|
‘a | NS 4
| @ g /"M
[> A 204
¥ & V4 -
. o7 % S
| ! SR 4
N ‘ 4 |
> {) v
N \ /

MUNTA: A VERIFIED
MODEL CHECKER FOR
TIMED AUTOMATA

SIMON WIMMER

FAKULTAT FUR INFORMATIK,
TECHNISCHE UNIVERSITAT MUNCHEN

MOTIVATION

Model checkers as trust-multipliers

Goals for trustworthy model checkers

* Theory should be sound and well-understood
* Implementation of theory should be correct

Verification with a proof assistant (Isabelle/HOL) guarantees both!

Here: timed automata model checking

* One press: light
turns low

» Two quick presses:

light turns bright

* Two slow presses:
light turns off

TIMED AUTOMATA

LIGHT SWITCH EXAMPLE

press?

press7
lomf

i — 5

* One press: light
turns low

» Two quick presses:

light turns bright

* Two slow presses:
light turns off

EQ light.bright

TIMED AUTOMATA

LIGHT SWITCH EXAMPLE

press?

press7
lomf

i — 5

* One press: light
turns low

» Two quick presses:

light turns bright

* Two slow presses:
light turns off

EQ light.bright

TIMED AUTOMATA

LIGHT SWITCH EXAMPLE

press?

press7
lomf

i — 5

* One press: light
turns low

» Two quick presses:

light turns bright

* Two slow presses:
light turns off

EQ light.bright

A light.bright

TIMED AUTOMATA

LIGHT SWITCH EXAMPLE

press?

press7
lomf

i — 5

* One press: light
turns low

» Two quick presses:

light turns bright

* Two slow presses:
light turns off

EQ light.bright

A light.bright

TIMED AUTOMATA

LIGHT SWITCH EXAMPLE

press?

press7
lomf

i — 5

* One press: light
turns low

» Two quick presses:

light turns bright

* Two slow presses:
light turns off

EQ light.bright

A light.bright

TIMED AUTOMATA

LIGHT SWITCH EXAMPLE

press?

press7
lomf

i — 5

TIMED AUTOMATA

SEMANTICS

Types of transitions:

delay and action

Clock valuations: N = R

— |Infinite Semantics

Clock constraints:
(-Hl)l—cl U

— |nvariants on nodes and
guards on edges

MODEL CHECKING

Clock valuations: N = R
— |nfinite Semantics

Concrete states (I, u) to
abstract states (I, Z)

e node |

* clock valuation u: N = R
» Z a set of clock valuations (zone): P(N = R)

Symbolic computation: zones as clock constraints
— Difference Bound Matrices (DBMs)

OBJECTIVE

OBJECTIVE

* Provide verified reference implementation for TA MC
* Not meant to replace existing MCs
» Rather allow validation of existing MCs against it

* Experimentation platform

OBJECTIVE

* Provide verified reference implementation for TA MC
* Not meant to replace existing MCs
» Rather allow validation of existing MCs against it
* Experimentation platform
* Thus we need:
* Acceptable performance

* A practical modeling formalism

AGENDA

FEATURES
CORRECTNESS CLAIM
ARCHITECTURE
EXPERIMENTS
FUTURE WORK

MODELING LANGUAGE

WHAT CAN WE MODEL?

MODELING LANGUAGE

WHAT CAN WE MODEL?

* TA networks w/ sync. over channels incl. broadcast channels

MODELING LANGUAGE

WHAT CAN WE MODEL?

* TA networks w/ sync. over channels incl. broadcast channels

 Shared finite state

» Set of integer variables

* Boolean & arithmetic expressions for guards and updates

MODELING LANGUAGE

WHAT CAN WE MODEL?

* TA networks w/ sync. over channels incl. broadcast channels

 Shared finite state

» Set of integer variables

* Boolean & arithmetic expressions for guards and updates

» Urgent and committed locations

MODELING LANGUAGE

WHAT CAN WE MODEL?

TA networks w/ sync. over channels incl. broadcast channels

Shared finite state

» Set of integer variables

* Boolean & arithmetic expressions for guards and updates

Urgent and committed locations

Restrictions: diagonal free TA & clock updates to O

MODELING LANGUAGE
WHAT CAN WE MODEL?

TA networks w/ sync. over channels incl. broadcast channels

Shared finite state

» Set of integer variables

* Boolean & arithmetic expressions for guards and updates

Urgent and committed locations
Restrictions: diagonal free TA & clock updates to O

Formalized semantics: ~150 lines of Isabelle text

MODEL CHECKING CAPABILITIES
WHAT CAN WE CHECK?

MODEL CHECKING CAPABILITIES
WHAT CAN WE CHECK?

* Input format: JSON

- Easy data exchange and parsing

* No templating: to improve inter-operability

MODEL CHECKING CAPABILITIES
WHAT CAN WE CHECK?

* Input format: JSON
- Easy data exchange and parsing

* No templating: to improve inter-operability

* CTL subset corresponding to TCTL subset supported by UPPAAL

E<>7A<>7E 7A s i

MODEL CHECKING CAPABILITIES
WHAT CAN WE CHECK?

* Input format: JSON
- Easy data exchange and parsing

* No templating: to improve inter-operability

* CTL subset corresponding to TCTL subset supported by UPPAAL

E<>7A<>7E 7A s i

« Deadlock checking

MODEL CHECKING CAPABILITIES
WHAT CAN WE CHECK?

Input format: JSON
- Easy data exchange and parsing

* No templating: to improve inter-operability

CTL subset corresponding to TCTL subset supported by UPPAAL

E<>7A<>7E 7A s i

Deadlock checking

Report full set of reachable states

MODEL CHECKING CAPABILITIES
WHAT CAN WE CHECK?

Input format: JSON
- Easy data exchange and parsing

* No templating: to improve inter-operability

CTL subset corresponding to TCTL subset supported by UPPAAL

E<>7A<>7E 7A s i

Deadlock checking
Report full set of reachable states

Graphical user interface (experimental): in the browser

fading

Clocks: Variables:

c, X Declarations of integer variables
Example: x[-10:10], y[0:3]

Update: Guard: Label:
c:=0 Edge Guard press?
VZ 4
Automata:
User ’ ‘ + B @
Formula:
‘ A<> Lamp.bright

Check input Verify Verify in your browser

off O ow O~ bright

fading

Clocks: Variables:

c, X Declarations of integer variables
Example: x[-10:10], y[0:3]

Update: Guard: Label:

c:=0 Edge Guard press?

Automata:

G e+

Formula:

Eh

‘ A<> Lamp.bright

Check input Verify Verify in your browser J

GRAPHICAL USER INTERFACE
MAKING IT ACCESSIBLE

GRAPHICAL USER INTERFACE
MAKING IT ACCESSIBLE

* Programmed in ReasonML: runs in the browser

GRAPHICAL USER INTERFACE
MAKING IT ACCESSIBLE

* Programmed in ReasonML: runs in the browser
* Interfacing with Munta

* Model checking in the browser

* Verification queries sent to local (primitive) verification server

GRAPHICAL USER INTERFACE
MAKING IT ACCESSIBLE

* Programmed in ReasonML: runs in the browser
* Interfacing with Munta
* Model checking in the browser

* Verification queries sent to local (primitive) verification server

» Consistency of graphical model and verified model

 Parse-print-parse loop to produce input JSON

 Possibility to manually inspect input JSON

CORRECTNESS
CLAIM

ISABELLE/HOL
HOW DO WE VERIFY?

ISABELLE/HOL
HOW DO WE VERIFY?

* Isabelle: LCF-style proof assistant (or interactive theorem prover)

¢ Any valid theorem has to pass through a small logical core

 Tactics: bigger proofs from primitive logical inferences

ISABELLE/HOL
HOW DO WE VERIFY?

Isabelle: LCF-style proof assistant (or interactive theorem prover)

¢ Any valid theorem has to pass through a small logical core

 Tactics: bigger proofs from primitive logical inferences

Generic: many object logics supported

Isabelle/HOL: most prominent object logic
Higher Order Logic: functional programming + math

ISABELLE/HOL
HOW DO WE VERIFY?

Isabelle: LCF-style proof assistant (or interactive theorem prover)
¢ Any valid theorem has to pass through a small logical core
 Tactics: bigger proofs from primitive logical inferences
Generic: many object logics supported

Isabelle/HOL: most prominent object logic
Higher Order Logic: functional programming + math

Isar: structured proof language for human-readable proofs

Powerful automation: e.g. term rewriting and external ATPs

WHAT DO WE PROVE?

{emp}
precond_mc p m k max_steps I T prog formula bounds P s

{ASome r = wvalid_input p m maz_steps I T prog bounds P sy na k N
(= deadlock (conv N) (init, sg,ug) =
ri—=comy N amt, Sp, Uy s seep Jormuld)
| None = —wvalid_input p m maz_steps I T prog bounds P sy na k}

WHAT DO WE PROVE?

SEPARATION LOGIC
HOARE TRIPLE IN
IMPERATIVE HOL

{emp}
precond_mc p m k max_steps I T prog formula bounds P s

{ASome r = wvalid_input p m mazx_steps I T prog bounds P sy na k N
(= deadlock (conv N) (init, sg,ug) =
= cony N il S0, U Bras woope JOrTiule)
| None = —wvalid_input p m max_steps I T prog bounds P sy na k}

WHAT DO WE PROVE?

{emp}
precond_mc p m k max_steps I T prog formula bounds P s

{ASome r = wvalid_input p m maz_steps I T prog bounds P sy na k N
(= deadlock (conv N) (init, sg,ug) =
ri—=comy N amt, Sp, Uy s seep Jormuld)
| None = —wvalid_input p m maz_steps I T prog bounds P sy na k}

WHAT DO WE PROVE?

SUCCESS

{emp}
precond_mc p m k max_steps I T prog formula bounds P s

{ASome r = valid_input p m maz_steps I T prog bounds P sy na k N
(= deadlock (conv N) (init, sg,ug) =
ri—=comy N amt, Sp, Uy s seep Jormuld)
| None = — valid_input p m maz_steps I T prog bounds P sy na k}

WHAT DO WE PROVE?

{emp}
precond_mc p m k max_steps I T prog formula bounds P s

{ASome r = wvalid_input p m maz_steps I T prog bounds P so na k N
(= deadlock (conv N) (init, sg,ug) =
ri—=comy N amt, Sp, Uy s seep Jormuld)
| None = —wvalid_input p m max_steps I T prog bounds P sqg na k}

FAILURE
IS INPUT VALID AND WITHIN THE SUPPORTED FRAGMENT?

WHAT DO WE PROVE?

SUCCESS SAT/UNSAT?

{emp}
precond_mc p m k max_steps I T prog formula bounds P s

{ASome r = wvalid_input p m maz_steps I T prog bounds P so na k N
{mdeadlock tcony N | il 5y) —

ri—cony N {1t so, g Fran steps forula)

| None = —wvalid_input p m max_steps I T prog bounds P sqg na k}

-

FAILURE
IS INPUT VALID AND WITHIN THE SUPPORTED FRAGMENT?

TRUSTED CODE BASE

HOW VERIFIED IS ‘VERIFIED?

Formalization of the Modeling Language Semantics

Formalization of Imperative HOL and its corresponding separation logic

Isabelle/HOL's logical kernel
Isabelle/HOL's code generator

The target language’s compiler and runtime system

TRUSTED CODE BASE

HOW VERIFIED IS ‘VERIFIED 2

Formalization of the Modeling Language Semantics

Formalization of Imperative HOL and its corresponding separation logic
Isabelle/HOL's logical kernel = generally assumed to be correct
Isabelle/HOL's code generator

The target language’s compiler and runtime system

TRUSTED CODE BASE

HOW VERIFIED IS ‘VERIFIED?

TRUSTED CODE BASE

HOW VERIFIED IS ‘VERIFIED?

Formalization of the Modeling Language Semantics

Formalization of Imperative HOL and its corresponding separation logic

Isabelle/HOL's logical kernel
Isabelle/HOL's code generator = Hupel & Nipkow 2018

The target language’s compiler and runtime system = CakeML

TRUSTED CODE BASE

HOW VERIFIED IS ‘VERIFIED?

Formalization of the Modeling Language Semantics

Formalization of Imperative HOL and its corresponding separation logic
Isabelle/HOL's logical kernel

Isabelle/HOL's code generator = Hupel & Nipkow 2018

The target language’s compiler and runtime system = CakeML

CakeML: dialect of ML with a verified compiler and runtime system

Hupel & Nipkow 2018: provably correct code extraction from HOL to
CakeML

ARCHITECTURE

/ Forward exploration with N

; local clock ceiling extraploation !

[DBMs] E Zones E E

[Deadlock J E E TA .+ Regions ' |

\ 4
\ N N e e o o e o o e e e o e - ,/

Parser (] Product construction) Clock ceiling
Error handling ' Modeling language semantics | Renaming
Diagnostics B el '
HOL

SINGLE
AUTOMATON
MODEL CHECKER

M 1rusTED [lf MoDELING NN CERTIFIED[R
o HOL L ANGUAGE Ho |
cope Wt semAntics JA cooe B

EXTRACTION OF EXECUTABLE CODE

SINGLE
AUTOMATON
MODEL CHECKER

TRUSTED MODELING CERTIFIED
HOL LANGUAGE HOL
CODE SEMANTICS CODE

EXTRACTION OF EXECUTABLE CODE

SINGLE
AUTOMATON
MODEL CHECKER

TRUSTED MODELING CERTIFIED
HOL LANGUAGE HOL
CODE SEMANTICS CODE

EXTRACTION OF EXECUTABLE CODE

SINGLE TA MODEL CHECKING

/ Single TA model checking

Forward exploration with
local clock ceiling extraploation

Deadlock

- =N E I I B B e

EFFICIENT IMPLEMENTATIONS

 Efficient Algorithms

* DBMs as imperative arrays with destructive updates

 Search algorithms with subsumption

« Expressive modelling language

 Efficient on-the-fly product construction

EFFICIENT IMPLEMENTATIONS

» Efficient Algorithms — Refinement

* DBMs as imperative arrays with destructive updates

Imperative Refinement Framework:
abstract functional impl. — efficient imperative impl.

 Search algorithms with subsumption
Stepwise refinement

» Expressive modelling language

 Efficient on-the-fly product construction
Refinement

SINGLE
AUTOMATON
MODEL CHECKER

TRUSTED MODELING CERTIFIED
HOL LANGUAGE HOL
CODE SEMANTICS CODE

EXTRACTION OF EXECUTABLE CODE

SINGLE
AUTOMATON
MODEL CHECKER

TRUSTED MODELING CERTIFIED
HOL LANGUAGE HOL
CODE SEMANTICS CODE

EXTRACTION OF EXECUTABLE CODE

PRODUCT CONSTRUCTION

* From networks to single TA MC
» Shared bounded integer variables
* Networks with sync. over channels
» Retains ability to do MC on the fly

 Result: transitions and invariants
as functional programs

INPUT
NETWORK

RENAMED
NETWORK

PRODUCT CONSTRUCTION

ABSTRACT
FUNCTIONAL
IMPLEMENTATION

REFINEMENT

EFFICIENT

FUNCTIONAL
IMPLEMENTATION

HOW CAN WE BUILD A

REAL MODEL CHECKER®?

SINGLE
AUTOMATON
MODEL CHECKER

OOOOOOOOOOOOOOOOOOO

TRUSTED MODELING CERTIFIED
HOL LANGUAGE HOL
CODE SEMANTICS CODE

EXTRACTION OF EXECUTABLE CODE

SINGLE
AUTOMATON
MODEL CHECKER

TRUSTED MODELING CERTIFIED
HOL LANGUAGE HOL
CODE SEMANTICS CODE

EXTRACTION OF EXECUTABLE CODE

CODE EXTRACTION

CONSTRUCTING A REAL TOOL

* Code generator: HOL specification of Munta =+ SML & OCaml
» Target languages

« SML: fast executables with MLton

« OCaml: compilation to JS via BuckleScript

SINGLE
AUTOMATON
MODEL CHECKER

TRUSTED MODELING CERTIFIED
HOL LANGUAGE HOL
CODE SEMANTICS CODE

EXTRACTION OF EXECUTABLE CODE

TRUSTED HOL CODE
CONSTRUCTING A REAL TOOL

* Missing: parsing, error handling, diagnostics
— not verified & implemented in directly in HOL

» Considered non-critical: error handling, diagnostics

» Correctness of parser: check parse-print-parse loop

SINGLE
AUTOMATON
MODEL CHECKER

TRUSTED MODELING CERTIFIED
HOL LANGUAGE HOL
CODE SEMANTICS CODE

EXTRACTION OF EXECUTABLE CODE

CERTIFIED HOL CODE
CONSTRUCTING A REAL TOOL

« Certified:
 Algorithms not verified but implemented in HOL
e Results checked for soundness via verified HOL code

* Model relabeling

» Computation of local clock ceilings

EXPERIMENTS

Our Tool UPPAAL

Model Prop SAT Size #states time; timey Fstates time

Fischer R

&

D
D

38578
42439

697612

6,93
7 87
s

214
224
132

3739
8149
67325

0,062
0,112
1,94

R

L

6720
20750
2083
3737

35,1

P
9,38
18,1

8,92
830
2.69
5,74

5416
24101
2439
4944

0,789

6,64
0,159
0,406

CSMA/CD R

5

N
Y
e
N
N
Y
he
N
N
W
Y

6
8
1
6
7
D
6
D
6

9959
81463
11526
96207

5,29

72
5.81
76.4

1,18
15,6
1,28
16,6

2769
559
3867
23454

0,102
2,18
0,091
2,13

throughput = #states/time

/ Forward exploration with N

; local clock ceiling extraploation !

[DBMs] E Zones E E

[Deadlock J E E TA .+ Regions ' |

\ 4
\ N N e e o o e o o e e e o e - ,/

Parser (] Product construction) Clock ceiling
Error handling ' Modeling language semantics | Renaming
Diagnostics B el '
HOL

Forward exploratio
local clock ceiling ext

Parser

Diagnostics

MLton
JavaScript €— OCaml (7/ Code generator \@ Server

FUTURE

Reduce trusted code base: CakeML

Improve performance: verification w.r.t. C or LLVM

Can we certify model checking results efficiently?
TA MC uses subsumption: final invariant may be much smaller

than total number of explored states

Extensions: Probabilistic Timed Automata, LTL model checking,

input formalism

THANK YOU!
QUESTIONS?

wimmers.github.io/munta

