On the Density of Free Codes over Finite Chain Rings

Violetta Weger

University College Dublin

SIAM AG21 August 17, 2021

joint work with Eimear Byrne, Anna-Lena Horlemann and Karan Khathuria

Motivation

Large interest in code-based cryptography in

- new metrics, such as sum-rank metric, Lee metric,
- new ambient spaces such as rings.

Motivation

Large interest in code-based cryptography in

- new metrics, such as sum-rank metric, Lee metric,
- new ambient spaces such as rings.

How do random codes behave over finite chain rings?

Motivation

Large interest in code-based cryptography in

- new metrics, such as sum-rank metric, Lee metric,
- new ambient spaces such as rings.

How do random codes behave over finite chain rings?

- What parameters should we expect?
- What minimum distance should we expect?

Outline

- Ring-Linear Coding Theory
- 2 Parameters: Density of Free Codes
- 3 Minimum Distance: Gilbert-Varshamov Bound
- 4 Open Problems

Definition (Chain Ring)

A ring \mathcal{R} is called a chain ring, if the ideals of \mathcal{R} form a chain: for all ideals $I, J \subseteq \mathcal{R}$ we either have $I \subseteq J$ or $J \subseteq I$.

Let $\langle \pi \rangle$ be the unique maximal ideal of \mathcal{R} .

- s is the nilpotency index: the smallest positive integer such that $\pi^s = 0$.
- q is the size of the residue field: $q = |\mathcal{R}/\langle \pi \rangle|$.

Thus, $|\mathcal{R}| = q^s$.

Example

- $\bullet \ \mathbb{Z}/p^s\mathbb{Z}$
- $GR(p^s, r)$

	Classical	$\mathcal{R} ext{-Linear}$
Ambient space	Finite field \mathbb{F}_q	
Code	$\mathcal{C} \subseteq \mathbb{F}_q^n$ linear subspace	
Parameters	length n dimension k	

	Classical	$\mathcal{R} ext{-Linear}$	
Ambient space	Finite field \mathbb{F}_q	Finite chain ring ${\cal R}$	
Code	$\mathcal{C} \subseteq \mathbb{F}_q^n$ linear subspace	$\mathcal{C} \subseteq \mathcal{R}^n$ \mathcal{R} -submodule	
Parameters	length n dimension k	$\begin{array}{c} \text{length } n \\ ? \end{array}$	

Let $\mathcal{C} \subseteq \mathcal{R}^n$ be a code, then

$$\mathcal{C} \cong \underbrace{\langle 1 \rangle \times \cdots \times \langle 1 \rangle}_{k_1} \times \underbrace{\langle \pi \rangle \times \cdots \times \langle \pi \rangle}_{k_2} \times \cdots \times \underbrace{\langle \pi^{s-1} \rangle \times \cdots \times \langle \pi^{s-1} \rangle}_{k_s}.$$

Then we say \mathcal{C} has

- subtype (k_1, \ldots, k_s) ,
- type $k = \sum_{i=1}^{s} \frac{s-i+1}{s} k_i = \log_{q^s} (\mid \mathcal{C} \mid)$,
- rate R = k/n,
- rank $K = \sum_{i=1}^{s} k_i$,
- free rank k_1 .

$$0 \le k_1 \le k \le K \le n$$
.

If $k_1 = k = K$, we say that C is a free code.

Systematic Form

If C has subtype (k_1, \ldots, k_s) and rank K then

$$\mathbf{G} = \begin{pmatrix} \mathrm{Id}_{k_1} & * & \cdots & * & * \\ 0 & p \mathrm{Id}_{k_2} & \cdots & p * & p * \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & p^{s-1} \mathrm{Id}_{k_s} & p^{s-1} * \end{pmatrix} \in (\mathbb{Z}/p^s \mathbb{Z})^{K \times n}.$$

If C is a free code, then

$$\mathbf{G} = (\mathrm{Id}_k \ A) \in (\mathbb{Z}/p^s\mathbb{Z})^{k \times n}$$
.

Question: Density of Free Codes

Let us fix a rate R = k/n. A code of given type k, can have any subtype (k_1, \ldots, k_s) with

$$k = \sum_{i=1}^{s} \frac{s-i+1}{s} k_i.$$

How likely is it that a random code is free?

Question: Density of Free Codes

Let us fix a rate R = k/n. A code of given type k, can have any subtype (k_1, \ldots, k_s) with

$$k = \sum_{i=1}^{s} \frac{s-i+1}{s} k_i.$$

How likely is it that a random code is free?

Probability of a free code:

$$P(n) = \frac{\text{number of free codes of type } k}{\text{number of all codes of type } k}.$$

Then, the density of free codes is given by

$$\lim_{n\to\infty} P(n),$$

if the limit exists.

Proposition

The number of codes of \mathbb{R}^n with subtype (k_1, \ldots, k_s) is given by

$$N_{n,q}(k_1,\ldots,k_s) := q^{\sum_{i=1}^s (n-\sum_{j=1}^i k_j) \sum_{j=1}^{i-1} k_j} \prod_{i=1}^s \begin{bmatrix} n-\sum_{j=1}^{i-1} k_j \\ k_i \end{bmatrix}_q.$$

Corollary

The number of free codes of type k is then given by

$$N_{n,q}(k,0,\ldots,0) = q^{(n-k)k(s-1)} {n \brack k}_q.$$

Thomas Honold and Ivan Landjev "Linear codes over finite chain rings", The electronic journal of combinatorics, 2000.

Definition

Let L(s, n, k) to be the set of all possible subtypes for type k:

$$L(s, n, k) := \left\{ (k_1, \dots, k_s) \mid \sum_{i=1}^s k_i \frac{s - i + 1}{s} = k, \sum_{i=1}^s k_i \le n \right\}.$$

Definition

Let L(s, n, k) to be the set of all possible subtypes for type k:

$$L(s, n, k) := \left\{ (k_1, \dots, k_s) \mid \sum_{i=1}^s k_i \frac{s - i + 1}{s} = k, \sum_{i=1}^s k_i \le n \right\}.$$

The number of codes in \mathbb{R}^n of type k is

$$M(n, k, q, s) := \sum_{(k_1, \dots, k_s) \in L(s, n, k)} N_{n,q}(k_1, \dots, k_s).$$

Definition

Let L(s, n, k) to be the set of all possible subtypes for type k:

$$L(s, n, k) := \left\{ (k_1, \dots, k_s) \mid \sum_{i=1}^s k_i \frac{s - i + 1}{s} = k, \sum_{i=1}^s k_i \le n \right\}.$$

The number of codes in \mathbb{R}^n of type k is

$$M(n, k, q, s) := \sum_{(k_1, \dots, k_s) \in L(s, n, k)} N_{n,q}(k_1, \dots, k_s).$$

The probability to have a free code of rate R = k/n is

$$P(n) = \frac{q^{(n-k)k(s-1)} {n \brack k}_q}{M(n, k, q, s)}.$$

We want to compute

$$\lim_{n\to\infty}P(n).$$

We want to compute

$$\lim_{n\to\infty}P(n).$$

Example

The density of free codes over $\mathbb{Z}/4\mathbb{Z}$ is

$$\sim 0.59546.$$

Combinatorial Tools

• The Gaussian coefficient

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \prod_{i=0}^{k-1} \frac{q^n - q^i}{q^k - q^i}.$$

Combinatorial Tools

• The Gaussian coefficient

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \prod_{i=0}^{k-1} \frac{q^n - q^i}{q^k - q^i}.$$

 \bullet The q-Pochhammer symbol

$$(a;q)_r = \prod_{i=0}^{r-1} (1 - aq^i), \quad (a;q)_\infty = \prod_{i=0}^\infty (1 - aq^i).$$

We denote by $(q)_r = (q;q)_r$.

Combinatorial Tools

• The Gaussian coefficient

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \prod_{i=0}^{k-1} \frac{q^n - q^i}{q^k - q^i} = \frac{(q)_n}{(q)_k (q)_{n-k}}.$$

 \bullet The q-Pochhammer symbol

$$(a;q)_r = \prod_{i=0}^{r-1} (1 - aq^i), \quad (a;q)_\infty = \prod_{i=0}^\infty (1 - aq^i).$$

We denote by $(q)_r = (q;q)_r$.

We apply

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = q^{(n-k)k} \begin{bmatrix} n \\ k \end{bmatrix}_{1/q}$$

on the density

$$\lim_{n\to\infty}\frac{q^{(n-k)k(s-1)}{n\brack k}_q}{M(n,k,q,s)}=\lim_{n\to\infty}\frac{{n\brack k}_{1/q}}{q^{-(n-k)ks}M(n,k,q,s)}.$$

We apply

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = q^{(n-k)k} \begin{bmatrix} n \\ k \end{bmatrix}_{1/q}$$

on the density

$$\lim_{n\to\infty}\frac{q^{(n-k)k(s-1)}{n\brack k}_q}{M(n,k,q,s)}=\lim_{n\to\infty}\frac{{n\brack k}_{1/q}}{q^{-(n-k)ks}M(n,k,q,s)}.$$

For k = Rn with 0 < R < k we have

$$\lim_{n \to \infty} \begin{bmatrix} n \\ k \end{bmatrix}_{1/q} = \frac{1}{(1/q)_{\infty}}.$$

We apply

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = q^{(n-k)k} \begin{bmatrix} n \\ k \end{bmatrix}_{1/q}$$

on the density

$$\lim_{n\to\infty}\frac{q^{(n-k)k(s-1)}{n\brack k}_q}{M(n,k,q,s)}=\lim_{n\to\infty}\frac{{n\brack k}_{1/q}}{q^{-(n-k)ks}M(n,k,q,s)}.$$

For k = Rn with 0 < R < k we have

$$\lim_{n \to \infty} \begin{bmatrix} n \\ k \end{bmatrix}_{1/q} = \frac{1}{(1/q)_{\infty}}.$$

What is the limit of $q^{-(n-k)ks}M(n, k, q, s)$?

The answer can be found in

- George E. Andrews and Rodney J. Baxter. "Lattice gas generalization of the hard hexagon model. III. q-trinomial coefficients", Journal of statistical physics, 1987.
- Anne Schilling. "Multinomials and polynomial bosonic forms for the branching functions of the $\widehat{su}_M(2) \times \widehat{su}_N(2)/\widehat{su}_{M+N}(2)$ conformal coset models", Nuclear Physics B, 1996.
- Anne Schilling and S. Ole Warnaar. "Supernomial coefficients, polynomial identities and q-series", The Ramanujan Journal, 1998.

Theorem

The density as $n \to \infty$ of free codes in \mathbb{R}^n of type k is given by

$$\left(\sum_{\substack{k_2,\dots,k_s\geq 0\\s|K_2+\dots+K_s}} \frac{(1/q)^{K_2^2+\dots+K_s^2-(K_2+\dots+K_s)^2/s}}{(1/q)_{k_2}\cdots(1/q)_{k_s}}\right)^{-1},$$

where $K_i = \sum_{j=2}^i k_j$.

Eimear Byrne, Anna-Lena Horlemann, Karan Khathuria and Violetta Weger "Density of Free Modules over Finite Chain Rings", 2021.

Example

		Density
	q=2	0.59546
	q=3	0.84191
s = 2	q=5	0.95049
	q = 7	0.97627
	q=2	0.47084
	q=3	0.79666
s = 3	q=5	0.94102
	q = 7	0.97295
	q=2	0.42109
	q = 3	0.78230
s = 4	q=5	0.93915
	q = 7	0.97248

Table: Density of free codes in \mathbb{R}^n of a given type

Special case s=2

If s = 2 we can write this nicer:

$$\frac{2}{(-\sqrt{1/q};1/q)_{\infty}+(\sqrt{1/q};1/q)_{\infty}}.$$

In fact,

$$\frac{2}{(-\sqrt{1/2};1/2)_{\infty} + (\sqrt{1/2};1/2)_{\infty}} \sim 0.59546.$$

George E. Andrews and Rodney J. Baxter. "Lattice gas generalization of the hard hexagon model. III. q-trinomial coefficients", Journal of statistical physics, 1987.

Lucy Joan Slater. "Further Identities of the Rogers-Ramanujan Type", Proceedings of the London Mathematical Society, 1952.

Rogers-Ramanujan Identities

Theorem (Rogers-Ramanujan Identities)

Let |q| < 1, then

$$\sum_{n\geq 0} \frac{q^{n^2}}{(q)_n} = \frac{1}{(q; q^5)_{\infty} (q^4; q^5)_{\infty}},$$

and

$$\sum_{n\geq 0} \frac{q^{n^2+n}}{(q)_n} = \frac{1}{(q^3;q^5)_{\infty}(q^2;q^5)_{\infty}}.$$

Srinivasa Ramanujan and Leonard James Roger. "Proof of certain identities in combinatory analysis.", Proc. Cambridge Philos. Soc, 1919.

Andrews-Gordon Identity

Theorem (Andrews-Gordon Identity)

For |q| < 1 it holds that

$$AGI(q,s) := \sum_{\substack{n_1,\dots,n_{s-1} \ge 0}} \frac{q^{N_1^2 + \dots + N_{s-1}^2}}{(q)_{n_1} \cdots (q)_{n_{s-1}}}$$

$$= \frac{(q^s; q^{2s+1})_{\infty} (q^{s+1}; q^{2s+1})_{\infty} (q^{2s+1}; q^{2s+1})_{\infty}}{(q)_{\infty}}.$$

where $N_i = n_i + \cdots + n_{s-1}$.

For s=2 this recovers the first Rogers-Ramanujan identity.

George E. Andrews. "An analytic generalization of the Rogers-Ramanujan identities for odd moduli.". Proceedings of the National Academy of Sciences, 1974.

Basil Gordon. "A combinatorial generalization of the Rogers-Ramanujan identities", American Journal of Mathematics, 1961.

Bounds

Theorem

The density as $n \to \infty$ of free codes in \mathbb{R}^n of type k denoted by d(q,s) can be bounded as follows:

$$AGI(1/q,s)^{-1} \le d(q,s) \le AGI(1/q',s)^{-1},$$

for
$$q' := q^{s^2 - s}$$
.

Bounds

		Lower Bound	Exact	Upper Bound
	q=2	0.46026	0.59546	0.74688
	q=3	0.65750	0.84191	0.88752
s=2	q=5	0.79867	0.95049	0.95999
	q = 7	0.85678	0.97627	0.97959
	q=2	0.35536	0.47084	0.98413
	q=3	0.58922	0.79666	0.99862
s=3	q=5	0.76770	0.94102	0.99994
	q=7	0.83959	0.97295	$1 - 8.5 \cdot 10^{-6}$
	q=2	0.31866	0.42109	0.99976
	q=3	0.56950	0.78230	$1 - 1.8 \cdot 10^{-6}$
s=4	q=5	0.76180	0.93915	$1 - 4.1 \cdot 10^{-9}$
	q=7	0.83719	0.97248	$1 - 7.2 \cdot 10^{-11}$

Table: Density of free codes in \mathbb{R}^n of a given type

Corollary

The probability for a code in \mathbb{R}^n of type k to be free is at least $(1/q)_{\infty}$.

q	2	3	5	7	11	13
$(1/q)_{\infty}$	0.2888	0.5601	0.7603	0.8368	0.9008	0.9172

Corollary

The probability for a code in \mathbb{R}^n of type k to be free is at least $(1/q)_{\infty}$.

q	2	3	5	7	11	13
$(1/q)_{\infty}$	0.2888	0.5601	0.7603	0.8368	0.9008	0.9172

Corollary

• The density of free codes in \mathbb{R}^n of type k for $q \to \infty$ is 1.

Corollary

The probability for a code in \mathbb{R}^n of type k to be free is at least $(1/q)_{\infty}$.

q	2	3	5	7	11	13
$(1/q)_{\infty}$	0.2888	0.5601	0.7603	0.8368	0.9008	0.9172

Corollary

- The density of free codes in \mathbb{R}^n of type k for $q \to \infty$ is 1.
- The density of free codes in \mathbb{R}^n of type k for $s \to \infty$ is $(1/q)_{\infty}$.

The set of weak compositions of K into s parts is denoted by C(s,K),

$$C(s,K) := \left\{ (k_1, \dots, k_s) \mid 0 \le k_i \le K, \sum_{i=1}^s k_i = K \right\}.$$

The set of weak compositions of K into s parts is denoted by C(s,K),

$$C(s,K) := \left\{ (k_1, \dots, k_s) \mid 0 \le k_i \le K, \sum_{i=1}^s k_i = K \right\}.$$

The number of codes in \mathbb{R}^n of rank K is given by

$$W(n, K, q, s) := \sum_{(k_1, \dots, k_s) \in C(s, K)} N_{n,q}(k_1, \dots, k_s).$$

The set of weak compositions of K into s parts is denoted by C(s,K),

$$C(s,K) := \left\{ (k_1, \dots, k_s) \mid 0 \le k_i \le K, \sum_{i=1}^s k_i = K \right\}.$$

The number of codes in \mathbb{R}^n of rank K is given by

$$W(n, K, q, s) := \sum_{(k_1, \dots, k_s) \in C(s, K)} N_{n,q}(k_1, \dots, k_s).$$

The probability to have a free code of rank-rate R' = K/n is

$$P'(n) = \frac{q^{(n-K)K(s-1)} {n \brack K}_q}{W(n, K, q, s)}.$$

We want to compute

$$\lim_{n \to \infty} P'(n) = \lim_{n \to \infty} \frac{q^{(n-K)K(s-1)} {n \brack K}_q}{W(n,K,q,s)}.$$

We want to compute

$$\lim_{n \to \infty} P'(n) = \lim_{n \to \infty} \frac{q^{(n-K)K(s-1)} {n \brack K}_q}{W(n, K, q, s)}.$$

Theorem

Let K and n be positive integers with K = R'n. The density of free codes in \mathbb{R}^n of given rank K for $n \to \infty$ is

$$\begin{cases} 0 & \text{if } 1/2 < R' < 1, \\ 1 & \text{if } R' < 1/2, \\ \ge AGI(1/q, s)^{-1} & \text{if } R' = 1/2. \end{cases}$$

Summary

What parameters should we expect?

- The density of free codes of fixed rate as $n \to \infty$ is neither sparse nor dense, it is at least $(1/q)_{\infty}$.
- For large enough q, we expect a random code of fixed type to be free.
- The density of free codes of fixed rank-rate as $n \to \infty$ is either dense or sparse, depending on R' = K/n.

Classical Gilbert-Varshamov Bound

• Random codes over \mathbb{F}_q in the Hamming metric achieve the GV bound

Alexander Barg, G. David Forney "Random codes: Minimum distances and error exponents", IEEE Transactions on Information Theory, 2002.

John Pierce "Limit distribution of the minimum distance of random linear codes", IEEE Transactions on Information Theory, 1967.

• Random rank-metric codes over \mathbb{F}_q achieve the GV bound

Pierre Loidreau "Asymptotic behaviour of codes in rank metric over finite fields", Designs, codes and cryptography, 2014.

Do ring-linear codes also attain the GV bound?

Gilbert-Varshamov Bound

- wt: weight function on \mathbb{R}^n .
- $V(n, w) := |\{v \in \mathcal{R}^n \mid \operatorname{wt}(v) \le w\}|.$
- N: the maximal weight an element of \mathbb{R}^n can achieve.

•
$$g(\delta) := \lim_{n \to \infty} \frac{1}{n} \log_{q^s} \left(V(n, \delta N) \right).$$

- AL(n, d): the maximal size of a code in \mathbb{R}^n having minimum distance d
- $\overline{R}(\delta) := \limsup_{n \to \infty} \frac{1}{n} \log_{q^s} AL(n, \delta N).$

Gilbert-Varshamov Bound

The asymptotic Gilbert-Varshamov bound now states that

$$\overline{R}(\delta) \ge 1 - g(\delta).$$

Gilbert-Varshamov Bound

The asymptotic Gilbert-Varshamov bound now states that

$$\overline{R}(\delta) \ge 1 - g(\delta).$$

Theorem

For the Lee metric, Hamming metric and homogeneous metric, we have that a random code over a finite chain ring achieves the Gilbert-Varshamov bound with high probability.

Open Problems

Open Problems

• Establish a simplified condition on $(k_1, \ldots, k_s), (\bar{k}_1, \ldots, \bar{k}_s) \in L(s, n, k)$ such that we have

$$N_{n,q}(k_1,...,k_s) \le N_{n,q}(\bar{k}_1,...,\bar{k}_s).$$

• For a fixed subtype (k_1, \ldots, k_s) what is the density of codes having this subtype?

Thank you!