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Motivation

Large interest in code-based cryptography in

new metrics, such as sum-rank metric, Lee metric,

new ambient spaces such as rings.

How do random codes behave over finite chain rings?

What parameters should we expect?

What minimum distance should we expect?
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Ring-Linear Coding Theory

Definition (Chain Ring)

A ring R is called a chain ring, if the ideals of R form a chain:
for all ideals I, J ⊆ R we either have I ⊆ J or J ⊆ I.

Let 〈π〉 be the unique maximal ideal of R.

s is the nilpotency index: the smallest positive integer such
that πs = 0.

q is the size of the residue field: q =| R/〈π〉 |.
Thus, | R |= qs.

Example

Z/psZ
GR(ps, r)
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Ring-Linear Coding Theory

Classical R-Linear

Ambient space
Finite field Fq

Finite chain ring
R

Code
C ⊆ Fn

q

C ⊆ Rn

linear subspace

R-submodule

Parameters
length n

length n

dimension k

?
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Ring-Linear Coding Theory

Let C ⊆ Rn be a code, then

C ∼= 〈1〉 × · · · × 〈1〉︸ ︷︷ ︸
k1

×〈π〉 × · · · × 〈π〉︸ ︷︷ ︸
k2

× · · ·×〈πs−1〉 × · · · × 〈πs−1〉︸ ︷︷ ︸
ks

.

Then we say C has

subtype (k1, . . . , ks),

type k =
∑s

i=1
s−i+1

s ki = logqs (| C |) ,
rate R = k/n,

rank K =
∑s

i=1 ki,

free rank k1.

0 ≤ k1 ≤ k ≤ K ≤ n.

If k1 = k = K, we say that C is a free code.

Violetta Weger Density of Free Codes over Chain Rings



Ring-Linear Coding Theory

Systematic Form

If C has subtype (k1, . . . , ks) and rank K then

G =


Idk1 ∗ · · · ∗ ∗

0 pIdk2 · · · p∗ p∗
...

...
...

...
0 0 · · · ps−1Idks ps−1∗

 ∈ (Z/psZ)K×n .

If C is a free code, then

G =
(
Idk A

)
∈ (Z/psZ)k×n .
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Question: Density of Free Codes

Let us fix a rate R = k/n. A code of given type k, can have any
subtype (k1, . . . , ks) with

k =

s∑
i=1

s− i+ 1

s
ki.

How likely is it that a random code is free?

Probability of a free code:

P (n) =
number of free codes of type k

number of all codes of type k
.

Then, the density of free codes is given by

lim
n→∞

P (n),

if the limit exists.
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Counting Codes

Proposition

The number of codes of Rn with subtype (k1, . . . , ks) is given by

Nn,q(k1, . . . , ks) := q
∑s

i=1(n−
∑i

j=1 kj)
∑i−1

j=1 kj
s∏

i=1

[
n−

∑i−1
j=1 kj

ki

]
q

.

Corollary

The number of free codes of type k is then given by

Nn,q(k, 0, . . . , 0) = q(n−k)k(s−1)
[
n

k

]
q

.

Thomas Honold and Ivan Landjev “Linear codes over finite chain rings”, The electronic

journal of combinatorics, 2000.
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Counting Codes

Definition

Let L(s, n, k) to be the set of all possible subtypes for type k:

L(s, n, k) :=

{
(k1, . . . , ks) |

s∑
i=1

ki
s− i+ 1

s
= k,

s∑
i=1

ki ≤ n

}
.

The number of codes in Rn of type k is

M(n, k, q, s) :=
∑

(k1,...,ks)∈L(s,n,k)

Nn,q(k1, . . . , ks).

The probability to have a free code of rate R = k/n is

P (n) =
q(n−k)k(s−1)

[
n
k

]
q

M(n, k, q, s)
.
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Density of Free Codes

We want to compute
lim
n→∞

P (n).

Example

The density of free codes over Z/4Z is

∼ 0.59546.
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Combinatorial Tools

The Gaussian coefficient[
n

k

]
q

=

k−1∏
i=0

qn − qi

qk − qi
.

The q-Pochhammer symbol

(a; q)r =
r−1∏
i=0

(
1− aqi

)
, (a; q)∞ =

∞∏
i=0

(
1− aqi

)
.

We denote by (q)r = (q; q)r.
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Density of Free Codes

We apply [
n

k

]
q

= q(n−k)k
[
n

k

]
1/q

on the density

lim
n→∞

q(n−k)k(s−1)
[
n
k

]
q

M(n, k, q, s)
= lim

n→∞

[
n
k

]
1/q

q−(n−k)ksM(n, k, q, s)
.

For k = Rn with 0 < R < k we have

lim
n→∞

[
n

k

]
1/q

=
1

(1/q)∞
.

What is the limit of q−(n−k)ksM(n, k, q, s) ?
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Density of Free Codes

The answer can be found in

George E. Andrews and Rodney J. Baxter. “Lattice gas
generalization of the hard hexagon model. III. q-trinomial
coefficients”, Journal of statistical physics, 1987.

Anne Schilling. “Multinomials and polynomial bosonic
forms for the branching functions of the
ŝuM (2)× ŝuN (2)/ŝuM+N (2) conformal coset models”,
Nuclear Physics B, 1996.

Anne Schilling and S. Ole Warnaar. “Supernomial
coefficients, polynomial identities and q-series”, The
Ramanujan Journal, 1998.
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Density of Free Codes

Theorem

The density as n→∞ of free codes in Rn of type k is given by ∑
k2,...,ks≥0

s|K2+···+Ks

(1/q)K
2
2+···+K2

s−(K2+···+Ks)2/s

(1/q)k2 · · · (1/q)ks


−1

,

where Ki =
∑i

j=2 kj .

Eimear Byrne, Anna-Lena Horlemann, Karan Khathuria and Violetta Weger “Density of

Free Modules over Finite Chain Rings”, 2021.

Violetta Weger Density of Free Codes over Chain Rings



Example

Density

s = 2

q = 2 0.59546
q = 3 0.84191
q = 5 0.95049
q = 7 0.97627

s = 3

q = 2 0.47084
q = 3 0.79666
q = 5 0.94102
q = 7 0.97295

s = 4

q = 2 0.42109
q = 3 0.78230
q = 5 0.93915
q = 7 0.97248

Table: Density of free codes in Rn of a given type
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Special case s = 2

If s = 2 we can write this nicer:

2

(−
√

1/q; 1/q)∞ + (
√

1/q; 1/q)∞
.

In fact,

2

(−
√

1/2; 1/2)∞ + (
√

1/2; 1/2)∞
∼ 0.59546.

George E. Andrews and Rodney J. Baxter. “Lattice gas generalization of the hard

hexagon model. III. q-trinomial coefficients”, Journal of statistical physics, 1987.

Lucy Joan Slater. “Further Identities of the Rogers-Ramanujan Type”, Proceedings of

the London Mathematical Society, 1952.
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Rogers-Ramanujan Identities

Theorem (Rogers-Ramanujan Identities)

Let | q |< 1, then

∑
n≥0

qn
2

(q)n
=

1

(q; q5)∞(q4; q5)∞
,

and ∑
n≥0

qn
2+n

(q)n
=

1

(q3; q5)∞(q2; q5)∞
.

Srinivasa Ramanujan and Leonard James Roger. “Proof of certain identities in

combinatory analysis.”, Proc. Cambridge Philos. Soc, 1919.
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Andrews-Gordon Identity

Theorem (Andrews-Gordon Identity)

For | q |< 1 it holds that

AGI(q, s) :=
∑

n1,...,ns−1≥0

qN
2
1+···+N2

s−1

(q)n1 · · · (q)ns−1

=
(qs; q2s+1)∞(qs+1; q2s+1)∞(q2s+1; q2s+1)∞

(q)∞
,

where Ni = ni + · · ·+ ns−1.

For s = 2 this recovers the first Rogers-Ramanujan identity.

George E. Andrews. “An analytic generalization of the Rogers-Ramanujan identities for

odd moduli.”, Proceedings of the National Academy of Sciences, 1974.

Basil Gordon. “A combinatorial generalization of the Rogers-Ramanujan identities”,

American Journal of Mathematics, 1961.
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Bounds

Theorem

The density as n→∞ of free codes in Rn of type k denoted by
d(q, s) can be bounded as follows:

AGI (1/q, s)−1 ≤ d(q, s) ≤ AGI(1/q′, s)−1,

for q′ := qs
2−s.
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Bounds

Lower Bound Exact Upper Bound

s = 2

q = 2 0.46026 0.59546 0.74688
q = 3 0.65750 0.84191 0.88752
q = 5 0.79867 0.95049 0.95999
q = 7 0.85678 0.97627 0.97959

s = 3

q = 2 0.35536 0.47084 0.98413
q = 3 0.58922 0.79666 0.99862
q = 5 0.76770 0.94102 0.99994
q = 7 0.83959 0.97295 1− 8.5 · 10−6

s = 4

q = 2 0.31866 0.42109 0.99976
q = 3 0.56950 0.78230 1− 1.8 · 10−6

q = 5 0.76180 0.93915 1− 4.1 · 10−9

q = 7 0.83719 0.97248 1− 7.2 · 10−11

Table: Density of free codes in Rn of a given type
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Other Densities

Corollary

The probability for a code in Rn of type k to be free is at least
(1/q)∞.

q 2 3 5 7 11 13

(1/q)∞ 0.2888 0.5601 0.7603 0.8368 0.9008 0.9172

Corollary

The density of free codes in Rn of type k for q →∞ is 1.

The density of free codes in Rn of type k for s→∞ is
(1/q)∞.
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Other Densities

The set of weak compositions of K into s parts is denoted by
C(s,K),

C(s,K) :=

{
(k1, . . . , ks) | 0 ≤ ki ≤ K,

s∑
i=1

ki = K

}
.

The number of codes in Rn of rank K is given by

W (n,K, q, s) :=
∑

(k1,...,ks)∈C(s,K)

Nn,q(k1, . . . , ks).

The probability to have a free code of rank-rate R′ = K/n is

P ′(n) =
q(n−K)K(s−1)[n

K

]
q

W (n,K, q, s)
.
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Other Densities

We want to compute

lim
n→∞

P ′(n) = lim
n→∞

q(n−K)K(s−1)[n
K

]
q

W (n,K, q, s)
.

Theorem

Let K and n be positive integers with K = R′n. The density of
free codes in Rn of given rank K for n→∞ is

0 if 1/2 < R′ < 1,

1 if R′ < 1/2,

≥ AGI(1/q, s)−1 if R′ = 1/2.
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Summary

What parameters should we expect?

The density of free codes of fixed rate as n→∞ is neither
sparse nor dense, it is at least (1/q)∞.

For large enough q, we expect a random code of fixed type
to be free.

The density of free codes of fixed rank-rate as n→∞ is
either dense or sparse, depending on R′ = K/n.
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Classical Gilbert-Varshamov Bound

Random codes over Fq in the Hamming metric achieve the
GV bound

Alexander Barg, G. David Forney “Random codes: Minimum distances and error

exponents”, IEEE Transactions on Information Theory, 2002.

John Pierce “Limit distribution of the minimum distance of random linear codes”,

IEEE Transactions on Information Theory, 1967.

Random rank-metric codes over Fq achieve the GV bound

Pierre Loidreau “Asymptotic behaviour of codes in rank metric over finite fields”,

Designs, codes and cryptography, 2014.

Do ring-linear codes also attain the GV bound?
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Gilbert-Varshamov Bound

wt: weight function on Rn.

V (n,w) :=| {v ∈ Rn | wt(v) ≤ w} | .

N : the maximal weight an element of Rn can achieve.

g(δ) := lim
n→∞

1

n
logqs (V (n, δN)) .

AL(n, d): the maximal size of a code in Rn having
minimum distance d

R(δ) := lim sup
n→∞

1

n
logqs AL(n, δN).
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Gilbert-Varshamov Bound

The asymptotic Gilbert-Varshamov bound now states that

R(δ) ≥ 1− g(δ).

Theorem

For the Lee metric, Hamming metric and homogeneous metric,
we have that a random code over a finite chain ring achieves the
Gilbert-Varshamov bound with high probability.
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Open Problems

Open Problems

Establish a simplified condition on
(k1, . . . , ks), (k̄1, . . . , k̄s) ∈ L(s, n, k) such that we have

Nn,q(k1, . . . , ks) ≤ Nn,q(k̄1, . . . , k̄s).

For a fixed subtype (k1, . . . , ks) what is the density of codes
having this subtype?
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Thank you!
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