Recent Advances in Code-based Signatures #### Violetta Weger CAST Workshop: Quantentechnologie und Quantencomputer-resistente Sicherheit September 7, 2023 $2016\,$ NIST standardization call for post-quantum PKE/KEM and signatures $2016\,$ NIST standardization call for post-quantum PKE/KEM and signatures Standardized: Signatures: Dilithium, FALCON, SPHINCS+ PKE/KEM: KYBER 4th round: PKE/KEM: Classic McEliece, BIKE, HQC $2016\,$ NIST standardization call for post-quantum PKE/KEM and signatures based on structured lattices Hash-based Standardized: Signatures: PKE/KEM: 4th round: PKE/KEM: Dilithium, FALCON, KYBER Classic McEliece, BIKE, HQC HQC) C SPHINCS+ ${\bf Code\text{-}based}$ 2016 NIST standardization call for post-quantum PKE/KEM and signatures based on structured lattices Hash-based Signatures: Standardized: PKE/KEM: Dilithium, FALCON, SPHINCS+ KYBER. PKE/KEM: 4th round: Classic McEliece, BIKE, HQC Code-based 2023 NIST additional call for signature schemes \rightarrow This talk ## Outline #### 1. Code-based Cryptography - Introduction to Coding Theory - Hard Problems from Coding Theory #### 2. Code-based Signature Schemes - What is a Signature Scheme - Techniques to Construct Signatures - Our Scheme: CROSS #### 3. Round 1 Submissions - Survivors after 2 months of cryptanalysis - Efficiency and Performance - o $Code \ \mathcal{C} \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace - \circ $c \in C$ codeword - $\circ \ G \in \mathbb{F}_q^{k \times n} \ \ generator \ matrix \ \ \mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$ - $\circ \ H \in \mathbb{F}_q^{(n-k) \times n} \ \textit{parity-check matrix} \ \ \mathcal{C} = \{c \mid cH^\top = 0\}$ - $\circ \ s = eH^\top \ syndrome$ - o $Code\ \mathcal{C} \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace - \circ $c \in \mathcal{C}$ codeword - $\circ \ G \in \mathbb{F}_q^{k \times n} \ \ generator \ \ matrix \ \ \mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$ - $\circ \ H \in \mathbb{F}_q^{(n-k) \times n} \ \textit{parity-check matrix} \ \ \mathcal{C} = \{c \mid cH^\top = 0\}$ - $\circ \ s = eH^\top \ syndrome$ - \circ *Decode*: find closest codeword - o $Code\ \mathcal{C} \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace - \circ $c \in \mathcal{C}$ codeword - $\circ G \in \mathbb{F}_q^{k \times n} \text{ generator matrix } \mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$ - $\circ \ H \in \mathbb{F}_q^{(n-k) \times n} \ \textit{parity-check matrix} \ \ \mathcal{C} = \{c \mid cH^\top = 0\}$ - $\circ \ s = eH^\top \ syndrome$ - Decode: find closest codeword - $\circ \ Hamming \ metric: \ d_H(x,y) = | \ \{i \mid x_i \neq y_i\} \ |$ - o $Code\ \mathcal{C} \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace - \circ $c \in \mathcal{C}$ codeword - $\circ G \in \mathbb{F}_q^{k \times n}$ generator matrix $\mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$ - $\circ \ H \in \mathbb{F}_q^{(n-k) \times n} \ parity\text{-check matrix} \ \ \mathcal{C} = \{c \mid cH^\top = 0\}$ - $\circ s = eH^{\top} syndrome$ - Decode: find closest codeword - \circ Hamming metric: $d_H(x,y) = |\{i \mid x_i \neq y_i\}|$ - o minimum distance of a code: $$d(\mathcal{C}) = \min\{d_H(x, y) \mid x \neq y \in \mathcal{C}\}\$$ #### Set Up - o $Code\ \mathcal{C} \subseteq \mathbb{F}_q^n$ linear k-dimensional subspace - \circ $c \in \mathcal{C}$ codeword - $\circ G \in \mathbb{F}_q^{k \times n}$ generator matrix $\mathcal{C} = \{xG \mid x \in \mathbb{F}_q^k\}$ - $\circ \ H \in \mathbb{F}_q^{(n-k) \times n} \ \textit{parity-check matrix} \ \ \mathcal{C} = \{c \mid cH^\top = 0\}$ - \circ $s = eH^{\top}$ syndrome - Decode: find closest codeword - $\circ \ Hamming \ metric: \ d_H(x,y) = | \{i \mid x_i \neq y_i\} |$ - o minimum distance of a code: $$d(\mathcal{C}) = \min\{d_H(x, y) \mid x \neq y \in \mathcal{C}\}\$$ \circ error-correction capacity: $t = \lfloor (d(\mathcal{C}) - 1)/2 \rfloor$ Algebraic structure (Reed-Solomon, Goppa,..) \rightarrow efficient decoders • random code $\langle \widetilde{G} angle$ \rightarrow how hard to decode? Algebraic structure (Reed-Solomon, Goppa,...) \rightarrow efficient decoders $\langle G \rangle$ • • • • Decoding random linear code is NP-hard E. Berlekamp, R. McEliece, H. Van Tilborg. "On the inherent intractability of certain coding problems ", IEEE Trans. Inf. Theory, 1978. - Decoding random linear code is NP-hard - First code-based cryptosystem based on this problem E. Berlekamp, R. McEliece, H. Van Tilborg. "On the inherent intractability of certain coding problems", IEEE Trans. Inf. Theory, 1978. R. J. McEliece. "A public-key cryptosystem based on algebraic coding theory", DSNP Report, 1978 - Decoding random linear code is NP-hard - First code-based cryptosystem based on this problem - Fastest solvers: ISD, exponential time E. Berlekamp, R. McEliece, H. Van Tilborg. "On the inherent intractability of certain coding problems", IEEE Trans. Inf. Theory, 1978. R. J. McEliece. "A public-key cryptosystem based on algebraic coding theory", DSNP Report, 1978 A. Becker, A. Joux, A. May, A. Meurer "Decoding random binary linear codes in $2^{n/20}$: How 1+1=0 improves information set decoding", Eurocrypt, 2012. Approaches for signatures: • Hash-and-Sign • ZK Protocol • ZK + MPC First introduced in Following idea of McEliece M. Bellare, P. Rogaway. "The exact security of digital signatures-How to sign with RSA and Rabin.", Int. conf. on the theory and app. of crypto. tech., 1996. - \rightarrow start with structured code H - $\rightarrow\,$ publish scrambled code HP First introduced in Following idea of McEliece M. Bellare, P. Rogaway. "The exact security of digital signatures-How to sign with RSA and Rabin.", Int. conf. on the theory and app. of crypto. tech., 1996. - \rightarrow start with structured code H - \rightarrow publish scrambled code HP - $\rightarrow~$ large public key sizes #### First introduced in Following idea of McEliece M. Bellare, P. Rogaway. "The exact security of digital signatures-How to sign with RSA and Rabin.", Int. conf. on the theory and app. of crypto. tech., 1996. - \rightarrow start with structured code H - $\rightarrow\,$ publish scrambled code HP - \rightarrow large public key sizes - $\rightarrow \operatorname{Hash}(m) = eH^{\top}, \operatorname{wt}_{H}(e) \leq t$ - \rightarrow signature $\sigma = eP$ #### First introduced in Following idea of McEliece M. Bellare, P. Rogaway. "The exact security of digital signatures-How to sign with RSA and Rabin.", Int. conf. on the theory and app. of crypto. tech., 1996. - \rightarrow start with structured code H - \rightarrow publish scrambled code HP - \rightarrow large public key sizes - $\rightarrow \operatorname{Hash}(m) = eH^{\top}, \operatorname{wt}_{H}(e) \leq t$ - \rightarrow signature $\sigma = eP$ - \rightarrow slow signing #### First introduced in Following idea of McEliece M. Bellare, P. Rogaway. "The exact security of digital signatures-How to sign with RSA and Rabin.", Int. conf. on the theory and app. of crypto. tech., 1996. - \rightarrow start with structured code H - $\rightarrow\,$ publish scrambled code HP - \rightarrow large public key sizes - $\rightarrow \operatorname{Hash}(m) = eH^{\top}, \operatorname{wt}_{H}(e) \leq t$ - \rightarrow signature $\sigma = eP$ - \rightarrow slow signing - \rightarrow reduce key sizes: - \rightarrow use quasi-cyclic codes - \rightarrow use low density generators First introduced in Following idea of McEliece M. Bellare, P. Rogaway. "The exact security of digital signatures-How to sign with RSA and Rabin.", Int. conf. on the theory and app. of crypto. tech., 1996. - \rightarrow start with structured code H - $\rightarrow\,$ publish scrambled code HP - \rightarrow large public key sizes - $\rightarrow \operatorname{Hash}(m) = eH^{\top}, \operatorname{wt}_{H}(e) \leq t$ - \rightarrow signature $\sigma = eP$ - \rightarrow slow signing - $\rightarrow\,$ reduce key sizes: - $\rightarrow\,$ use quasi-cyclic codes - \rightarrow use low density generators - → statistical attacks #### Prover Verifier \mathcal{S} : secret \mathcal{P} : related public key c: commitments to secret r_b : response to challenge b $$\xrightarrow{\mathcal{P}, c}$$ *Th* r_b $b{:}\ {\rm challenge}$ Recover c from r_b and \mathcal{P} $\begin{array}{|c|c|c|} \hline \textbf{Prover} & \hline \textbf{Interaction} & \hline \textbf{Verifier} \\ \hline & \mathcal{S}: \text{ secret} \\ \mathcal{P}: \text{ related public key} \\ c: \text{ commitments to secret} \\ r_b: \text{ response to challenge } b \\ \hline & \hline & \\ &$ # Prover Fiat-Shamir Verifier \mathcal{S} : secret \mathcal{P} : related public key \mathcal{P} : related public key c: commitments to secret \mathcal{P} \mathcal{P} b: Hash of message, c \mathcal{P} Recover c from r_b and \mathcal{P} v_b : response to challenge v_b v_b A. Fiat, A. Shamir. "How to prove yourself: Practical solutions to identification and signature problems.", Proceedings on Advances in cryptology-CRYPTO, 1986. Prover Verifier \nearrow \mathcal{S} : secret \mathcal{P} : related public key c: commitments to secret b: Hash of message, c r_b : response to challenge b $\xrightarrow{\mathcal{P},(b,r_b)}$ Recover c from r_b and \mathcal{P} Verify $b = \operatorname{Hash}(m, c)$ - α cheating probability, λ bit security level - Rounds: have to repeat ZK protocol N times: $2^{\lambda} < (1/\alpha)^{N}$ - \bullet Signature size: communication within all N rounds A. Fiat, A. Shamir. "How to prove yourself: Practical solutions to identification and signature problems.", Proceedings on Advances in cryptology-CRYPTO, 1986. ## Code-based ZK Protocols P.-L. Cayrel, P. Véron, S. El Yousfi Alaoui. "A zero-knowledge identification scheme based on the q-ary syndrome decoding problem", Selected Areas in Cryptography, 2011. #### Syndrome Decoding Problem Given parity-check matrix H, syndrome s, weight t, find e s.t. 1. $$s = eH^{\top}$$ 2. $\operatorname{wt}_H(e) \le t$ Prover Verifier S: e of weight t, $$\mathcal{P}$$: random H , $s = eH^{\top}$, t $$\equiv eH$$, t $$r_1 = \varphi$$, or transformed secret $r_2 = \varphi(e)$ $$\xrightarrow{\mathcal{P},c_1,c_2}$$ $$b \in \{1, 2\}$$ recover $$c_b$$ from r_b and \mathcal{P} ## Code-based ZK Protocols P.-L. Cayrel, P. Véron, S. El Yousfi Alaoui. "A zero-knowledge identification scheme based on the q-ary syndrome decoding problem", Selected Areas in Cryptography, 2011. #### Syndrome Decoding Problem Given parity-check matrix H, syndrome s, weight t, find e s.t. 1. $$s = eH^{\top}$$ 2. $\operatorname{wt}_H(e) \le t$ #### Prover ## Verifier S: e of weight t, \mathcal{P} : random H, s = 1. Problem: large cheating probability \rightarrow big signature sizes c₁: commitment to CVE $\lambda = 128$ bit security \rightarrow signature size: 43 kB c_2 : commitment to response: transformation, e.g. permutation $$r_1 = \varphi$$, or transformed secret $r_2 = \varphi(e)$ r_b recover c_b from r_b and \mathcal{P} ## MPC in-the-head #### 1. Solution: Multiparty Computation (MPC) in-the-head Y. Ishai, E. Kushilevitz, R. Ostrovsky, A. Sahai. "Zero-knowledge from secure multiparty computation." ACM symposium on Theory of computing, 2007. T. Feneuil, A. Joux, M. Rivain "Syndrome decoding in the head: shorter signatures from zero-knowledge proofs", Crypto, 2022. #### \rightarrow New cheating probability: 1/N ## MPC in-the-head #### 1. Solution: Multiparty Computation (MPC) in-the-head Y. Ishai, E. Kushilevitz, R. Ostrovsky, A. Sahai. "Zero-knowledge from secure multiparty computation." ACM symposium on Theory of computing, 2007. T. Feneuil, A. Joux, M. Rivain "Syndrome decoding in the head: shorter signatures from zero-knowledge proofs", Crypto, 2022. ## Code-Based ZK Protocols ## Syndrome Decoding Problem Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, weight t, find $e \in \mathbb{F}_q^n$ such that $\operatorname{wt}_H(e) \leq t$ and $s = eH^{\top}$. #### Syndrome Decoding Problem Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, weight t, find $e \in \mathbb{F}_q^n$ such that $\operatorname{wt}_H(e) \leq t$ and $s = eH^{\top}$. Which φ are allowed? #### Syndrome Decoding Problem Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, weight t, find $e \in \mathbb{F}_q^n$ such that $\operatorname{wt}_H(e) \leq t$ and $s = eH^{\top}$. Which φ are allowed? $ightarrow \varphi$: linear isometries of Hamming metric: permutation + scalar multiplication #### Syndrome Decoding Problem Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, weight t, find $e \in \mathbb{F}_q^n$ such that $\operatorname{wt}_H(e) \leq t$ and $s = eH^{\top}$. Which φ are allowed? - $\rightarrow \varphi$: linear isometries of Hamming metric: permutation + scalar multiplication - 2. Problem: permutations are costly $\rightarrow \varphi : n \log_2(q-1) + n \log_2(n)$ #### Syndrome Decoding Problem Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, weight t, find $e \in \mathbb{F}_q^n$ such that $\operatorname{wt}_H(e) \leq t$ and $s = eH^{\top}$. Can we avoid permutations - but keep the hardness of the problem? #### Syndrome Decoding Problem Given $H \in \mathbb{F}_q^{(n-k) \times n}$, $s \in \mathbb{F}_q^{n-k}$, weight t, find $e \in \mathbb{F}_q^n$ such that $\operatorname{wt}_H(e) \leq t$ and $s = eH^{\top}$. Can we avoid permutations - but keep the hardness of the problem? #### Restricted Syndrome Decoding Problem Given $H \in \mathbb{F}_q^{(n-k) \times n}$, syndrome $s \in \mathbb{F}_q^{n-k}$, $\mathbb{E} \subseteq \mathbb{F}_q^{\star}$, find $e \in \mathbb{E}^n$ such that $s = eH^{\top}$. #### 2. Solution: Restricted Errors #### 2. Solution: Restricted Errors M. Baldi, S. Bitzer, A. Pavoni, P. Santini, A. Wachter-Zeh, V.W. "Zero knowledge protocols and signatures from the restricted syndrome decoding problem", Preprint, 2023 $$(\mathbb{E}^n,\star)$$ $\stackrel{\ell}{\longrightarrow}$ $(\mathbb{F}_z^n,+)$ • $$e = (1, 9, 3, 3) \in \{1, 3, 9\}^4$$ • $\ell(e) = (0, 2, 1, 1) \in \mathbb{F}_3^4$ #### 2. Solution: Restricted Errors $$(\mathbb{E}^n,\star)$$ $$\xrightarrow{\ell}$$ $$(\mathbb{F}_z^n,+)$$ • $$e = (1, 9, 3, 3) \in \{1, 3, 9\}^4$$ • trans.: $$\varphi : \mathbb{E}^n \to \mathbb{E}^n, e \mapsto e \star e'$$ • $$\varphi: e' = (3, 9, 1, 3) \in \mathbb{E}^n$$ • $$\ell(e) = (0, 2, 1, 1) \in \mathbb{F}_3^4$$ • $$\ell(\varphi) \in \mathbb{F}_z^n$$ • $$\ell(\varphi): \ell(e') = (1, 2, 0, 1) \in \mathbb{F}_3^4$$ #### 2. Solution: Restricted Errors $$(\mathbb{E}, \cdot) < (\mathbb{F}_q^*, \cdot) \to g \in \mathbb{F}_q^* \text{ of prime order } z \to \mathbb{E} = \{g^i \mid i \in \{1, \dots, z\}\}\}$$ $$q = 13 \to g = 3 \text{ order } z = 3 \to \mathbb{E} = \{1, 3, 9\}$$ $$(\mathbb{E}^n, \star) \xrightarrow{\ell} (\mathbb{F}_z^n, +)$$ - $e = (1, 9, 3, 3) \in \{1, 3, 9\}^4$ - trans.: $\varphi : \mathbb{E}^n \to \mathbb{E}^n, e \mapsto e \star e'$ - $\varphi: e' = (3, 9, 1, 3) \in \mathbb{E}^n$ - $\varphi(e) = e \star e' \in (\mathbb{E}^n, \star)$ - $\varphi(e) = (1, 9, 3, 3) \star (3, 9, 1, 3)$ - $\ell(e) = (0, 2, 1, 1) \in \mathbb{F}_3^4$ - $\ell(\varphi) \in \mathbb{F}_z^n$ - $\ell(\varphi): \ell(e') = (1, 2, 0, 1) \in \mathbb{F}_3^4$ - $\ell(e) + \ell(e') \in (\mathbb{F}_z^n, +)$ - (0,2,1,1)+(1,2,0,1) #### 2. Solution: Restricted Errors - \rightarrow Smaller sizes: $n \log_2(z)$ instead of $n \log_2((q-1)n)$ - \rightarrow Faster arithmetic: ops. in $(\mathbb{F}_z^n, +)$ instead of (\mathbb{F}_q^n, \cdot) #### Basis - Restricted SDP - ZK + Fiat-Shamir - \rightarrow compact #### ${\bf Optimizations}$ - Merkle trees - unbalanced challenges - \rightarrow efficient ### Security - no trapdoor needed - EUF-CMA security - \rightarrow secure #### Basis - Restricted SDP - ZK + Fiat-Shamir - \rightarrow compact #### ${\bf Optimizations}$ - Merkle trees - unbalanced challenges - \rightarrow efficient #### Security - no trapdoor needed - EUF-CMA security - \rightarrow secure Sizes in bytes, times in MCycles No optimized implementation | Level | | pk | \mid sign \mid | $t_{ m sign}$ | $t_{ m verify}$ | |-------|------------------------|----|--------------------|---------------|-----------------| | I | fast | 38 | 8'665 | 3.08 | 2.11 | | | short | 38 | 7'625 | 11.04 | 7.81 | | III | fast | 56 | 21'697 | 4.91 | 3.23 | | | short | 56 | 17'429 | 18.06 | 12.24 | | V | fast | 77 | 37'924 | 11.05 | 7.49 | | | short | 77 | 31'696 | 29.08 | 19.44 | - ⊗ Marco Baldi - \otimes Alessandro Barenghi - \otimes Sebastian Bitzer - \otimes Patrick Karl - ⊗ Felice Manganiello - \otimes Alessio Pavoni - ⊗ Gerardo Pelosi - \otimes Paolo Santini - ⊗ Jonas Schupp - ⊗ Freeman Slaughter - Antonia Wachter-Zeh - ⊗ Violetta Weger - \otimes Alessandro Barenghi - \otimes Sebastian Bitzer - ⊗ Patrick Karl - ⊗ Felice Manganiello - ⊗ Alessio Pavoni - ⊗ Gerardo Pelosi - Paolo Santini - ⊗ Jonas Schupp - ⊗ Freeman Slaughter - ⊗ Antonia Wachter-Zeh - ⊗ Violetta Weger Scan me CROSS Codes & Restricted Objects Signature Scheme http://cross-crypto.com/ Submitted: 50 \rightarrow Complete & Proper: 40 - Multivariate: 12 - Code-based: 11 - Lattice-based: 7 - Symmetric: - Other: - Isogeny-based: 1 Submitted: 50 \rightarrow Complete & Proper: 40 Cryptanalysis \rightarrow Survivors: 29 - Multivariate: 12 \rightarrow 9 - Code-based: 11 \rightarrow 9 - Lattice-based: $7 \rightarrow 5$ - Symmetric: $4 \rightarrow 4$ - Other: $5 \rightarrow 1$ - Isogeny-based: $1 \rightarrow 1$ Submitted: 50 Complete & Proper: 40 Cryptanalysis Survivors: 29 • Multivariate: 12 • Code-based: 11 • Lattice-based: 7 \rightarrow 5 • Other: • Symmetric: • Isogeny-based: 1 \rightarrow all of the schemes and their performances: https://pqshield.github.io/nist-sigs-zoo/ Submitted: 50 Complete & Proper: 40 Cryptanalysis Survivors: 29 - Multivariate: 12 - Code-based: 11 $\rightarrow 9$ - Lattice-based: 7 - Symmetric: - Other: - Isogeny-based: 1 \rightarrow all of the schemes and their performances: https://pqshield.github.io/nist-sigs-zoo/ # Code-Based Round 1 Submissions #### MPC in-the-head • SDitH: SDP • MIRA/MiRitH: matrix rank SDP • RYDE: Rank SDP #### ZK Protocol - LESS: code equivalence - MEDS: matrix rank CE • PERK: permuted kernel • CROSS: restricted SDP #### Hash & Sign - FuLeeca: Lee SDP - THE COURT OF THE - WAVE: (U, U + V), • Enh. pqsigRM: Reed-Muller large weight SDP # Code-Based Round 1 Submissions #### MPC in-the-head - SDitH: SDP - RYDE: Rank SDP - MIRA/MiRitH: matrix rank SDP - PERK: permuted kernel slow signing and verification #### ZK Protocol - LESS: code equivalence - CROSS: restricted SDP - MEDS: matrix rank CE \rightarrow large signatures - Hash & Sign - FuLeeca: Lee SDP - WAVE: (U, U + V), - × Enh. pqsigRM: Reed-Muller - large weight SDP - \rightarrow attacked - \rightarrow large public keys # Questions? #### What's next? - Cryptanalysis continues - Improvements? - How many rounds? Slides # Thank you! ### Code-Based Submissions All sizes in bytes, times in MCycles. | Scheme | Based on | Technique | Pk | Sig | Sign | Verify | |------------------------|-----------------------|-------------|-----------|-------|-------|--------| | | | | | | | | | CROSS | Restricted SDP | ZK | 32 | 7'625 | 11 | 7.4 | | Enh. pqsigRM | Reed-Muller | Hash & Sign | 2'000'000 | 1'032 | 1.3 | 0.2 | | FuLeeca | Lee SDP | Hash & Sign | 1'318 | 1'100 | 1'846 | 1.3 | | LESS | Code equiv. | ZK | 13'700 | 8'400 | 206 | 213 | | MEDS | Matrix rank equiv. | ZK | 9'923 | 9'896 | 518 | 515 | | MIRA | Matrix rank SDP | MPC | 84 | 5'640 | 46'8 | 43'9 | | MiRitH | Matrix rank SDP | MPC | 129 | 4'536 | 6'108 | 6'195 | | PERK | Permuted Kernel | MPC | 150 | 6'560 | 39 | 27 | | RYDE | Rank SDP | MPC | 86 | 5'956 | 23.4 | 20.1 | | SDitH | SDP | MPC | 120 | 8'241 | 13.4 | 12.5 | | WAVE | Large wt $(U, U + V)$ | Hash & Sign | 3'677'390 | 822 | 1'160 | 1.23 | Not all schemes have optimized implementations \rightarrow Numbers may change