MDP + TA = PTA PROBABILISTIC TIMED AUTOMATA, FORMALIZED

SIMON WIMMER & JOHANNES HÖLZL

TU MUNICH & VU AMSTERDAM

ON ONE SLIDE

WHAT IS THE MAX./MIN.

PROBABILITY TO REACH I₂

AMONG ALL

ADVERSARIES?

PROBABILITY THEORY IN ISABELLE/HOL

QUICK TOUR

- Discrete distributions: probability mass function $\mu :: \sigma pmf$
 - Constructed over type $\sigma \Rightarrow \mathbb{R}_{\geq 0}$
 - Countable support $\{x \mid \mu x \neq 0\}$ and $\sum_{x :: \sigma} \mu x = 1$
 - Functorial structure: $(map_{pmf} f\mu) y = \mu \{x \mid fx = y\}$ and $(ret_{pmf} x) x = 1$
- Probabilistic coupling: $rel_{pmf} R \mu \mu'$ iff there exists ν s.t.
 - $\mu = \text{map}_{\text{pmf}} \pi_1 \nu$ and $\mu' = \text{map}_{\text{pmf}} \pi_2 \nu$
 - Support of ν is a subset of R

$$\begin{array}{cccc}
\mu & \nu & \mu' \\
a & & \\
b & & \\
c & & \\
\end{array}$$

$$R = \{(a, d), (b, d), (b, e), (c, e)\}$$

MARKOV DECISION PROCESSES

QUICK TOUR

- Markov Chains
 - Transition System $K :: \sigma \Rightarrow \sigma \text{ pmf ("kernel")}$
 - Trace Space $T_K s(x_0 \cdots x_n) = K s x_0 * \cdots * K x_{n-1} x_n$ SET OF STATE TRACES STARTING WITH $x_0 \cdots x_n$
- Markov Decision Processes
 - Add non-determinism $K :: \sigma \Rightarrow \sigma$ pmf set
 - Coinductive configurations resolve non-determinism: state σ , action σ pmf, continuation $\sigma \Rightarrow \sigma$ cfg
 - MC on configurations: $K_c :: \sigma \operatorname{cfg} \Rightarrow \sigma \operatorname{cfg} \operatorname{pmf}$

TIMED AUTOMATA

SEMANTICS

- Types of transitions:
 delay and action
- Clock valuations: $nat \Rightarrow real$
 - → Infinite Semantics
- Clock constraints:

$$(\lambda c. 1) \vdash c_1 > 0 \land c_2 \le 3$$

→ Invariants on nodes and guards on edges

PROBABILISTIC TIMED AUTOMATA

WHAT IS THE MAX./MIN.

PROBABILITY TO REACH I₂

AMONG ALL

ADVERSARIES?

PROBABILISTIC TIMED AUTOMATA

SEMANTICS

- Formalize PTA as MDPs instead of probabilistic timed structures
- Defined through its kernel

DELAY

TA

$$\frac{(l,u) \in S \qquad t \ge 0 \qquad u \oplus t \vdash \mathcal{I} \ l}{(l,u) \to^d (l,u \oplus d)}$$
$$(l,u) \in S \qquad t \ge 0 \qquad u \oplus t \vdash \mathcal{I} \ l$$

 $\mathsf{ret}_{\mathsf{pmf}}\left(l, u \oplus t\right) \in K\left(l, u\right)$

PTA

PROBABILISTIC TIMED AUTOMATA

SEMANTICS

- Formalize PTA as MDPs instead of probabilistic timed structures
- Defined through its kernel

ACTION

TA

$$\frac{(l,u) \in S \qquad A \vdash l \longrightarrow^{g,r} l' \qquad u \vdash g}{(l,u) \to_a (l', [r \to 0]u)}$$

$$\frac{(l,u) \in S \qquad A \vdash l \longrightarrow^g \mu \qquad u \vdash g}{\operatorname{map}_{\mathrm{pmf}} \left(\lambda(r,l). \left(l, [r \to 0] u \right) \right) \mu \in K \ (l,u)}$$

PTA

REACHABILITY IN TIMED AUTOMATA

THE REGION CONSTRUCTION

 Reachability for TA shown decidable by Alur & Dill via the region construction to reduce TA to a finite automaton

IS 12 REACHABLE?

12 IS REACHABLE!

REACHABILITY IN PTA

THE REGION CONSTRUCTION

Reachability for PTA shown decidable by Kwiatkowska et al.
 via the region construction to reduce PTA to a finite MDP

WHAT IS THE MAX./MIN.

PROBABILITY TO REACH I₂

AMONG ALL

ADVERSARIES?

THE MAX./MIN.

PROBABILITY TO REACH I₂

IS 0.3/0!

REGION GRAPH

KERNEL

$$\frac{(l,R) \in \mathcal{S} \quad R' \in Succ \ R}{\mathsf{ret}_{\mathsf{pmf}} \ (l,R') \in \mathcal{K} \ (l,R)} \ \mathsf{Delay_R}$$

$$\frac{(l,R) \in \mathcal{S} \quad A \vdash l \longrightarrow^g \mu \quad \forall u \in R. \, u \vdash g}{\mathsf{map}_{\mathsf{pmf}} \left(\lambda(r,l). \left(l,\{[r \to 0]u \mid u \in R\}\right) \mu \in \mathcal{K} \left(l,R\right)\right)} \text{ ACTION}_{\mathsf{R}}$$

REGION GRAPH

BISIMULATION

- Prove bisimulation between PTA and region graph
- Our bisimulation theorem on Markov chains:

$$T_K x A = T_L y B$$
 if $R x y$ and $\forall \omega \omega'$. $rel_{stream} R \omega \omega' \longrightarrow (\omega \in A \leftrightarrow \omega' \in B)$ and $\forall x y . R x y \longrightarrow rel_{pmf} R (K x) (L y)$

TRACE SPACES OF MC KERNELS K, L

MC STATES SETS OF STREAMS

- Can be instantiated for PTA and region graph
- Corollary: min./max. reachability probabilities are equal for PTA and region graph

REGION GRAPH

BISIMULATION

Bisimulation on Markov chains

$$T_K x A = T_L y B$$
 if $R x y$ and $\forall \omega \omega'$. $rel_{stream} R \omega \omega' \longrightarrow (\omega \in A \leftrightarrow \omega' \in B)$ and $\forall x y . R x y \longrightarrow rel_{pmf} R (K x) (L y)$

TRACE SPACES OF MC KERNELS K, L

MC STATES SETS OF STREAMS

Instantiation for PTA and region graph

•
$$K = K_c$$
 $L = \mathcal{K}_c$ $x = c$ $y = \alpha c$

•
$$R c c' = (\alpha c = c')$$

• Defining α and establishing the probabilistic coupling property is a central part of the formalization

FINALLY

DISCUSSION & FUTURE WORK

- Separate discrete TA-related reasoning from probabilistic, MDP-related reasoning
- Levels of abstraction: MCs and trace spaces, MDPs and configuration traces, PTA and state traces
- In the paper: how to deal with zenoness?
- Future Work: Backward reachability of PRISM → requires us to pull a different probabilistic argument out of our hat
- Formalization in the Archive of Formal Proofs (isa-afp.org)