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MOTIVATION

Model checkers as trust-multipliers

Goals for trustworthy model checkers

* Theory should be sound and well-understood
* Implementation of theory should be correct

Verification with a proof assistant (Isabelle/HOL) guarantees both!

Here: timed automata model checking
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TIMED AUTOMATA

SEMANTICS

Types of transitions:

delay and action

Clock valuations: N = R

— |Infinite Semantics

Clock constraints:
(-Hl)l—cl U

— |nvariants on nodes and
guards on edges




MODEL CHECKING

Clock valuations: N = R
— |nfinite Semantics

Concrete states (I, u) to
abstract states (I, Z)

e node |

* clock valuation u: N = R
» Z a set of clock valuations (zone): P(N = R)

Symbolic computation: zones as clock constraints
— Difference Bound Matrices (DBMs)
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OBJECTIVE

* Provide verified reference implementation for TA MC
* Not meant to replace existing MCs
» Rather allow validation of existing MCs against it
* Experimentation platform
* Thus we need:
* Acceptable performance

* A practical modeling formalism
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MODELING LANGUAGE
WHAT CAN WE MODEL?

TA networks w/ sync. over channels incl. broadcast channels

Shared finite state

» Set of integer variables

* Boolean & arithmetic expressions for guards and updates

Urgent and committed locations
Restrictions: diagonal free TA & clock updates to O

Formalized semantics: ~150 lines of Isabelle text
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MODEL CHECKING CAPABILITIES
WHAT CAN WE CHECK?

Input format: JSON
- Easy data exchange and parsing

* No templating: to improve inter-operability

CTL subset corresponding to TCTL subset supported by UPPAAL

E<>7A<>7E 7A s i

Deadlock checking
Report full set of reachable states

Graphical user interface (experimental): in the browser




fading

Clocks: Variables:

c, X Declarations of integer variables
Example: x[-10:10], y[0:3]

Update: Guard: Label:
c:=0 Edge Guard press?
VZ 4
Automata:
User ’ ‘ + B @
Formula:
‘ A<> Lamp.bright

Check input Verify  Verify in your browser
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Clocks: Variables:

c, X Declarations of integer variables
Example: x[-10:10], y[0:3]

Update: Guard: Label:

c:=0 Edge Guard press?

Automata:

G e+

Formula:

Eh

‘ A<> Lamp.bright

Check input Verify  Verify in your browser J
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GRAPHICAL USER INTERFACE
MAKING IT ACCESSIBLE

* Programmed in ReasonML: runs in the browser
* Interfacing with Munta
* Model checking in the browser

* Verification queries sent to local (primitive) verification server

» Consistency of graphical model and verified model

 Parse-print-parse loop to produce input JSON

 Possibility to manually inspect input JSON
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ISABELLE/HOL
HOW DO WE VERIFY?

Isabelle: LCF-style proof assistant (or interactive theorem prover)
¢ Any valid theorem has to pass through a small logical core
 Tactics: bigger proofs from primitive logical inferences
Generic: many object logics supported

Isabelle/HOL: most prominent object logic
Higher Order Logic: functional programming + math

Isar: structured proof language for human-readable proofs

Powerful automation: e.g. term rewriting and external ATPs
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WHAT DO WE PROVE?

SUCCESS SAT/UNSAT?

{emp}
precond_mc p m k max_steps I T prog formula bounds P s

{ASome r = wvalid_input p m maz_steps I T prog bounds P so na k N
{mdeadlock tcony N | il 5y ) —

ri—cony N {1t so, g Fran steps forula)

| None = —wvalid_input p m max_steps I T prog bounds P sqg na k}

-

FAILURE
IS INPUT VALID AND WITHIN THE SUPPORTED FRAGMENT?
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TRUSTED CODE BASE

HOW VERIFIED IS ‘VERIFIED?

Formalization of the Modeling Language Semantics

Formalization of Imperative HOL and its corresponding separation logic
Isabelle/HOL's logical kernel

Isabelle/HOL's code generator = Hupel & Nipkow 2018

The target language’s compiler and runtime system = CakeML

CakeML: dialect of ML with a verified compiler and runtime system

Hupel & Nipkow 2018: provably correct code extraction from HOL to
CakeML
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SINGLE TA MODEL CHECKING

/ Single TA model checking

Forward exploration with
local clock ceiling extraploation

Deadlock

- =N E I I B B e
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EFFICIENT IMPLEMENTATIONS

» Efficient Algorithms — Refinement

* DBMs as imperative arrays with destructive updates

Imperative Refinement Framework:
abstract functional impl. — efficient imperative impl.

 Search algorithms with subsumption
Stepwise refinement

» Expressive modelling language

 Efficient on-the-fly product construction
Refinement
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PRODUCT CONSTRUCTION

* From networks to single TA MC
» Shared bounded integer variables
* Networks with sync. over channels
» Retains ability to do MC on the fly

 Result: transitions and invariants
as functional programs

INPUT
NETWORK

RENAMED
NETWORK

PRODUCT CONSTRUCTION

ABSTRACT
FUNCTIONAL
IMPLEMENTATION

REFINEMENT

EFFICIENT

FUNCTIONAL
IMPLEMENTATION




HOW CAN WE BUILD A

REAL MODEL CHECKER®?
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CODE EXTRACTION

CONSTRUCTING A REAL TOOL

* Code generator: HOL specification of Munta =+ SML & OCaml
» Target languages

« SML: fast executables with MLton

« OCaml: compilation to JS via BuckleScript
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TRUSTED HOL CODE
CONSTRUCTING A REAL TOOL

* Missing: parsing, error handling, diagnostics
— not verified & implemented in directly in HOL

» Considered non-critical: error handling, diagnostics

» Correctness of parser: check parse-print-parse loop
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CERTIFIED HOL CODE
CONSTRUCTING A REAL TOOL

« Certified:
 Algorithms not verified but implemented in HOL
e Results checked for soundness via verified HOL code

* Model relabeling

» Computation of local clock ceilings




EXPERIMENTS

Our Tool UPPAAL

Model Prop SAT Size #states time; timey Fstates time

Fischer R

&

D
D

38578
42439

697612

6,93
7 87
s

214
224
132

3739
8149
67325

0,062
0,112
1,94

R

L

6720
20750
2083
3737

35,1

P
9,38
18,1

8,92
830
2.69
5,74

5416
24101
2439
4944

0,789

6,64
0,159
0,406

CSMA/CD R

5

N
Y
e
N
N
Y
he
N
N
W
Y

6
8
1
6
7
D
6
D
6

9959
81463
11526
96207

5,29

72
5.81
76.4

1,18
15,6
1,28
16,6

2769
559
3867
23454

0,102
2,18
0,091
2,13

throughput = #states/time
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Parser
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FUTURE

Reduce trusted code base: CakeML

Improve performance: verification w.r.t. C or LLVM

Can we certify model checking results efficiently?
TA MC uses subsumption: final invariant may be much smaller

than total number of explored states

Extensions: Probabilistic Timed Automata, LTL model checking,

input formalism




THANK YOU!
QUESTIONS?

wimmers.github.io/munta



