scrambled H ′ =HP, s, t

→ signature σ = f−1

f ∶ {e ∈ Fn
q ∶ wt(e) ≤ t} → Fn−k

q ,

↦ eH ′⊺ =

f not bijective

○ Hash(m) = σH ′⊺ = (eP )(HP )⊺

○ Hash(m) = eH⊺ = s,wtH(e) ≤ t

→ salting the Hash → slow
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Hash & Sign

Problem
Hash(m) not decodable syndrome → Hash & Sign scheme: slow

Decodable syndromes ∑t
i=0 (ni)(q − 1)i < qn−k All syndromes

Need an almost perfect code!

Idea CFS N. Courtois, M. Finiasz, N. Sendrier. “How to achieve a
McEliece-based digital signature scheme”, ASIACRYPT, 2001.

secret H high rate Goppa

→ square code attack works!

2. Open problem: Find code

○ efficiently decodable ○ almost perfect ○ not distinguishable
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Rank Metric
Fqm-linear codes

○ C ⊂ Fn
qm

○ C = ⟨G⟩, G ∈ Fk×n
qm

○ codewords c = xG for x ∈ Fk
qm

Fq-linear codes/Matrix codes

○ C ⊂ Fm×n
q

○ C = ⟨G1, . . . ,Gk⟩, Gi ∈ Fm×n
q

○ C = λ1G1 +⋯ + λkGk for λi ∈ Fq

basis ΓÐÐÐÐ→
←ÐÐÐ

○ Support: E = ⟨e1, . . . , en⟩Fq ⊂ Fm
q

○ wtR(e) = dimFq(E)

→ SDP: not known if NP-hard

○ Support: E = rowsp(E) ⊂ Fm
q

○ wtR(E) = rk(E)

→ SDP: NP-hard (MinRank)

○ Used in: ROLLO, RQC, RYDE ○ Used in: MIRA, MiRitH
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Hardness of Rank SDP

Rank SDP:
Given p.c. matrix H, syndrome s, weight t, find e s.t. 1. s = eH⊺ 2. wtR(e) ≤ t

3. Open problem: Hardness of Rank SDP
○ Is Rank SDP NP-hard? ○ How to solve Rank SDP?

Reduction from Q to P:

→ If we can solve P
→ we can solve Q

→ hardness P ≥ hardness Q
→ P is NP-hard

1. Pick Q NP-hard problem
2. I random instance of Q
→ (poly. time) J instance of P

3. Oracle solves P → solution t

4. Solution t → (poly. time)
solution s of I from Q
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Connections to Other Problems

1. expand code C to Fm×n
q

via basis Γ
→ dR(Γ(C)) = dR(C)
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q ,wtR) ≥ (Fn
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Connections to Other Problems

2. wtR(ψα(x)) = wtH(x) → dR(ψα(C)) ≤ dH(C)
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Connections to Other Problems

2. wtR(ψα(x)) = wtH(x) → dR(ψα(C)) ≤ dH(C) → only w.h.p. equal
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Connections to Other Problems

3. S ∈ Fn×N
q , N = qn

−1
q−1 → dR(⟨G⟩) = dH(⟨GS⟩)
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Connections to Other Problems

→ new NP-hard problem to reduce from?
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How to solve Rank SDP

More costly than Hamming ISD? [n
t
]

q
> (n

t
)

Combinatorial solver:
○ search for supersupport F ⊃ E of dim. n − k > t in Fn

q

○ T = t/n, t = d/2 from rank GV

○ cost: [n
t
]

q
[n−k

t
]−1

q
∼ qtk = qn2RT

MinRank solver:
○ if t ∼ log(n), T = t/ log(n)
○ cost: ∼ q3T log(n)2

→ not the case for random codes
Hamming ISD:

→ qn2RT optimal

Violetta Weger — Open problems in code-based cryptography 14/17



How to solve Rank SDP

More costly than Hamming ISD? [n
t
]

q
> (n

t
)

Combinatorial solver:
○ search for supersupport F ⊃ E of dim. n − k > t in Fn

q

○ T = t/n, t = d/2 from rank GV

○ cost: [n
t
]

q
[n−k

t
]−1

q
∼ qtk = qn2RT

MinRank solver:
○ if t ∼ log(n), T = t/ log(n)
○ cost: ∼ q3T log(n)2

→ not the case for random codes
Hamming ISD:

→ qn2RT optimal

Violetta Weger — Open problems in code-based cryptography 14/17



How to solve Rank SDP

More costly than Hamming ISD? [n
t
]

q
> (n

t
) qn2RT vs. 2n0.05

Combinatorial solver:
○ search for supersupport F ⊃ E of dim. n − k > t in Fn

q

○ T = t/n, t = d/2 from rank GV

○ cost: [n
t
]

q
[n−k

t
]−1

q
∼ qtk = qn2RT

MinRank solver:
○ if t ∼ log(n), T = t/ log(n)
○ cost: ∼ q3T log(n)2

→ not the case for random codes
Hamming ISD:

→ qn2RT optimal

Violetta Weger — Open problems in code-based cryptography 14/17



How to solve Rank SDP

More costly than Hamming ISD? [n
t
]

q
> (n

t
) q3T log(n)2 vs. 2n0.05

Combinatorial solver:
○ search for supersupport F ⊃ E of dim. n − k > t in Fn

q

○ T = t/n, t = d/2 from rank GV

○ cost: [n
t
]

q
[n−k

t
]−1

q
∼ qtk = qn2RT

MinRank solver:
○ if t ∼ log(n), T = t/ log(n)
○ cost: ∼ q3T log(n)2

→ not the case for random codes

Hamming ISD:

→ qn2RT optimal

Violetta Weger — Open problems in code-based cryptography 14/17



How to solve Rank SDP

More costly than Hamming ISD? [n
t
]

q
> (n

t
) q3T log(n)2 vs. 2n0.05

Combinatorial solver:
○ search for supersupport F ⊃ E of dim. n − k > t in Fn

q

○ T = t/n, t = d/2 from rank GV

○ cost: [n
t
]

q
[n−k

t
]−1

q
∼ qtk = qn2RT

MinRank solver:
○ if t ∼ log(n), T = t/ log(n)
○ cost: ∼ q3T log(n)2

→ not the case for random codes

Hamming ISD:

→ qn2RT optimal

Violetta Weger — Open problems in code-based cryptography 14/17



How to solve Rank SDP

More costly than Hamming ISD? [n
t
]

q
> (n

t
)

Combinatorial solver:
○ search for supersupport F ⊃ E of dim. n − k > t in Fn

q

○ T = t/n, t = d/2 from rank GV

○ cost: [n
t
]

q
[n−k

t
]−1

q
∼ qtk = qn2RT

MinRank solver:
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○ cost: ∼ q3T log(n)2

→ not the case for random codes
Hamming ISD:

→ qn2RT optimal Other solvers?
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Code Equivalence

linear isometry: wt(x) = wt(φ(x)) ∀x → Hamming metric: (F⋆q)n ⋊ Sn ×Aut(Fq)
code equivalence: C ∼ C′ if exists lin. isometry φ: φ(C) = C′

○ LEP used in: LESS
○ rel. PKP used in: PERK

4. Open problem: Hardness of Code Equivalence

● How hard is LEP/ relaxed PKP? ● How to solve LEP/ relaxed PKP?

Violetta Weger — Open problems in code-based cryptography 15/17



Code Equivalence

linear isometry: wt(x) = wt(φ(x)) ∀x → Hamming metric: (F⋆q)n ⋊ Sn ×Aut(Fq)
code equivalence: C ∼ C′ if exists lin. isometry φ: φ(C) = C′

Linear Equivalence Problem (LEP)
Given G,G′ ∈ Fk×n

q , find φ ∈ (F⋆q)n ⋊ Sn

s.t. φ(⟨G⟩) = ⟨G′⟩.

○ LEP used in: LESS

○ rel. PKP used in: PERK

4. Open problem: Hardness of Code Equivalence

● How hard is LEP/ relaxed PKP? ● How to solve LEP/ relaxed PKP?

Violetta Weger — Open problems in code-based cryptography 15/17



Code Equivalence

linear isometry: wt(x) = wt(φ(x)) ∀x → Hamming metric: (F⋆q)n ⋊ Sn ×Aut(Fq)
code equivalence: C ∼ C′ if exists lin. isometry φ: φ(C) = C′

Permutation Equivalence Problem (PEP)
Given G,G′ ∈ Fk×n

q , find φ ∈ Sn

s.t. φ(⟨G⟩) = ⟨G′⟩.

○ LEP used in: LESS

○ rel. PKP used in: PERK

4. Open problem: Hardness of Code Equivalence

● How hard is LEP/ relaxed PKP? ● How to solve LEP/ relaxed PKP?

Violetta Weger — Open problems in code-based cryptography 15/17



Code Equivalence

linear isometry: wt(x) = wt(φ(x)) ∀x → Hamming metric: (F⋆q)n ⋊ Sn ×Aut(Fq)
code equivalence: C ∼ C′ if exists lin. isometry φ: φ(C) = C′

Permuted Kernel Problem (PKP)
Given G ∈ Fk×n

q ,G′ ∈ Fk′×n
q , find perm. matrix P

s.t. ⟨G′⟩ ⊂ ⟨GP ⟩.

○ LEP used in: LESS

○ rel. PKP used in: PERK

4. Open problem: Hardness of Code Equivalence

● How hard is LEP/ relaxed PKP? ● How to solve LEP/ relaxed PKP?

Violetta Weger — Open problems in code-based cryptography 15/17



Code Equivalence

linear isometry: wt(x) = wt(φ(x)) ∀x → Hamming metric: (F⋆q)n ⋊ Sn ×Aut(Fq)
code equivalence: C ∼ C′ if exists lin. isometry φ: φ(C) = C′

Relaxed PKP
Given G ∈ Fk×n

q , G′ ∈ Fk′×n
q , find x ∈ Fk

q , perm. P
s.t. xGP ∈ ⟨G′⟩.

○ LEP used in: LESS
○ rel. PKP used in: PERK

4. Open problem: Hardness of Code Equivalence

● How hard is LEP/ relaxed PKP? ● How to solve LEP/ relaxed PKP?

Violetta Weger — Open problems in code-based cryptography 15/17



Code Equivalence

linear isometry: wt(x) = wt(φ(x)) ∀x → Hamming metric: (F⋆q)n ⋊ Sn ×Aut(Fq)
code equivalence: C ∼ C′ if exists lin. isometry φ: φ(C) = C′

Relaxed PKP
Given G ∈ Fk×n

q , G′ ∈ Fk′×n
q , find x ∈ Fk

q , perm. P
s.t. xGP ∈ ⟨G′⟩.

○ LEP used in: LESS
○ rel. PKP used in: PERK

4. Open problem: Hardness of Code Equivalence

● How hard is LEP/ relaxed PKP? ● How to solve LEP/ relaxed PKP?

Violetta Weger — Open problems in code-based cryptography 15/17



Connections to Other Problems

Graph Isomorphism (GI)
Given G = (V,E),G′ = (V,E′), find f ∶ V → V ,
s.t. {u, v} ∈ E ↔ {f(u), f(v)} ∈ E′.

○ Hardness?
→ Assume quasi-polynomial

(Babai)

○ sub-GI NP-hard
→ PKP NP-hard

→ hardness LEP ≥ PEP ≥ GI → random codes: PEP = GI → if q ≤ 5 LEP = PEP
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How to solve Code Equivalence

○ LEP q ≤ 5 = PEP random codes → Babai’s quasi-poly. algo. for GI

○ LEP q > 5 = PEP self orthogonal codes → invariant: weight distribution

C ISDÐÐ→ c1, . . . , cN of wt w > d ÐÐ→ ci = {a, a, a, b, b, . . . , d}

find permutation π ↕

C′ ISDÐÐ→ c′1, . . . , c
′

N of wt w > d ÐÐ→ c′i = {a, a, a, b, b, . . . , d}

other solvers?

Violetta Weger — Open problems in code-based cryptography 17/17



How to solve Code Equivalence

○ LEP q ≤ 5 = PEP random codes → Babai’s quasi-poly. algo. for GI

○ LEP q > 5 = PEP self orthogonal codes → invariant: weight distribution

C ISDÐÐ→ c1, . . . , cN of wt w > d ÐÐ→ ci = {a, a, a, b, b, . . . , d}

find permutation π ↕

C′ ISDÐÐ→ c′1, . . . , c
′

N of wt w > d ÐÐ→ c′i = {a, a, a, b, b, . . . , d}

other solvers?

Violetta Weger — Open problems in code-based cryptography 17/17



How to solve Code Equivalence

○ LEP q ≤ 5 = PEP random codes → Babai’s quasi-poly. algo. for GI

○ LEP q > 5 = PEP self orthogonal codes → invariant: weight distribution

C ISDÐÐ→ c1, . . . , cN of wt w > d ÐÐ→ ci = {a, a, a, b, b, . . . , d}

find permutation π ↕

C′ ISDÐÐ→ c′1, . . . , c
′

N of wt w > d ÐÐ→ c′i = {a, a, a, b, b, . . . , d}

other solvers?

Violetta Weger — Open problems in code-based cryptography 17/17



How to solve Code Equivalence

○ LEP q ≤ 5 = PEP random codes → Babai’s quasi-poly. algo. for GI

○ LEP q > 5 = PEP self orthogonal codes → invariant: weight distribution

C ISDÐÐ→ c1, . . . , cN of wt w > d ÐÐ→ ci = {a, a, a, b, b, . . . , d}

find permutation π ↕

C′ ISDÐÐ→ c′1, . . . , c
′

N of wt w > d ÐÐ→ c′i = {a, a, a, b, b, . . . , d}

other solvers?

Violetta Weger — Open problems in code-based cryptography 17/17



How to solve Code Equivalence

○ LEP q ≤ 5 = PEP random codes → Babai’s quasi-poly. algo. for GI

○ LEP q > 5 = PEP self orthogonal codes → invariant: weight distribution

C ISDÐÐ→ c1, . . . , cN of wt w > d ÐÐ→ ci = {a, a, a, b, b, . . . , d}

find permutation π ↕

C′ ISDÐÐ→ c′1, . . . , c
′

N of wt w > d ÐÐ→ c′i = {a, a, a, b, b, . . . , d}

other solvers?

Violetta Weger — Open problems in code-based cryptography 17/17



Questions?

Open Problems
1. Distinguish Goppa codes
2. Find code for Hash & Sign
3. Hardness of Rank SDP
4. Hardness of Code Equivalence

Announcement:

CBCrypto 2024

May 25-26 in Zurich

Slides

Thank you!
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