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Abstract

This thesis describes a framework for the formally verified runtime complexity analy-
sis of functional programs with the help of Isabelle/HOL. A simple, deeply embedded
ML-style programming language PMλ is defined together with a corresponding small-
step operational semantics. Additionally, a complexity measure for general terminating
PMλ-programs is defined. In order to enable employment of the framework for practi-
cal complexity analyses, fundamental properties of the language, its semantics, and the
complexity measure are shown. Among these properties, the most significant one is that
programs with inputs of bounded size can only exhibit a finite number of execution paths.
Finally, it is demonstrated how the framework can be set to use for the worst-case complex-
ity analysis of three sample programs – a program for list concatenation and two versions
of list reversal. The body of this work is preceded by a brief discussion of relevant Isabelle
preliminaries and concludes with a presentation of relevant previous work, which is com-
pared to the approach described here, together with a discussion of possible extensions to
the framework.

Diese Arbeit beschreibt ein Rahmenwerk für die formal verifizierte Laufzeit-Komple-
xitätsanalyse von funktionalen Programmen mit der Hilfe von Isabelle/HOL. Eine einfa-
che, tief eingebette ML-artige Programmiersprache wird zusammen mit einer zugehörigen
kleinschrittigen operationellen Semantik definiert. Zusätzlich wird ein Komplexitätsmaß
für allgemeine terminierende PMλ-Programme definiert. Um die Benutzung des Rahmen-
werks für praktische Komplexitätsanalysen zu ermöglichen, werden grundlegende Eigen-
schaften der Sprache, ihrer Semantik und des Komplexitätsmaßes aufgezeigt. Unter diesen
Eigenschaften ist die wichtigste, dass Programme mit Eingaben von beschränkter Größe
nur endlich viele mögliche Ausführungspfade aufweisen können. Abschließend wird de-
monstriert wie das Rahmenwerk für die Worst-Case-Komplexitätsanalyse von drei Bei-
spielprogrammen – einem Programm für die Konkatenation von Listen und zwei Versio-
nen der Listenumkehrung – eingesetzt werden kann. Dem Hauptteil der Arbeit geht eine
knappe Diskussion von relevantem Vorwissen über Isabelle vorraus. Die Arbeit wird mit
einem Überblick über relevante vorangegange Arbeiten, die mit der hier beschriebenen
Vorgehensweise verglichen werden, und einer Diskussion von möglichen Erweiterungen
des Rahmenwerks abgeschlossen.
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Introduction and Theory
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1. Introduction

As software invades every sector of life, we also rely increasingly on software in high-
security applications, e.g. in the banking business, or in life critical applications such as
medical devices or control systems of vehicles. Surgical robots or self-driving cars soon
will not be a future utopia anymore. These applications all share the common property
that they are zero fault tolerant. Consequently, we want to have absolute confidence that
the employed software functions correctly. The industrial standard for acquiring this con-
fidence – mere testing – is not sufficient to reach absolute confidence in the correctness
of the software. Only rigorous mathematical proof of the correctness of the software can
reach this goal. However, a proof developed and checked by a human is just as error-prone
as software developed by a human. Thus one also wants to ensure the correctness of the
proof by checking it mechanically. This task can be tackled with the help of so-called proof
assistants. They allow a human user to construct machine-checked proofs in a continuous
dialog with the system, which supports the user with functionality for automatic prov-
ing. Today’s proof assistants, such as Coq [35], Isabelle [30] or Nuprl [5], have evolved to
a level where they can be used to verify the correctness of complex real-world software.
Important milestones include the verification of an operating system microkernel [15], the
verification of a C compiler [20] and a correctness proof for Java’s bytecode verifier [14].

In the classical study of program properties, besides the verification of program correct-
ness, a second type of analysis is predominant – the drive to predict a program’s runtime
for inputs of certain size. This property of programs is commonly referred to as a pro-
gram’s runtime complexity1. Although the field has been broadly investigated by research
in theoretical computer science, little effort has been made to formalize the achieved results
with the help of proof assistants. However, such a formalization would not only be desir-
able for romantics in the research community who are interested in treating both fields
equally, but could also have a practical impact: in emerging security applications, such
as smart cards, environmental considerations have to be taken into account, as a possible
attacker can have physical access to the system. The computational speed of a system is a
possible weakness that could be exploited by such an attacker. Thus the interest in build-
ing up absolute confidence in the operational speed of computer systems, by analyzing
the underlying programs’ algorithmic complexity in a formal way, is also bound to rise.

The purpose of this work is to make the first steps to bring the capability for such an
analysis to the Isabelle proof assistant. For a formal verification of software correctness
with the help of Isabelle, programs are written in Isabelle/HOL (c.f. Chapter 2), which,
informally speaking, is a combination of logics and programming. These Isabelle/HOL
programs can then be exported into programs for mainstream functional programming
languages such as Standard ML or Haskell. For our interests, the problem with this ap-
proach is that programs are actually just Isabelle/HOL terms, which makes it impossible

1Throughout the remainder of the thesis, the term complexity will also refer to a program’s runtime com-
plexity.
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to reason about their structure. Therefore, we cannot assign them any notion of program
execution forbidding us to reason about their runtime complexity.

Consequently, in order to be able to analyze the complexity of functional programs in Is-
abelle/HOL, we have to use a deep embedding of a functional language. That is, we have to
define a functional language, together with a semantics describing the language’s mean-
ing, in terms of Isabelle/HOL constructs. We can then assign this language a notion of
execution, used to define a complexity measure for programs in the language. With the
help of this, we will be able to state and prove assertions about the algorithmic complex-
ity of programs in Isabelle/HOL. The long-term goal would be to show the equivalence
of programs in this language to the usual Isabelle/HOL programs. This would allow us
to verify the correctness of programs together with exporting their code the usual way,
while the programs’ complexity could be analyzed using the deeply embedded language.
However, this point will remain untouched in this work.

Following Knuth [17], four characteristics are relevant for the analysis of a program’s
complexity – an upper and a lower bound for the program runtime and its mean and
deviation. We choose to concentrate only on the analysis of upper bounds, i.e. worst-case
complexity, as this is the most intensively studied figure in algorithms research. However,
the author claims that the approach of this work is equally applicable to the analysis of the
other quantities.

We give a brief description of the technical steps we will take to construct a framework
for complexity analysis with Isabelle. The approach we take is to first define a compact
functional language PMλ syntactically using Isabelle/HOL datatypes. Next, we assign a
semantic meaning to this language by means of an inductive Isabelle/HOL relation that
defines an operational small-step semantics for the language. This small-step semantics is
then used to define algorithmic complexity for general terminating programs.

The outline of this work is as follows. Chapter 2 briefly discusses some aspects of Is-
abelle that are relevant for the remaining part of the work. Chapter 3 defines our language
together with its semantics and states some important properties of the latter; Chapter
4 will define the complexity measure for this language. Due to the way our complexity
measure is defined, in order to be able to reason about the complexity of programs, we
will have to show that there are only finitely many execution paths a program can take for
inputs of finite size. A proof of this property is the subject of Chapter 5, completing our
framework for complexity analysis. Chapter 6 demonstrates how the framework could
be used to analyze the complexity of three concrete sample programs – two versions of
list reversal and a program for list concatenation. Chapter 7 discusses some previous re-
lated work and how it compares to this work. Chapter 8 concludes with a number of final
thoughts and hints at possible future extensions to the framework.
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2. Isabelle Prelimnaries

Isabelle [26] is a generic proof assistant in the sense that it in principal supports arbi-
trary user-defined logics by providing primarily a meta-logic (an intuitionistic fragment
of higher-order logic) in which different object-logics can be encoded. However, for most
applications the user does not provide his own object-logic, but rather works on one of
the predefined object-logics Isabelle offers. Out of these, Isabelle/HOL, a formalization
for common higher-order logic, is probably the one that is most frequently used. Past
applications include formalizations of different aspects of mathematics and the aforemen-
tioned verification of a whole operating-system kernel [15]. Isabelle/HOL allows us to
write down formalized mathematics in a way that is very similar to what we are used to
from the usual, more informal mathematics. Isabelle/HOL is also the object logic on which
we will base this work, and we will refer to it as the abbreviated term HOL from now on.

Isabelle is a so-called LCF-style prover1. This means that it possesses a small trusted in-
ference kernel which has to certify any theorem before it is regarded as proven. More pre-
cisely, the kernel provides a number of elementary functions for manipulating goal states
which can be combined to build more powerful proof tactics. The important characteris-
tic of this approach is that if the trusted kernel is implemented correctly and if Isabelle’s
meta logic is sound, then any theorem provable in Isabelle is also correct. (Precisely, for
an object-logic the soundness of the logic’s encoding is also necessary for soundness of the
whole system.) Isabelle provides a number of automatic proof methods, including first-
order proof methods, tableau provers, simplification tactics and classical reasoners. As all
the proof steps they produce have to be certified by the kernel first, their implementation
is not relevant for soundness.

We want to discuss Isabelle’s fastforce method more specifically as it will be crucial for
the complexity analysis in Chapter 6. On the one hand, Isabelle provides a number of
automatic proof methods that are based on so-called classical reasoning; these are proof
tactics that reason via natural deduction in combination with backtracking or other search
strategies. A more general version of natural deduction is the sequent calculus which is also
supported by Isabelle. There are also a number of classical reasoners in Isabelle that are
based on this more powerful reasoning method. On the other hand, Isabelle also provides
simplification methods which rely heavily on term rewriting (in the style of rewriting terms
by using equations from left to right). The fastforce method combines the best of both
worlds; it interweaves classical reasoning and simplification. We will later make use of the
power of this combination to automatically calculate certain reduction sequences.

There are some notational specialties arising from the nature of Isabelle’s meta-logic,
of which we want to point out one aspect that will appear frequently in the notation of
lemmas and theorems in the remainder of this work. All propositions in Isabelle can be
written in a natural deduction style format as Hereditary Harrop Formula. This way, we can

1The abbreviation LCF stands for Logic of Computable Functions [9].
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write a conclusion Q following from premises P1 through Pn, where both the conclusion
and its premises can contain the universally quantified variable x, as:∧

x. [[P1; P2; . . . ; Pn]] =⇒ Q

This notation is used for lemma or theorem statements as well as to represent the internal
goal state, where subgoals of the current proof state are the premises. An empty set of
subgoals (n = 0) represents a successful proof attempt. We will also use this notation to
present lemmas and theorems throughout the text.

Originally, theorems in Isabelle were proved by applying a sequence of proof tactics (in
so-called tactic-style proof scripts) to refine an initial goal into subgoals until all subgoals
are proved, constituting a successful proof attempt. The disadvantage of this approach
is that theses scripts do not really convey any meaning to the user; they can only be un-
derstood and maintained if the intermediate proof states acquired by the applications of
tactics are reinspected by the user. This makes these proofs hard to maintain and makes
it difficult to present the knowledge captured in them to a broader audience. Therefore,
more recent developments have added the proof language Isar [38], which allows us to
write down proofs in a structured manner as so-called Isar proof scripts or structured
proofs. Isar tries to mimic the way natural language proof texts are written. Although Isar
proofs scripts for Isabelle propositions are usually more verbose than their corresponding
tactic-style versions, structured proofs have the advantage of being more comprehensible
and maintainable. Moreover, they allow us to use a free mixture of forward and backward
reasoning in a way that is more convenient than that for tactic-style proof scripts. Most
of the Isabelle formalization in this work makes use of structured proofs, and in Chapter
6 we will present some actual Isar proof scripts for the complexity analysis of example
programs within our framework.

We conclude this chapter with a brief discussion of a few aspects of Isabelle/HOL that
are relevant for this work. Extensive documentation on Isabelle/HOL (as well as on Isar)
can be found on the Isabelle webpage2.

Types. The type system of Isabelle is based on the simply-typed lambda calculus [4].
However, HOL supports also more advanced concepts like that of type classes, popularized
by the Haskell programming language. We will now explain some aspects of HOL’s type
system that are relevant for this work. There are a number of elementary datatypes such as
the type bool for boolean values or the type nat for Church numerals. Type variables such
as ′a allow the definition of polymorphic datatypes such as the built-in type for modeling
erroneous or missing values, ′a option, and the type for pairs, ′a× ′b. The function type with
argument type ′a and result type ′b is written as ′a⇒ ′b. The function arrow associates to
the right; for instance, ′a ⇒ ′b ⇒ ′c is the same as ′a ⇒ ( ′b ⇒ ′c). As is familiar from
mainstream functional programming languages, types are usually automatically inferred.
The notation t:: ′a can be used to explicitly annotate the term t with the type ′a. HOL
supports a mechanism for defining (polymorphic) inductive datatypes via the datatype
keyword. An important feature of this mechanism is that it also allows the definition of
mutually recursive datatypes. For instance, a tree consisting of alternating layers of nodes
labeled with A and B could be defined in the following manner:

2http://isabelle.in.tum.de/
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datatype
′a ATree = ATip
| ANode ( ′a BTree) ′a ( ′a BTree)
and
′a BTree = BTip
| BNode ( ′a ATree) ′a ( ′a ATree)

Functions. Isabelle allows us to define well-defined (partial or total) functions via mul-
tiple methods, including primitive recursion over datatypes and wellfounded recursion.
Only definitions via the fun keyword are relevant for this work. The fun keyword allows
us to define a total function by a set of recursive equations using arbitrary pattern match-
ing. Isabelle tries to automatically proof the properties regarding pattern matching that are
necessary for wellfoundedness and termination. This is usually sufficient for simple func-
tion definitions, including those that are found in this work. With this method, multiple
mutually recursive functions for mutually recursive datatypes can also be defined using
the and keyword in the definition via fun. The functions swapa and swapb, which can swap
the labeling of our trees, are an instance of this.

fun swapa :: ′a ATree⇒ ′a BTree
and swapb :: ′a BTree⇒ ′a ATree
where

swapa ATip = BTip |
swapa (ANode l x r) = BNode (swapb l) x (swapb r) |
swapb BTip = ATip |
swapb (BNode l x r) = ANode (swapa l) x (swapa r)

Inductive Predicates and Sets. Isabelle features inductive definitions for predicates and
sets via a set of rules. They specify the least predicate or set that only contains elements
adhering to these rules. They are defined via the inductive and inductive set keywords,
respectively. These definitions also exist in the flavors of mutually inductive predicates
or sets, using the and keyword to define multiple predicates or sets at the same time.
Conversely, these definitions specify the greatest predicate or set that is consistent with the
given rules. To illustrate this, we say that a non-trivial tree is leaf balanced if the children
of each of its branches are either both leafs or both nodes. This property is described by
the mutually inductive predicates lba and lbb:

inductive lba :: ′a ATree⇒ bool
and lbb :: ′a BTree⇒ bool
where

ABase: lba (ANode BTip x BTip) |
ACombined: [[lbb l; lbb r]] =⇒ lba (ANode l x r) |
BBase: lbb (BNode ATip x ATip) |
BCombined: [[lba l; lba r]] =⇒ lbb (BNode l x r)

We will see examples of ordinary inductive definitions of sets and predicates in the next
chapter. A further example of a mutually inductive predicate can be found in Chapter 5.

All inductive definitions produce an induction rule from their defining rules which can
be employed in a rule induction. The induction rules for lba and lbb are given as follows:
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[[lba x1.0;∧
x. P1.0 (ANode BTip x BTip);∧
l r x. [[lbb l; P2.0 l; lbb r; P2.0 r]] =⇒ P1.0 (ANode l x r);∧
x. P2.0 (BNode ATip x ATip);∧
l r x. [[lba l; P1.0 l; lba r; P1.0 r]] =⇒ P2.0 (BNode l x r)]]

=⇒ P1.0 x1.0

[[lbb x2.0;∧
x. P1.0 (ANode BTip x BTip);∧
l r x. [[lbb l; P2.0 l; lbb r; P2.0 r]] =⇒ P1.0 (ANode l x r);∧
x. P2.0 (BNode ATip x ATip);∧
l r x. [[lba l; P1.0 l; lba r; P1.0 r]] =⇒ P2.0 (BNode l x r)]]

=⇒ P2.0 x2.0

Rules for inductive definitions can be named (as can be observed at the definition of lba and
lbb), and their names can be used to refer to the appropriate induction cases in structured
proofs that employ a rule induction. In this work we will also use these names in the
presentation of informal proofs of this kind. To conclude this chapter we note that the
HOL formalizations of all concepts introduced and results proved in the remainder of this
work can be found in the abstract, which is delivered in electronic form together with this
thesis.
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3. A Minimalist Functional Language with
Semantics

The first step to build our framework for complexity analysis is to define a language,
PMλ1, syntactically together with a corresponding semantics that assigns a meaning to
the language. For this purpose we closely follow a set of lecture slides by Xavier Leroy for
a course at Paris Diderot University [21]. The first section of this chapter will give the syn-
tactic definition of PMλ and will discuss its main constructs. In the next section this will
be complemented with a definition of the semantics for PMλ that will be primarily used
in this work. Section 3.3 discusses some important properties of this semantics. As a slight
digression from our main concern, Section 3.4 gives an alternative semantics and proves
its equivalence to the first version. Finally, Section 3.5 presents some simple extensions to
PMλ that can be achieved by adding mere syntax sugar but add to the practical usefulness
of the language.

3.1. A Minimalist Functional Language

Before we define the abstract syntax of PMλ, we shall describe its basic features. Our lan-
guage is fairly minimal in the sense that it supports very few concepts of functional lan-
guages that make it just expressive enough to accomplish Turing-completeness. The basic
constructs we need for this are unnamed functions, function applications and a fixed-point
combinator that allows us to define recursive functions. The only feature we support that
does not belong to the category of mere basics is pattern matching. We add this capability
to enable us to write programs in a style that is familiar to programmers who are used
to real word functional languages, such as ML or Haskell, for which pattern matching is
central. PMλ does not provide elementary datatypes (such as integers, floats or charac-
ters) but rather has a simple mechanism for constructing nested data values that can be
pattern matched against. Moreover, PMλ does not internalize a type system in order to
keep the semantics and the definition as simple as possible, making the whole language
easier to work with. We define the abstract syntax of PMλ through the mutually recursive
HOL datatypes expr and PatMat, representing regular language expressions and patterns,
respectively.

Definition 3.1.
datatype

expr = Fn string expr
| V string
| Constr string (expr list)

1PMλ– Pattern-matched λ-calculus.
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|Match expr PatMat
| App expr expr
| Fix string expr

and
PatMat = Pat string (string list) expr
| Or PatMat PatMat

To be able to write programs in a more readable format we add concrete Isabelle infix
syntax for the constructors of expr and PatMat. This way, we can write the term Fix f e
as µ f . e, for instance. The remaining syntax abbreviations are displayed in Figure 3.1.
Throughout the text, a, b, c, e, f and t (as well as e’, e” etc.) will commonly refer to expres-
sions of type expr, while p, ps and q will refer to patterns of type PatMat. We give a short
characterization for each of the language constructs:

• FN x⇒ e is an unnamed function with an argument of name x and function body e.

• V x is a free variable with name x used to reference the name of a recursive function
or the argument of an unnamed function.

• S � xs constructs a composite datatype from a constructor name S and a list of argu-
ments xs.

• MATCH e WITH p matches an expression e against a pattern p.

• a $ b denotes the application of expression a to expression b.

• µ f . e is a recursive function that can reference itself by the name f in the function
body e. This is an internalized version of the fixed-point combinator that is known
from the λ-calculus.

• S � xs⇒ e defines a pattern to bind a constructor value’s arguments with constructor
name S in-order to the names given by xs in the body expression e.

• p ‖ ps combines a pattern p with a number of patterns ps that can be matched against
an expression e if e does not match p. This operator is right-associative and patterns
in PMλ are always matched from left to right. Patterns are expected to be nested
only on the right-hand side.

At the end of this section we note that our language does not distinguish between pro-
gram – or, say, function definitions – and expressions for the sake of minimality. Hence,
we mix these terms from this point on; specifically when we use the term program, we in
fact mean the term expression.

3.2. A Small-Step Semantics

Now that we have defined our language in a syntactic way, we want to define what pro-
grams in this language mean by defining a corresponding semantics. For this purpose
many approaches have been investigated by researchers in the field of programming lan-
guages. Important approaches include operational semantics that try to capture the notion

12



FN x⇒ e ≡ Fn x e
S � xs ≡ Constr S xs
MATCH e WITH p ≡ Match e p
a $ b ≡ App a b
µ f . e ≡ Fix f e
S � xs⇒ e ≡ Pat S xs e
p ‖ q ≡ Or p q

Figure 3.1.: Syntax abbreviations for the expr and PatMat datatypes

of how a program executes, denotational semantics that describe the meaning of a pro-
gram with mathematical structures, and collecting semantics that describe the set of states
a program flow can have reached at any point in the program execution2. We choose an
operational semantics because, for the analysis of the runtime complexity of programs, we
are concerned with the execution flow of programs rather than a program’s mathematical
notion or its possible execution states.

For operational semantics one can distinguish between the so-called big-step (or natu-
ral) and small-step semantics. The former is a relation between an initial program (po-
tentially with an initial state) and its final execution result. The relation tells us how the
execution of a program works step-by-step, but the relation looks as if the initial program
would directly take just one big step to its execution result. A small-step semantics, on
the other hand, is a relation between a start expression and a successor expression that
can be reached by taking one atomic execution step from the start expression. Both types
can potentially carry a corresponding state. Here, we primarily work with a small-step
operational semantics since it quite directly yields a notion of the runtime complexity of
programs, as we will see in Chapter 4. We nevertheless also present a big-step semantics
for our language and prove its equivalence to the small-step semantics to provide some
evidence that our intuition about program execution, which is captured in the small-step
semantics, is the right one.

Before we give a definition of our small-step semantics, we describe some basic prop-
erties that it will assign to our programming language. Firstly, the reduction strategy has
a right-to-left order, which means that we always have to reduce the right-hand side of
an application to a value before we can reduce the left-hand side of the application. Sec-
ondly, we enforce a call-by-value execution scheme: the argument of a function must be
fully reduced to a value before β-reduction can take place. Thirdly, functions in PMλ are
first order, i.e. they are not first-class citizens in the sense that they cannot be passed as
an argument to another function. This last property poses a major limitation to the ex-
pressiveness of PMλ compared to real-world functional languages but will facilitate the
complexity analysis. Of course, the simple programs analyzed in this work are not affected
by this limitation.

Precisely, the small-step semantics is defined via an HOL inductive set small step that
contains pairs of expressions together with a predicate small step rel that describes which
pairs of expressions belong to the set small step. The intended meaning of small step rel a

2For a more detailed explanation of these different styles of semantics refer to [25].
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b is that expression a transforms into expression b in one execution step. We use Isabelle
syntax sugar to abbreviate small step a b as a→ b.

Definition 3.2.
inductive-set

small step :: (expr ∗ expr) set
and

small step rel :: [expr, expr]⇒ bool (infix→ 55)
where

X→ Y ≡ (X, Y) ∈ small step |

Beta: is cval v =⇒ (FN x⇒ c) $ v→ subst c x v |
RecBind: (FN f ⇒ c) $ (µ f . a)→ subst c f (µ f . a) |
RightRed: d→ d ′=⇒ c $ d→ c $ d ′ |
LeftRed: [[is cval v; c→ c ′]] =⇒ c $ v→ c ′ $ v |

Rec: is cval v =⇒ (µ f . FN x⇒ c) $ v→ subst (subst c x v) f (µ f . FN x⇒ c) |

MatchTrueS: [[S = S ′; is cval (S � cs); length xs = length cs]] =⇒
MATCH S � cs WITH S ′� xs⇒ c→ fold (λ (x, d) c. subst c x d) (zip xs cs) c |

MatchTrueM: [[S = S ′; is cval (S � cs); length xs = length cs]] =⇒
MATCH S � cs WITH S ′� xs⇒ c ‖ ps→ fold (λ (x, d) c. subst c x d) (zip xs cs) c |

MatchRed: c→ c ′=⇒MATCH c WITH p→MATCH c ′WITH p |
MatchFalse: [[S 6= S ′; is cval (S � cs)]] =⇒
MATCH S � cs WITH S ′� xs⇒ c ‖ ps→MATCH S � cs WITH ps |

ConstrLeftRed: [[c→ c ′; is cval (S � vs)]] =⇒ S � c·vs→ S � c ′·vs |
ConstrRightRed: S � cs→ S � cs ′=⇒ S � c·cs→ S � c·cs ′

The definition utilizes another inductively defined predicate, is cval, which describes
the set of valid constructor values, that is, the set of expressions that are constructed only
from nested applications of the abstract syntax constructor Constr. The names v and v’ will
continuously refer to constructor values throughout the text.

Definition 3.3.
inductive is cval :: expr⇒ bool
where

Constr: (∀ x ∈ set xs. is cval x) =⇒ is cval (Constr s xs)

Furthermore, the definition of the predicate small step rel employs a function subst that
performs capture avoiding substitution, where subst t x t’ replaces the term V x in term
t with the term t’ at free occurrences of x, i.e. at places where x is not bound by an en-
closing anonymous function, pattern or fixed-point operator. As the abstract syntax of
our language is defined through a mutually recursive HOL datatype, the HOL definition
of capture avoiding substitution employs two mutually recursive functions, subst for the
type expr and subst pat for the type PatMat – a pattern frequently encountered in the re-
maining part of this work.
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Definition 3.4.
fun subst::expr⇒ string⇒ expr⇒ expr
and subst pat::PatMat⇒ string⇒ expr⇒ PatMat where

subst (V x) y t = (if x = y then t else V x) |
subst (FN x⇒ a) y t = FN x⇒ (if x = y then a else subst a y t) |
subst (µ x. a) y t = µ x. (if x = y then a else subst a y t) |
subst (S � cs) y t = S � map (λu. subst u y t) cs |
subst (MATCH e WITH ps) y t = MATCH subst e y t WITH subst pat ps y t |
subst (a $ b) y t = (subst a y t) $ (subst b y t) |

subst pat (S � xs⇒ e) y t = S � xs⇒ (if (y ∈ set xs) then e else subst e y t) |
subst pat (p ‖ ps) y t = subst pat p y t ‖ subst pat ps y t

We briefly explain the defining rules of the small-step semantics. Rule Beta describes
usual β-reduction with the notable peculiarity that it enforces the first-order property of
our language as well as the call-by-value execution scheme by demanding a constructor
value for the right hand side of the function application. The role of rule RecBind may not
be clear at first sight. It allow us to bind a recursive function defined via the fixed-point
combinator to a name in some command, thus enabling us to work with a construct similar
to the letrec-construct found in functional languages like Scheme or Caml. In fact, we can
employ some syntax sugar to extend our language with a letrec-construct of our own:

LETREC f = e IN b ≡ (FN f ⇒ b) $ (µ f . e)

We note that if the rule Beta would not specifically enforce the first order property of our
language, it would already subsume rule RecBind. Rules RightRed and LeftRed define the
right-to-left execution order of our language for applications. These rules conclude the
rule set that could describe an usual untyped λ-calculus with an outermost-first reduction,
call-by-value execution scheme.

On top we add a fixed-point combinator that is internalized in the language for two
reasons. On the one hand, the first order property of the language prohibits us to use a
fixed-point combinator defined through unnamed functions, hence its internalization is
necessary for Turing-completeness. On the other hand, it resembles the way one would
rewrite the application of a value to a recursive function by hand, i.e. by substituting the
value at free occurrences of some variable that is bound by the function, as well as substi-
tuting the recursive function’s definition at places where it references itself. This behavior
is captured by rule Rec.

The second rule set defines the behavior of the pattern matching mechanism. Rules
MatchTrueS and MatchTrueM describe the cases of a successful pattern match for a single
and multiple patterns to match against, respectively; rule MatchFalse handles the case of a
pattern match against an inadequate pattern where more patterns are left to try. All of the
rules require the matched value to be a fully reduced constructor value. A usual left fold3

instantiated on the function for capture-avoiding substitution is used to bind the pattern’s
variables from left to right in the case of a successful pattern match. This means that in the

3The type of the fold function in HOL is ( ′a⇒ ′b⇒ ′b)⇒ ′a list⇒ ′b⇒ ′b.
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case, that one variable name appears multiple times in a pattern, it is bound to the value
corresponding to its rightmost occurrence. This behavior is different from what would be
expected from a real world functional language as those usually would not allow a valid
program to contain multiple occurrences of one variable in the same pattern. The last two
rules describe the reduction under the value constructor Constr, which, analogously to the
reduction of applications, follows a right-to-left order.

We conclude this section with a discussion of some popular alternatives that could have
been chosen for the definition of a small-step operational semantics and the reasons that
induced us to step back from them in favor of the chosen approach. A first striking fea-
ture of our semantics is that it doesn’t make use of an execution state or some execution
context, but rather employs textual substitution. This is unnatural in the sense that a com-
mon compiler or interpreter could not rely on textual substitution to resemble basic be-
havior of β-reductions or recursive function applications if these operations are sought to
be executed efficiently. A semantics using some execution environment that stores inter-
mediate variable bindings – for recursive function variable names introduced through a
letrec-construct as well as variables introduced through unnamed functions – would de-
scribe program execution more realistically. In such an approach free variable bindings
from the environment could be substituted when they are needed, i.e. when an occurrence
of a term of the form V x, where x is one of the names bound in the environment, is to
be reduced. We nevertheless rely on textual substitution for it has some advantages, as
initial experimentation has shown: it allows us to define an equivalent big-step semantics,
yields a more compact rule set, and probably more closely models the intuition one has in
in mind when thinking about program reductions.

Yet another alternative that is frequently used for the definition of operational program-
ming language semantics, which we have decided not to use, are Felleisen Hieb-style re-
duction contexts [6]. These work with a so-called fill-in-a-hole grammar that defines eval-
uation contexts, which are terms where ordinary subterms are replaced by special ones,
called holes, which define the place of the next reduction step. Owens [29] claims that such
an approach could yield a more compact formalization, but that it would be less accessible
for automatic reasoning with proof assistants in HOL. Specifically, we argue that a seman-
tics only defined through an inductive relation should be more convenient to reason about
with HOL proof assistants, as inductive relations are widely used in HOL formalizations.
In contrast, reasoning about the hole filling process that appears along the way of a pro-
gram evaluation would supposedly require more intensive mechanical proof work.

3.3. Important Properties of the Small-Step Semantics

In this section we want to discuss some properties of the small-step semantics that will
prove to be useful for the complexity analysis of programs. All of the proofs mentioned in
this section are automatic, using adequate Isabelle proof methods. We first note that the
language fulfills the so-called property of weak reduction: we cannot reduce the body of
an anonymous function before getting rid of the function abstraction by performing a β-
reduction. This is proved by a simple case analysis on the rules constituting the small step.
Formally, one can show:

Lemma 3.5 (Weak reduction). @ e ′. FN x⇒ e→ e ′
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Moreover, using rule induction on the is cval relation, we can prove that values never
reduce under a small-step:

Lemma 3.6. is cval v =⇒ @ e. v→ e

Taking these two properties together one can prove – employing rule induction on the
semantics’ rules – the important property of determinism of the small-step semantics: if we
can take a reduction step from an expression e to an expression e′ and another reduction
step from e to an expression e′′, it follows that e′ has to be equal to e′′. Formally:

Lemma 3.7 (Determinism of the small-step semantics).
[[e→ e ′; e→ e ′′]] =⇒ e ′′= e ′

3.4. A Big-Step Semantics

As a slight digression from the main theme of this work, we present in addition to our
small-step semantics also a big-step semantics and prove the equivalence of both. The
big-step semantics is mainly a byproduct of the author’s efforts to develop the small-step
semantics. In order to find some proof that the small-step semantics captures the cor-
rect intuition, the easier comprehensible big-step semantics were defined and shown to be
equivalent to the small-step version. Analogous to the definition of the small-step seman-
tics, the big-step semantics is an inductively defined relation, big step, that relates a start
expression a with some result expression b, denoted as a ⇒ b. Its definition is given as
follows:

Definition 3.8.
inductive
big step :: expr⇒ expr⇒ bool (infix⇒ 55)

where
Val: is cval v =⇒ v⇒ v |
Fn: (FN x⇒ c)⇒ (FN x⇒ c) |
RecSelf : µ f . c⇒ µ f . c |
Beta: [[a⇒ FN x⇒ c; b⇒ v ′; is cval v ′; subst c x v ′⇒ v; is val v]]

=⇒ a $ b⇒ v |
Rec: [[a⇒ µ f . FN x⇒ c; b⇒ v ′; is cval v ′; subst (subst c x v ′) f (µ f . (FN x⇒ c))⇒ v;

is val v]] =⇒ a $ b⇒ v |
RecBind: [[b⇒ µ f . d; subst c f (µ f . d)⇒ v; is val v]]

=⇒ (FN f ⇒ c) $ b⇒ v |
MatchTrueS: [[S = S ′; c⇒ S � vs; is cval (S � vs); length xs = length vs;

fold (λ (x, d) c. subst c x d) (zip xs vs) d⇒ v; is val v]] =⇒
MATCH c WITH S ′� xs⇒ d⇒ v |

MatchTrueM: [[S = S ′; c⇒ S � vs; is cval (S � vs); length xs = length vs;
fold (λ (x, d) c. subst c x d) (zip xs vs) d⇒ v; is val v]] =⇒
MATCH c WITH S ′� xs⇒ d ‖ ps⇒ v |

MatchFalse: [[S 6= S ′; c⇒ S � vs; is cval (S � vs);
MATCH S � vs WITH Ps⇒ v; is val v]] =⇒
MATCH c WITH S ′� xs⇒ d ‖ Ps⇒ v |
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ConstrRed: [[c⇒ v; is val v; S � cs⇒ S � vs; is cval (S � vs)]]
=⇒ S � (c·cs)⇒ S � (v·vs)

The definition of the big-step semantics makes use of a new predicate for expressions
that describes those types of expressions that would commonly be referred to as values in
programming language research: constructor values, function abstractions, and applica-
tions of the fixed-point combinator. Henceforth, we will call all expressions that fulfill the
is val predicate values.

Definition 3.9.
inductive is val :: expr⇒ bool
where

is val (µ f . c) |
is val (FN ⇒ ) |
is cval x =⇒ is val x

By comparison with the small-step semantics most of the rules should be self-explanatory.
We want to point out that the first three rules entail that we can take a big-step from any
value (as per the is val predicate) to itself. This is crucial for the equivalence with the big-
step semantics as we will see below. A second peculiarity is that we always require the
reduction results of big-steps to be values.

Precisely, the presented big-step semantics cannot be shown to be equivalent to the
small-step semantics for every reduction. As the big-step semantics only takes big steps
to some value, we can only show that reductions of the big-step and the small-step se-
mantics are equivalent if they both end in a value. That is, we want to show that we can
take a big-step from an expression e to a value v if and only if we can take a sequence of
small-steps to get from e to v. This simplifies the equivalence proof, but the equivalence
should still hold if the requirement was weakened to require any reduction result to be an
expression that cannot be reduced any further, a normal form4. In order to formalize the no-
tion of a reduction sequence with respect to the small-step semantics, we apply the Kleene
star on the small-step relation. The Kleene star is predefined in HOL (more precisely in the
subpackage IMP) as follows:

Definition 3.10.
inductive

star :: ( ′a⇒ ′a⇒ bool)⇒ ′a⇒ ′a⇒ bool
for r where

refl: star r x x |
step: r x y =⇒ star r y z =⇒ star r x z

Now we can denote that we can take some number of small-steps to get from the ex-
pression x to expression y as x→∗y, using the following definition:

Definition 3.11.
abbreviation

small steps :: expr⇒ expr⇒ bool
where x→∗ y ≡ star small step rel x y

4For a discussion of different reduction strategies and normal forms for the untyped λ-calculus, see Chapter
5 of Benjamin C Pierce’s TAPL [31].
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This allows us to state the final equivalence theorem, which we want to arrive at, in a
formal way:

Theorem 3.12. is val v =⇒ e⇒ v = e→∗ v

The direction from left to right does not need the reduction result to be a value and is
easily shown by a rule induction over the defining rules of the big-step relation. For the
direction from right to left we show a continuation lemma that states that if we can take a
small-step from an expression e to an expression e′ and if we can take a big-step from e′ to
some value v, then it also has to be possible to directly take a big-step from e to v.

Lemma 3.13. [[e→ e ′; e ′⇒ v; is val v]] =⇒ e⇒ v

This lemma can be proved by a rule induction on the small-step semantics using case
analysis on the big-step semantics in some of the cases. We can lift this continuation lemma
to a form where we assume that we can take a whole sequence of small-steps to get from e
to e′, employing a rule induction on the defining rules of the star relation.

Lemma 3.14. [[e→ e ′; e ′⇒ v; is val v]] =⇒ e⇒ v

With the knowledge that values can always be reduced to themselves via a big-step, the
second direction of the equivalence theorem follows immediately.

Lemma 3.15. [[e→∗ v; is val v]] =⇒ e⇒ v

3.5. Language Extensions

We conclude this chapter by demonstrating how our language can be extended through
the addition of mere syntax sugar with a number of basic language constructs that are
essential to most (functional) programming languages. We already showed how to de-
fine a letrec-construct via a syntax abbreviation, and, just as well, we produce a let-syntax
with an analogous construction that replaces the fixed-point combinator with an unnamed
function:

LET x = e IN b ≡ (FN x⇒ b) $ e

Furthermore, we define the truth values true and false as ′′TRUE ′′ � [] and ′′FALSE ′′ � [],
respectively. We then can easily build an if-then-else construct via pattern matching:

IF b THEN c ELSE d ≡MATCH b WITH ′′TRUE ′′� []⇒ c ‖ ′′FALSE ′′� []⇒ d

Finally, we demonstrate how to construct tuples by showing how to encode pairs that then
could be nested to arrive at n-ary tuples. We define pairs by means of the following syntax
abbreviation:

〈a, b〉 ≡ ′′Pair ′′� [a, b]

The functions Fst and Snd that extract the first and second element from a pair, respectively,
are easily defined via pattern matching.

Fst p ≡MATCH p WITH ′′Pair ′′� [ ′′a ′′, ′′b ′′]⇒ V ′′a ′′

Snd p ≡MATCH p WITH ′′Pair ′′� [ ′′a ′′, ′′b ′′]⇒ V ′′b ′′
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4. Runtime Complexity of PMλ-Programs

In the last chapter, by defining an operational semantics for PMλ, we have laid the founda-
tions for various types of mathematical analysis that could be performed on our language.
However, to be able to reason about the runtime complexity of PMλ-programs in a formal
way, we first have to define what we mean when we talk about complexity. Consequently,
in this chapter we define a measure for the runtime complexity of programs in our lan-
guage. We then present some important properties related to that complexity measure
that we will use in later chapters for the complexity analysis of some sample programs.

4.1. A Complexity Definition

Before we can come up with a complexity definition for programs we need to build an
intuition of the execution time of programs in our language. As we do not have a machine
model such as a Turing machine, we cannot define ”execution time” through the number
of computational steps a machine needs to execute a program until the final result of the
program has been computed. However, we can use a quite natural alternative: we simply
say that the execution time of a program (i.e. an expression) is the number of reduction
steps it takes in our small-step semantics to reduce the initial expression a normal form.
(Recall that normal forms are expressions that cannot be reduced any further.)

We note that the phrase ”the number of reduction steps” is not absolutely precise: for
non-terminating programs we can never arrive at a normal form; therefore, for these, there
is no such number. Nevertheless, for terminating programs there always is only one possi-
ble sequence of reductions from an initial program to a normal form, as the the small-step
relation is deterministic. Thus, for terminating programs there is exactly one such number
of reduction steps.

We argue that the number of reduction steps needed to arrive at a normal form is also
a sensible execution time measure. Any interpreted or compiled execution of a program
in our language has to simulate the basic reduction processes that are carried out by the
small-step semantics. Through the usage of a runtime stack or similar construction, all of
these operations can be performed with an overhead that – at least for practical considera-
tions – can be assumed to be constant. Therefore, upper bounds for the runtime complexity
of programs in our language, as given by the number of reduction steps in our small-step
relation, should generally only differ by a constant factor from the runtime upper bound
for realistic machine models. Of course, this statement is by no means precise for all pro-
grams or machine models, particularly in hindsight on compiler optimizations and similar
peculiarities. Still, we can safely assume that this runtime measure is reasonable for most
common analysis of the runtime complexity of programs.

In order to move these thoughts into the direction of a formalization, we need to formal-
ize the notion of a reduction sequence. In contrast to Section 3.4, the Kleene star would
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not be the appropriate choice here as we want to count the number of steps a reduction
sequence consists of. Instead, we employ the power of the relation product of the small-
step relation. The relation product over an Isabelle/HOL inductive set and its power are
already predefined, which is why we chose a little detour, defining the small-step relation
as an inductive set rather than directly as an inductive relation. The defining equations for
the relation product operator OO, and its power operator ˆˆ, together with their signatures
are given as follows1:

Definition 4.1.
op OO :: ( ′a⇒ ′b⇒ bool)⇒ ( ′b⇒ ′c⇒ bool)⇒ ′a⇒ ′c⇒ bool
[[R a b; S b c]] =⇒ (R OO S) a c

op ˆˆ :: nat⇒ ( ′a⇒ ′a⇒ bool)⇒ ( ′a⇒ ′a⇒ bool)
R ˆˆ 0 = HOL.eq
R ˆˆ (Suc n) = (R ˆˆ n) OO R

Analogously to the concrete syntax introduced for one step of the small-step relation we
write a→n b for the nth power of the relation product of the small-step relation between a
and b, henceforth referred to as the nsmall-step relation.

Definition 4.2.
abbreviation

small step n :: expr⇒ nat⇒ expr⇒ bool
where x→k y ≡ (small step rel ˆˆ k) x y

Still, this observation about the execution time of programs does not alone already pro-
vide us with a complexity definition as common complexity analysis is not concerned with
programs applied to concrete inputs, but rather with programs that are given a whole class
of arguments, namely all arguments of a certain size. These arguments generally correlate
to an infinite number of expressions in our language. Thus we first need to define a size
measure for expressions in our language so that we can talk about programs with inputs of
a certain size. To this end, we define an uniform size measure over our language’s abstract
syntax. We assign every abstract syntax constructor a size of one and add to it the sum
of the sizes of its arguments. Two special cases occur: for the value constructor Constr we
add the sum of the arguments in its argument list and for the pattern constructor Pat we
take the length of the pattern’s argument list and add one to it. The HOL definition of our
size measure employs two mutually recursive functions, size for the type expr and size pat
for the type PatMat.

Definition 4.3.
fun size :: expr⇒ nat
and size pat :: PatMat⇒ nat
where

size (V ) = 1|
size (Constr x xs) = listsum (map size xs) + 1 |

1For the sake of brevity, the definition is slightly simplified here compared to the actual definition in Is-
abelle/HOL.
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size (MATCH a WITH b) = size a + size pat b + 1 |
size (µ x . c) = size c + 1 |
size (FN x⇒ c) = size c + 1 |
size (a $ b) = size a + size b + 1 |
size pat (S � xs⇒ c) = length xs + size c + 1 |
size pat (a ‖ b) = size pat a + size pat b + 1

We introduce the common notation |e| to refer to size e, the size of expression e. 2 Be-
fore we can give our complexity definition, we first need one further tool: as we want to
talk about programs with an arbitrary number of arguments, we define an HOL function
app list that applies any number of arguments, given as a list of expressions, to a program
by recursively nesting applications around the program.

Definition 4.4.
fun app list :: expr⇒ expr list⇒ expr where

f $$ xs = foldl (λ e x. e $ x) f xs

We add concrete Isabelle infix syntax, allowing us to write app list f ts conveniently as f
$$ ts. We call expressions that consist of a PMλ-function applied to its expected number
of arguments closed programs.

Without further ado we give our complexity definition:

Definition 4.5.
definition

C :: expr⇒ (expr⇒ bool) list⇒ nat list⇒ nat
where

C f Ts ns =
Max ({k. ∃ ts v. length ts = length ns ∧ length ts = length Ts
∧ valid terms Ts ns ts
∧ f $$ ts→k v ∧ is cval v } ∪ {0})

The term C f Ts ns is intended to be the worst-case execution time of the program f
applied to a number of arguments of which the ith is an expression of the size given by
the ith integer in ns and of the ”type” described by the ith predicate in Ts. As a slight
terminological lapse we will refer to these predicates as the arguments’ types throughout
the remaining part of this work. The requirements on the program inputs are captured in
part by the predicate valid terms, which is defined as follows:

Definition 4.6.
valid terms Ts ns ts ≡ (∀ (T, t)∈set (zip Ts ts). T t) ∧ map size abbrev ts = ns

The complexity is defined over the set of all possible numbers of reduction steps k for
which we can find a list of reasonable inputs ts and a constructor value v such that the
function f applied to inputs ts reduces to a constructor value v in k steps of the small-step
relation. By ”reasonable” we mean the property that the length of ts fits the length of Ts
and ns and that valid terms Ts ns ts holds. To this set we add zero to assign the default

2We do not introduce such an abbreviation for size pat to avoid unnecessary syntax ambiguities as we would
only seldom need it in the discussion that follows.
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complexity zero to all parameters of C where the complexity would not exist otherwise.
This would be the case, for instance, for non-terminating programs or combinations of
input sizes and types where no values fulfilling the desired properties exist. With the
requirement that the final result of all reductions has to be a constructor value rather than
a general normal form, we restrict ourselves to error-free computations rather than solely
terminating ones. We do this to keep the later complexity analysis and the breadth of this
discussion compact. A generalization to general normal forms would be straightforward
as we will note on occasions where this difference in the definition would be relevant.
Type restrictions to the input terms are added for a similar reason – they spare us arguing
that our programs show some default reduction behavior for inputs that are not of a valid
type.

To conclude this section we note that two properties of a set on which the Isabelle/HOL
Max-operator is applied, are necessary for reasoning about the Isabelle/HOL Max opera-
tor and therefore for reasoning about C. Firstly, the set has to be non-empty, which self-
evidently is always the case here; secondly, the set has to be finite. A proof that this holds
in a general case is the subject of Chapter 5.

4.2. Related Properties of the nsmall-step relation

As the power of the relation product of the small-step relation is central to the notion of
execution time used here, its properties will naturally prove to be crucial for our later
complexity analysis. Therefore, we portray some basic observations about the nsmall-step
relation in this section. As we argued informally before, the determinism property of the
small-step relation transfers to the power of its relation product, which is easily proved
using an induction on the exponent of the relation product.

Lemma 4.7 (Determinism of the nsmall-step relation). [[e→n e ′; e→n e ′′]] =⇒ e ′′= e ′

Naturally, this implies that there is always only one ”reduction path” from an initial
expression to a normal form. Formally put, we can show the following properties:

Lemma 4.8 (Uniqueness of reductions ending in a normal form).
[[c→k c ′; c→l c ′′; final c ′; final c ′′]] =⇒ k = l
[[c→k c ′; c→l c ′′; final c ′; final c ′′]] =⇒ c ′= c ′′

Both properties follow easily from these more contrived lemmas:

Lemma 4.9.
[[e→l v; k < l]] =⇒ @ v ′. e→k v ′∧ final v ′

[[e→l v; final v; l < k]] =⇒ @ v ′. e→k v ′

Proof. As the proofs for both statements are completely analogous to each other for the
greater part, we showcase only the second one. We assume that l reduces to some normal
form v in l steps and for the sake of contradiction we also assume that e reduces to some
value v′ in k steps where k > l. From that we can find an expression e′ and a natural
number k′ with k = l + k′ such that e reduces to e′ in l steps, e′ reduces to v in k′ steps.
From Lemma 4.7 it follows that e′ equals v and thus is a normal form. But from k > l
we know k′ > 0, which implies that we can take at least one small-step starting from e′,
yielding a contradiction to the fact that v is a normal form.
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Another useful property that follows directly from the determinism of the nsmall-step
relation is a sort of continuation lemma. If it is possible to take n steps from expression x
to arrive at some normal form v and if it is also possible to take m steps to arrive at some
expression y starting from x, then it has to be possible to reduce y in n − m steps to v.
Formally:

Lemma 4.10 (Continuation of small-step reduction sequences).
[[x→n v; x→m y; final v]] =⇒ y→n − m v

Finally, we observe that the properties of the language’s reduction strategy transfer to
the nsmall-step relation. For instance, we derive the following two lemmas that describe
the reduction strategy for constructor values:

Lemma 4.11.
S � cs→n S � vs =⇒ S � c·cs→n S � c·vs
[[c→k c ′; is cval (S � vs)]] =⇒ S � c·vs→k S � c ′·vs

4.3. Properties of the Complexity Definition

By means of the lemmas presented in the last section, we can prove some basic properties
of our complexity definition that will come in handy for the later complexity analysis. To
aid the following discussion, we first introduce two notational shorthands related to our
complexity definition. We define as the Cset for parameters f, Ts and ns the set that the
complexity is defined on for these parameters, minus the value zero3:

Definition 4.12.
C set f Ts ns ≡
{k | ∃ ts v.

|ts| = |ns| ∧
|ts| = |Ts| ∧ valid terms Ts ns ts ∧ f $$ ts→k v ∧ is cval v}

Furthermore, we say that a program f is reducible given types Ts and size bounds ns if
its corresponding Cset is non-empty, i.e.:

Definition 4.13. reducible f Ts ns ≡ C set f Ts ns 6= ∅

From the complexity definition we immediately see that the complexity C f Ts ns is con-
tained in its corresponding Cset if its Cset is finite and reducible f Ts ns holds:

Lemma 4.14. [[finite (C set f Ts ns); reducible f Ts ns]] =⇒ C f Ts ns ∈ C set f Ts ns

On the other hand, if reducible f Ts ns does not hold, C f Ts ns clearly is zero.

Lemma 4.15. ¬ reducible f Ts ns =⇒ C f Ts ns = 0

Additionally, C f Ts ns is an upper bound for all values contained in a corresponding
finite Cset:

3As a small notational slip we write C set rather rather than Cset in the structured proofs. We will do the
same for analogous notation appearing throughout this work.
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Lemma 4.16 (Elements of a finite Cset are bounded by the corresponding C).
[[finite (C set f Ts ns); n ∈ C set f Ts ns]] =⇒ n ≤ C f Ts ns

Lastly, we observe that if any of the desired input sizes for C is zero, then C f Ts ns is also
zero:

Lemma 4.17. [[0 ∈ set ns; finite (C set f Ts ns); 0 < |ns|]] =⇒ C f Ts ns = 0

Proof. For our size definition, any expression in our language has a size greater than zero.
Therefore, if any element of ns has size zero, then we cannot find predicates Ts and terms
ts such that valid terms Ts ns ts holds. Thus C set f Ts ns is empty, which implies that C f Ts
ns is zero.
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5. Finite Reductions for Fixed Input Sizes

In the last chapter we stated that C set f Ts ns has to be finite to be able to reason about C f
Ts ns, because we have defined C by means of the Max operator, which is only defined on
finite and non-empty sets in HOL. The subject of this chapter is a result that will generally
take away the burden of reasoning about this property in our later complexity analysis. We
will show that C set f Ts ns is finite if, for any type T in Ts and any expression e, the property
T e implies that e is a constructor value. This follows easily from a more general result,
which states that the number of possible reduction steps needed to arrive at some types of
normal forms for any program, given only constructor values whose size is bounded by
some number n as arguments, is finite. Formally, we will show:

Theorem 5.1.
finite {k | ∃ ts v. |ts| = m ∧ e $$ ts→k v ∧ is val v ∧ (∀ v∈set ts. is cval v ∧ |v| ≤ n)}

The meaning of the phrase ”some normal forms” is captured by the predicate is val as
introduced in Section 3.4. The important property of the relation is that all constructor
values by means of the is cval relation are also values by means of the is val relation. The
author claims that the results presented in this chapter could also be carried into a setting
where we require general normal forms as reduction results rather than the specialized
case of values. However, as our complexity definition is always demanding constructor
values as reduction results anyway, this simplified version is sufficient for our purpose and
therefore we can spare ourselves some tedious details in our proof that we would have to
fiddle with if we worked in a setting with general normal forms.

5.1. Proof Idea

In order to keep the discussion of the proof clear, we will in fact proof a slightly less general
version of Theorem 5.1 which is limited to programs with only one argument:

Lemma 5.2.
finite {k | ∃ t v. e $ t→k v ∧ is val v ∧ is cval t ∧ |t| ≤ n}

The proof for Theorem 5.1 is completely analogous to what we will present in the fol-
lowing and can be found in its formalized version in the appendix. The central idea of
the proof is the observation that any program contains only a finite number of pattern
matches. Therefore, for inputs of bounded size, there is only a finite number of ways in
which an execution can branch off at pattern matches. Reductions cannot branch off at
places where no pattern match occurs, thus we can get reduction sequences of different
lengths only from pattern matches. Altogether this means that there can only be a finite
number of lengths of reduction sequences for inputs of bounded size.
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In order to formalize this proof idea, we will first introduce a notion of equivalence be-
tween expressions that show equivalent reduction behavior with respect to a set of pattern-
matched constructor names in question (i.e. a set of constructor names ought to appear in
the patterns of some program’s pattern matches). We will then show a lemma that cap-
tures the idea that expressions that are regarded as equivalent in this sense really show
equivalent reduction behavior, which will imply that equivalent expressions yield reduc-
tion sequences of equal length in particular. Thus, we will get a partition of our expressions
into equivalence classes with regard to a set of pattern-matched constructor names where
all elements in one equivalence class have reduction sequences of equal length.

Especially for any program, we will get a partition of all possible argument lists for
the program w.r.t. the pattern-matched constructor names of the program. We will show
that any of these equivalence classes have a common representative, which is obtained by
modifying every input (i.e. expression in the argument list) in the following way: every
constructor value whose head constructor name is not contained in the program’s pattern-
matched constructor names is replaced by a fresh dummy constructor value which remains
the same for all renaming operations. As there are only finitely many pattern-matched con-
structor names in any program, there are also only finitely many such representatives of
bounded size (as expressions never grow in size through the modifications described) and
thus there are only finitely many equivalence classes w.r.t. the program’s pattern-matched
constructor names for inputs of bounded size. This means that there is only a finite number
of possible lengths for all the reduction sequences of the program for inputs with bounded
size, which constitutes the final result.

5.2. Formalization Basics

What follows in the remainder of this chapter is a description of how the formalization of
the proof we just sketched is carried out. We begin by formalizing the notion of reduction
equivalence of expressions. Reduction equivalence of expressions is defined by means of
an inductive relation on pairs of expressions w.r.t. a set of strings that represents the set
of pattern-matched constructor names in question. Once again, this relation consists of
two mutually inductive predicates; red equiv for the type expr and red equiv p for the type
PatMat.

Definition 5.3.
inductive red equiv :: string set⇒ expr⇒ expr⇒ bool
and red equiv p :: string set⇒ PatMat⇒ PatMat⇒ bool
where

red equiv A (V x) (V x) |
[[is cval (S � xs); is cval (S ′� xs ′); S /∈ A; S ′ /∈ A]] =⇒ red equiv A (S � xs) (S ′� xs ′) |
[[length xs = length ys; ∀ (x,y) ∈ set (zip xs ys). red equiv A x y]]
=⇒ red equiv A (S � xs) (S � ys) |

red equiv A a b =⇒ red equiv A (FN x⇒ a) (FN x⇒ b) |
red equiv A a b =⇒ red equiv A (µ f . a) (µ f . b) |
[[red equiv A a b; red equiv A e f ]] =⇒ red equiv A (a $ e) (b $ f ) |
[[red equiv A a b; red equiv p A p q]]
=⇒ red equiv A (MATCH a WITH p) (MATCH b WITH q) |
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red equiv A a b =⇒ red equiv p A (S � xs⇒ a) (S � xs⇒ b) |
[[red equiv p A p q; red equiv p A r s]] =⇒ red equiv p A (p ‖ r) (q ‖ s)

Most of the rules should be self-explanatory as they simply follow the syntactic struc-
ture of the expressions. Only the second rule is interesting; it encodes the idea that two
constructor values are reduction equivalent w.r.t. a set A of pattern-matched constructor
names if neither of them has a head constructor name that is contained in A, because then
both can never match any pattern whose constructor is contained in A. We use the notation
a ≈A b to denote that expression a is reduction equivalent to expression b w.r.t. set A. We
state that this notion of reduction equivalence actually fulfills the defining properties of an
equivalence relation – reflexivity, symmetry and transitivity. However, we will not need
the latter to derive the results in the remainder of this chapter.

To aid the further course of the proof, we introduce the mutually recursive functions
cases and cases p, which collect all the constructor names of pattern matches that occur in
an expression or a pattern, respectively.

Definition 5.4.
fun cases :: expr⇒ string set
and cases p :: PatMat⇒ string set where
cases (V ) = {} |
cases (a $ b) = cases a ∪ cases b |
cases (µ . e) = cases e |
cases (MATCH x WITH p) = cases x ∪ cases p p |
cases (FN ⇒ e) = cases e |
cases (Constr es) = (

⋃
e ∈ set es. cases e) |

cases p (p1 ‖ p2) = cases p p1 ∪ cases p p2 |
cases p (S � ⇒ e) = {S} ∪ cases e

Moreover, we use the mutually recursive functions constrs and contrs pat, which collect
all the constructor names appearing in applications of the value constructor Constr.

Definition 5.5.
fun constrs :: expr⇒ string set
and constrs pat :: PatMat⇒ string set where
constrs (V x) = {}|
constrs (Constr x cs) = (

⋃
x ∈ set cs. constrs x) ∪ {x} |

constrs (MATCH a WITH b) = constrs a ∪ constrs pat b |
constrs (µ x . e) = constrs e |
constrs (FN x⇒ e) = constrs e |
constrs (a $ b) = constrs a ∪ constrs b |
constrs pat (S � xs⇒ e) = constrs e |
constrs pat (a ‖ b) = constrs pat a ∪ constrs pat b

We observe some easy properties of the reduction equivalence relation. Firstly, by struc-
tural induction, it can be shown that constructor values are only reduction equivalent to
other constructor values:

Lemma 5.6. [[v ≈A v ′; is cval v]] =⇒ is cval v ′
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This can then be easily lifted to general values:

Lemma 5.7. [[a ≈A b; is val a]] =⇒ is val b

Secondly, we note that reduction equivalence is invariant with regard to capture-avoiding
substitution of free variables:

Lemma 5.8 (Reduction equivalence is invariant w.r.t. substitution).
[[e ≈A e ′; v ≈A v ′]] =⇒ subst e x v ≈A subst e ′ x v ′

[[red equiv p A p p ′; v ≈A v ′]] =⇒ red equiv p A (subst pat p x v) (subst pat p ′ x v ′)

The proof employs a rule induction on the induction rules for subst and subst pat that
are automatically generated by Isabelle and requires the further property that constructor
values are not affected by substitution of free variables:

Lemma 5.9 (Constructor values are not affected by substitution).
is cval v =⇒ subst v x t = v

Naturally, this property transfers to a row of substitutions that are carried out in se-
quence by the application of a left fold as used by the rules for successful pattern matches
of the small-step relation. This can be proved by an induction over the list structure:

Lemma 5.10.
[[a ≈A b; length as = length bs; ∀ (a, b)∈set (zip as bs). a ≈A b]]
=⇒ fold (λ(x, d) c. subst c x d) (zip xs as) a ≈A fold (λ(x, d) e. subst e x d) (zip xs bs) b

5.3. Reduction Equivalence

These properties already suffice as tools to prove that our notion of reduction equivalence
is the right one in the sense that expressions we regard to be reduction equivalent really
show equivalent behavior under reductions following the small-step semantics. In other
words, reduction equivalence is invariant with respect to reductions under the small-step
semantics. Formally, we want to show:

Lemma 5.11 (Reduction equivalence is invariant w.r.t. small-step semantics).
[[e→ f ; e ≈A e ′; cases e ⊆ A; cases e ′⊆ A]] =⇒ ∃ f ′. e ′→ f ′∧ f ≈A f ′

The natural proof technique we want to use for the proof of this lemma is a rule induc-
tion on the small-step semantics. However, we cannot directly apply this proof method
to the claimed property, for that would yield an induction hypothesis that is not strong
enough in the cases that describe the reduction behavior of value constructor expressions.
Instead, we prove the following stronger property:

Lemma 5.12.
[[e→ f ; e ≈A e ′; cases e ⊆ A; cases e ′⊆ A]]

=⇒ ∃ f ′. e ′→ f ′∧ f ≈A f ′

∧ (∀S xs. e = S � xs
−→ (∃ xs ′ ys ′. f = S � xs ′∧ f ′= S � ys ′∧ length xs ′= length ys ′

∧ (∀ (x, y)∈set (zip xs ′ ys ′). x ≈A y)))
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Proof. The idea here is that from the premises cases e⊆ A and cases e ′⊆ A it follows that if e
and e’ are constructor terms, they can only be reduction equivalent if they share the same
head constructor name and all their arguments in corresponding positions are reduction
equivalent. The statement we prove encodes that this property is invariant with respect to
reductions under the small-step relation.

As announced, we use a rule induction over the small-step semantics. With lemmas
5.6 and 5.8 the cases for rules Beta, Rec, RecBind, RightRed, LeftRed and MatchRed follow
directly.

Naturally, the cases MatchTrueS and MatchTrueM work analogously; therefore, we only
showcase the argument for MatchTrueS. Let e be the expression MATCH S � cs WITH S � xs
⇒ c ≈A e ′ for some S, cs and xs. We may assume that xs and cs are of equal length, S � cs
is a constructor value, e is equivalent to some e’ and cases e, cases e’ are subsets of A. From
the rules of the reduction equivalence relation, we know immediately that some c and cs’
with c ≈A c ′ and S � cs ≈A S � cs ′ have to exist such that e’ equals MATCH S � cs ′WITH S
� xs⇒ c ′. By a case analysis on the rules of the reduction equivalence relation, we can see
that the arguments of S � cs and S � cs ′ in corresponding positions have to be pairwise
reduction equivalent. This knowledge allows us to use lemma 5.10 to show fold (λ(x, d) c.
subst c x d) (zip xs cs) c ≈A fold (λ(x, d) c. subst c x d) (zip xs cs ′) c ′ . From lemma 5.6, S � cs
≈A S � cs ′ and the information that S � cs is a constructor value, we can conclude that S
� cs ′ is also a constructor value. It follows that we can take a reduction step from e’ to fold
(λ(x, d) c. subst c x d) (zip xs cs ′) c ′. Altogether we have shown the thesis.

For the case MatchFalse, we now let e be the expression MATCH S � cs WITH S ′� xs⇒ c
‖ ps with S 6= S′. The given premises are similar to the last case and in particular we will
get S ∈ A and that e’ is equal to MATCH S ′′ � cs ′WITH S ′ � xs⇒ c ′ ‖ ps ′ for some S”, c’
and ps’ with S � cs ≈A S ′′ � cs ′. If we can prove that S” is not equal to S’, we know that
the pattern match for e’ is equally unsuccessful as for e and hence we immediately arrive
at the thesis. From the premises we know S′ ∈ A, so suppose S′′ ∈ A. Together with S � cs
≈A S ′′� cs ′, this implies S = S′′ and thus we get S 6= S′′ using the inequality S 6= S′.

The proofs for cases ConstrLeftRed and ConstrRightRed work in a similar fashion, but the
latter is more complicated; therefore we conclude this proof by showcasing ConstrRightRed.
Let e be the expression S � c·cs. Our premises are that we can take a small-step from S � cs
to S � cs ′, that e is reduction-equivalent to e’, and that cases e and cases e’ are subsets of
A. Furthermore, we have an induction hypothesis corresponding to S � cs. Again, by a
case analysis on the rules of the reduction equivalence relation, we can find some d and ds
with c ≈A d and S � cs ≈A S � ds such that e’ equals S � d·ds. By the same argument, we
know that arguments in corresponding places of S � cs and S � ds have to be reduction-
equivalent. This knowledge allows us to discharge the induction hypothesis, which we
designed specifically to be strong enough for this case: we can obtain a list ds’ of the same
length as ds, with S � ds→ S � ds ′, such that corresponding arguments of S � cs ′and S � ds ′

are reduction equivalent in turn. Together with the information that c and d are reduction
equivalent, this directly yields the thesis.

Now Lemma 5.11 follows immediately and can be lifted to reduction sequences, which
is easily proved by an induction over n.

Lemma 5.13 (Reduction equivalence is invariant w.r.t. small-step reduction sequences).
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[[e→n f ; e ≈A e ′; cases e ⊆ A; cases e ′⊆ A]] =⇒ ∃ f ′. e ′→n f ′∧ f ≈A f ′

5.4. Reduction Equivalence Class Representatives

The next step is now to build the right tools to be able to show that every equivalence
class, as given by the reduction equivalence relation with respect to a program’s pattern-
matched constructor names, contains a common representative that we can obtain from
other expressions in the same equivalence class by modifying them in such a manner that
we replace ”uninteresting” constructor subterms with some dummy constructor value. To
this end, we first give the definition of two mutually recursive functions subst constr and
subst constr p, which carry out such a dummy constructor substitution on expressions and
patterns, respectively. An invocation of the form subst constr e S S ′ replaces any occur-
rence of a constructor value, which has the head constructor name S, with the dummy
constructor S ′ � []. The functions’ definitions follow the syntactic structure of expressions
and patterns in a straightforward manner.

Definition 5.14.
fun subst constr :: expr⇒ string⇒ string⇒ expr
and subst constr p :: PatMat⇒ string⇒ string⇒ PatMat where

subst constr (V x) = V x |
subst constr (a $ b) c c ′= subst constr a c c ′ $ subst constr b c c ′ |
subst constr (µ x. e) c c ′= µ x. subst constr e c c ′ |
subst constr (MATCH x WITH p) c c ′

= MATCH subst constr x c c ′WITH subst constr p p c c ′ |
subst constr (FN x⇒ e) c c ′= FN x⇒ subst constr e c c ′ |
subst constr (Constr S es) c c ′=
(if c = S ∧ is cval (Constr S es) then Constr c ′ []
else Constr S (map (λe. subst constr e c c ′) es)) |

subst constr p (p1 ‖ p2) c c ′= (subst constr p p1 c c ′ ‖ subst constr p p2 c c ′) |
subst constr p (S � xs⇒ e) c c ′= S � xs⇒ subst constr e c c ′

The important property of these functions is that reduction equivalence is invariant with
respect to substitutions of ”uninteresting” constructor names by means of these functions:

Lemma 5.15. [[a ≈A b; S /∈ A; S ′ /∈ A]] =⇒ a ≈A subst constr b S S ′

Again, the proof is by induction according to the rules for subst constr and subst constr p.
Besides the case of the third rule, all of the cases follow easily from the following lemma,
which is proved using an induction on the list structure:

Lemma 5.16. is cval (S � xs) =⇒ is cval (S � map (λe. subst constr e S S ′) xs)

The other case requires some fiddling with technicalities introduced through the usage
of zip in the definition of the third rule of the equivalence relation. However, it does not
contain any surprises and is therefore left out. We will also need a version of this lemma
lifted to a sequence of reductions carried out by a left fold:

Lemma 5.17.
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[[set ns ∩ A = ∅; S ′ /∈ A; a ≈A b]] =⇒ a ≈A fold (λS b. subst constr b S S ′) ns b

Another easy property of the constructor substitution, which is automatically proved
with the help of rule induction on the induction rules for subst constr and subst constr p,
is that the process does not change the subjected expression or pattern if the constructor
name that ought to be replaced does not appear in the subjected expression or pattern:

Lemma 5.18.
S /∈ constrs e =⇒ subst constr e S S ′= e
S /∈ constrs pat p =⇒ subst constr p p S S ′= p

Moreover, by structural induction we prove that the substitution process does not change
the pattern-matched constructor names of an expression and, again, we lift this into the
context of a left fold:

Lemma 5.19.
cases e = cases (subst constr e S S ′)
cases e = cases (fold (λS e. subst constr e S S ′) nl e)

In order to prove that the number of representatives we produce for the reduction equiv-
alence classes is finite, we informally want to argue in the following manner: all of the rep-
resentatives are constructed from a finite number of variable names, function names, and
constructor names appearing in constructor and pattern-matching expressions. However,
there can only be a finite number of expressions of bounded size that are constructed from
such a finite set of names; thus the number of representatives for our equivalence classes
also has to be finite. For a formal variant of this reasoning, which we will present in the
next section, we introduce functions names and names p, which collect the set of all names
appearing in an expression or a pattern.

Definition 5.20.
fun names :: expr⇒ string set
and names pat :: PatMat⇒ string set where
names (V x) = {x}|
names (Constr x cs) = (

⋃
x ∈ set cs. names x) ∪ {x} |

names (MATCH a WITH b) = names a ∪ names pat b |
names (µ x . c) = names c ∪ {x} |
names (FN x⇒ c) = names c ∪ {x} |
names (a $ b) = names a ∪ names b |
names pat (S � xs⇒ c) = set xs ∪ names c ∪ {S} |
names pat (a ‖ b) = names pat a ∪ names pat b

This gives us the tools to state a lemma that describes the essence of the modifications
applied in order to obtain a equivalence class’s common representative from one of the
class’s elements:

Lemma 5.21.
[[set nl ∩ constrs e = {}; is cval t]]
=⇒ ∃ t ′. fold (λS e. subst constr e S D) nl (e $ t) = e $ t ′

∧ names t ′⊆ names t − set nl ∪ {D} ∧ is cval t ′∧ |t ′| ≤ |t|
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It tells us that if we replace in an application of some expression e to some constructor-
value argument t, each constructor name from some list nl, for which none of its elements
is a constructor name appearing in e, by some dummy constructor name D, we get a result
of the following form:

• e is not affected by the process; therefore we arrive at an application of e to some
constructor value t’, which has the properties that,

• compared to t, all of the names in nl have been removed from the names of t’, but the
dummy constructor name D has probably been added, and

• the size of t’ is lower or equal to the size of t.

This lemma follows from three more basic properties, which are lifted into the context
of the left fold in the lemma, after an induction on the list structure of nl. Firstly, a lemma
that describes how the names of a constructor value are affected by subst constr, which is
easily shown using an induction on the rules for the is cval predicate.

Lemma 5.22. is cval v =⇒ names (subst constr v S S ′) ⊆ names v − {S} ∪ {S ′}

Secondly, a lemma that states that expressions never grow in the process of substituting
a dummy constructor, which is proven employing a structural induction on the mutually
recursive datatypes involved.

Lemma 5.23 (Size monotonicity of constructor substitution).
|subst constr e S S ′| ≤ |e|

And thirdly, a lemma that tells us that constructor substitution does not affect expres-
sions and patterns, in which the targeted constructor name does not appear.

Lemma 5.24.
S /∈ constrs e =⇒ subst constr e S S ′= e
S /∈ constrs pat p =⇒ subst constr p p S S ′= p

The proof is by an induction on the two functions’ induction rules. Together with
Lemma 5.17 this will, in the proof of the final theorem, be sufficient for the reasoning
about the construction process of common representatives for our reduction equivalence
classes.

5.5. Putting it Together

The last part of the puzzle is to argue that the set of the equivalence classes’ representatives
is finite. As already mentioned, we will do this by arguing that a set of expressions of
bounded size constructed from a finite number of names is finite. Formally, the main
result here is:

Lemma 5.25.
finite A =⇒ finite {e | |e| = m ∧ names e ⊆ A} ∧ finite {p | size pat p = m ∧ names pat p ⊆ A}
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Proof. The proof is by a strong induction over m. The idea is to construct from the sets {e |
|e| < m ∧ names e ⊆ A} (henceforth named E) and {p | size pat p < m ∧ names pat p ⊆ A} a
number of finite sets – one for each constructor of the datatype expr – whose union covers
{e | |e| = m ∧ names e ⊆ A} and analogously for {p | size pat p = m ∧ names pat p ⊆ A}. For
instance, one of the constructed sets would be

{C � es | C ∈ A ∧ es ∈ {es | |es| < m ∧ es ∈ lists E}}.

Here, lists E (predefined in HOL) is the infinite set of lists that only contains elements from
E. Due to the way this set is constructed, the proof has to rely on the further property that
a subset of lists E, which is restricted to lists of bounded size, is always finite – a property
that is easily proved with the help of an induction over the size bound. The rest of the
proof does not contain any more interesting details and is therefore skipped.

Now we are ready to assemble all the parts needed to prove Lemma 5.2.

Proof. Let S be the set {k | ∃ t e ′. e $ t→k e ′ ∧ is val e ′ ∧ is cval t ∧ |t| ≤ n}. Additionally, let
D be a dummy constructor name that is neither contained in cases e nor constrs e – we can
always find such a D due to the fact that cases e and constrs e are finite sets. These facts can
be easily proved by structural induction. Let N be the set cases e ∪ constrs e ∪ {D} and let
R be the set {k | ∃ t e ′. e $ t→k e ′ ∧ is val e ′ ∧ is cval t ∧ |t| ≤ n ∧ names t ⊆ N}. The latter
is intended to be the set of all possible lengths of all possible reductions sequences for the
representatives of the reduction equivalence classes with respect to cases e. As cases e and
constrs e are finite, N is finite and therefore, we can argue that R is also finite; it is a direct
consequence of Lemma 5.25 that the set {t | is cval t ∧ |t| ≤ n ∧ names t ⊆ N} is finite and
with Lemma 4.8 (uniqueness of reduction sequences ending in a normal form) it follows
that R is finite.

What is left to show is that S is a subset of R. So, suppose k ∈ S for some arbitrary but
fixed natural number k. We can find expressions t and e’, such that:

• e $ t→k e ′

• is val e ′

• is cval t

• |t| ≤ n

Let N’ be the set constrs t − (cases e ∪ constrs e), i.e. the set of constructor names we
intend to remove from t in the dummy constructor substitution process. Let nl’ be a list
that contains exactly the elements from N’ and let t’ be the term fold (λc e. subst constr e
c D) nl (e $ t) – the term from which all constructor names in N’ have been removed by
substituting dummy constructor D. From Lemma 5.17, we know e $ t ≈cases e t ′. From
Lemma 5.13 (reduction equivalence is invariant w.r.t. small-step reduction sequences) and
e $ t→k e ′we then know that we can find a term f, such that t ′→k f and e ′≈cases e f hold.
As e’ is a value, the latter property tells us together with Lemma 5.7 that f is also a value.
With the help of Lemma 5.21 and a bit of set arithmetic, we can find an expression t” with
the following properties:
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• t ′= e $ t ′′

• names t ′′⊆ N

• is cval t ′′

• |t ′′| ≤ |t|

With |t| ≤ n, we immediately have |t ′′| ≤ |t| and together with t ′→k f and the knowledge
that f is a value, we can conclude that k ∈ S holds.

With the help of Theorem 5.1 we can easily arrive at our final result about the finiteness
of Cset:

Corollary 5.26. ∀P∈set Ts. ∀ v. P v −→ is cval v =⇒ finite (C set f Ts ns)

Proof. With Theorem 5.1 we can first conclude that the set

{k | ∃ ts v. |ts| = |ns| ∧ map size ts = ns ∧ e $$ ts→k v ∧ is cval v
∧ (∀ v∈set ts. is cval v)}

is finite. By observing that C set f Ts ns is a subset of this set, we arrive at the thesis.
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6. Complexity Analysis by Example

So far, we have built a framework for runtime complexity analysis of programs in our lan-
guage. Based upon this framework, this chapter shows how to derive runtime complexity
bounds for three concrete example programs in our language that all work on the list data
structure: the concatenation of lists and two versions of list reversal – one naive variant
based on list concatenation and one, more efficient, tail recursive variant.

6.1. Lists in PMλ

As all of our example programs are based on the list data structure, we first show how this
structure can be implemented in our language and prove some helpful properties for the
complexity analysis. We use the abbreviation

nil ≡ ′′Nil ′′� []

for the empty list and the abbreviation x##xs to construct a new list from a new list
element x (the head of the new list) and a list xs (the tail of the new list), where x##xs is
defined by means of

x ## xs ≡ ′′Cons ′′� [x, xs].

In the remainder of this chapter the names xs, xs′ and ys will refer to PMλ lists. We
define an inductive relation is list that describes all the expressions that we regard as lists.

Definition 6.1.
inductive is list::expr⇒ bool where
Nil: is list nil |
Cons: is cval x =⇒ is list xs =⇒ is list (x##xs)

We observe that by this definition every list is a constructor value, which is easily proved
using a rule induction on the is list predicate. Furthermore, we show some easy properties
of the reduction behavior of lists. If we can reduce a list whose head is already a normal
form, then its tail also has to be reducible, which is proved easily using a case analysis on
the small-step relation.

Lemma 6.2. [[x ## xs→ c; final x]] =⇒ ∃ xs ′. xs→ xs ′

With the help of this result and by using basic properties of the nsmall-step relation,
which we proved earlier, one can show that this property transfers to any number of re-
duction steps.

Lemma 6.3. [[x ## xs→k v; final x]] =⇒ ∃ xs ′. xs→k xs ′
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Proof. The proof employs an induction over k. The base case (k = 0) is trivial. For the
induction step assume x ## xs→Suc n v for some x, xs and a normal form v. Then, due to
the determinism of the small-step semantics and the properties of the power of the relation
product, we can find an xs′ such that we can take a reduction step from xs to xs′, and that
x##xs′ can be reduced to v in n steps. The latter property allows us to discharge the
induction hypothesis, lending us an xs′′ to which xs′ can be reduced in n steps, which
implies xs→Suc n xs ′′. From the elementary properties of the nsmall-step relation we then
get x ## xs→Suc n x ## xs ′′, yielding the thesis.

If we make the further assumption that the reduction result is a constructor value, we
can show that the tail reduces to a constructor value as well.

Lemma 6.4. [[x ## xs→k v; final x; is cval v]] =⇒ ∃ xs ′. xs→k xs ′∧ is cval xs ′

Proof. The proof is analogous to Lemma 6.3 using the extra argument in the last step that
v is a constructor value and that v has to equal x##xs′′ due to determinism of the nsmall-
step relation, which altogether implies that x and xs′′ also must be constructor values.

This concludes the discussion of the properties related to the is list predicate.

6.2. Complexity Analysis for rev

As a first example we derive a linear runtime upper bound for a tail-recursive variant
of list reversal. As it will turn out, the analysis for this version is easier than the naive,
list concatenation-based version. For the proofs that appear in the remaining part of this
chapter, we will also briefly mention the required Isabelle proof steps in order to demon-
strate how the end user would have to use our framework. A possible definition for the
tail-recursive variant of list reversal is the following:

Definition 6.5.
rev ≡

LETREC ′′rev ′′= FN ′′acc ′′⇒ FN ′′xs ′′⇒
MATCH V ′′xs ′′WITH
′′Nil ′′� []⇒ V ′′acc ′′ ‖
′′x ′′## ′′xs ′′⇒ V ′′rev ′′ $ (V ′′x ′′## V ′′acc ′′) $ V ′′xs ′′

IN FN ′′xs ′′⇒ V ′′rev ′′ $ nil $ V ′′xs ′′

However, this definition is not very accessible to a formal complexity analysis. After tak-
ing two reduction steps that substitute nil and the argument to rev in the recursive function
defined by the letrec-construct, the inner rev function, the remaining steps of the program
evaluation will only involve pattern matching and recursive applications of the inner rev
function. Still, in order to employ inductive arguments for the complexity analysis, we
must use the recurring part of the computation, i.e. the inner rev function. Thus we assign
this function the name rev’ and primarily analyze rev’.

Definition 6.6.
rev ′≡
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µ ′′rev ′′. FN ′′acc ′′⇒ FN ′′xs ′′⇒
MATCH V ′′xs ′′WITH
′′Nil ′′� []⇒ V ′′acc ′′ ‖
′′x ′′## ′′xs ′′⇒ V ′′rev ′′ $ (V ′′x ′′## V ′′acc ′′) $ V ′′xs ′′

At the end of this section we will show how to derive an upper bound of the runtime of
rev from the upper bound of rev’ in a simple manner.

From the pattern-matching portion of rev’ it is obvious that rev’ returns its first argument
(the accumulator) if its second argument is the empty list. In Isabelle, this can be formally
expressed using the following schematic lemma:

Lemma 6.7. is cval v =⇒ rev ′ $$ [v, nil]→?k v

Schematic lemmas can contain schematic variables, denoted by a preceding ”?”, for
which solutions have to be calculated during the proof process. Here, after unfolding
the definition of rev’, the necessary number of reduction steps (three) can be automatically
calculated through an application of the fastforce method set up to use Lemma 5.9 (stat-
ing that constructor values are not affected by substitution) as an additional simplification
rule, together with two basic introduction rules about the power of the relation product.
We note that the concrete Isabelle proof makes use of a version of this lemma in which the
nested applications of Suc are folded to numerals. The same holds for all other lemmas
that originate from a schematic lemma and which are discussed below.

After describing the reduction behavior in the base case of rev’, we can employ the very
same technique to prove the following schematic lemma that describes the reduction be-
havior of rev’ in the case entailing a recursive application of rev’:

Lemma 6.8. [[is cval a; is cval x; is cval xs]] =⇒ rev ′ $$ [a, x ## xs]→4 rev ′ $$ [x ## a, xs]

We want to derive from these lemmas inequalities or equalities describing runtime up-
per bounds for both cases. Unfortunately, the process of deriving these (in)equalities is less
automatic than the process of deriving statements about the reduction behavior of rev’. In
order to tackle the base case, we first need to show that if a closed application of rev’ with
sensible arguments, the second of which is size one, can be reduced to a constructor value,
then the second argument has to be the empty list.

Lemma 6.9.
[[rev ′ $$ [t1.0, t2.0]→k v; is cval t1.0; |t2.0| = 1; is list t2.0; is cval v]] =⇒ t2.0 = nil

Proof. The proof of this lemma is based on the additional property that all constructor
values of size one have the form S � [] for some constructor name S, which is proved with
a bit of handiwork in Isabelle using classical contradiction and a case distinction on the
inductive rules of the is cval predicate. Let now S be some constructor name such that t2
equals S � [] and suppose S 6= ′′Nil ′′ (else t2 = nil and the thesis follows immediately).
Then, it can be shown that the following reduction can performed:

rev ′ $$ [t1, t2]→3 MATCH S � [] WITH ′′x ′′## ′′xs ′′⇒ rev ′ $ (V ′′x ′′## t1) $ V ′′xs ′′

This property is proved with the help of Lemma 5.9 by applying a combination of auto-
matic Isabelle methods to overcome some technicalities (involving unfolding of numer-
als). An application of the auto proof method can prove that the result of this reduction is
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a normal form, allowing us to employ the uniqueness of computation paths ending in a
normal form (cf. Lemma 4.8) to derive that this expression has to be equal to v. Now, as
v is assumed to be a constructor value and the reduction result is not, we have derived a
contradiction.

In order to keep the notation in the remaining discussion compact we abbreviate C rev ′

[is cval, is list] as Crev′ and reducible rev ′ [is cval, is list] as Rrev′ . We can now prove that the
runtime of rev’ in the base case is three:

Lemma 6.10. R rev ′ [m, 1] =⇒ C rev ′ [m, 1] = 3

The proof makes use of a new introduction rule for C:

Lemma 6.11.
[[
∧

k ts v.
[[|ts| = |ns|; |ts| = |Ts|; ∀ (T, t)∈set (zip Ts ts). T t; map size abbrev ts = ns;
f $$ ts→k v; is cval v]] =⇒ k ≤ x;

x ∈ C set f Ts ns]] =⇒ C f Ts ns = x

Informally this lemma states that if x is an upper bound for the runtime of f on sensible
input and if x belongs to the corresponding Cset for parameters f , Ts and ns, then x is
the complexity for these parameters. The lemma can easily be derived from the following
characteristic of the Max-operator:

[[
∧

y. y ∈ A =⇒ y ≤ x; x ∈ A]] =⇒Max A = x

Now we are ready to prove Lemma 6.10.

Proof. Using Lemma 6.11, our first proof obligation is to show the upper bound property
of the number three. From the assumption R rev ′ [m, n] we can assume that there is a con-
structor value t1 of sizem and a list t2 of size one such that rev’ applied to t1 and t2 reduces
to a constructor value v in k steps. We have to show k ≤ 3. With Lemma 6.9 we know that
t2 is the empty list and thus we have k = 3 using the uniqueness of computation paths
ending in a normal form (cf. Lemma 4.8), Lemma 6.7 and the knowledge that constructor
values are always normal forms.

Secondly, we have to prove that three is an element of C set rev ′ [is cval, is list] [m, 1].
This follows directly from Lemma 6.7 if we can find a constructor value of size m that we
can give to rev’ as its first argument. However, by assumption R rev ′ [m, n] we can always
find such a constructor value.

In order to prove the latter property, the concrete Isar proof script in Isabelle requires
a bit of fiddling with the definition of Cset, mainly explicating the fact that HOL lists of
length two consist of two elements. It can then be shown that three is contained in the
right Cset with the help of Lemma 6.7 and an introduction rule for Cset-membership that
just unwinds the definition of valid terms:

Lemma 6.12.
[[f $$ ts→k v; |ts| = |ns|; |ts| = |Ts|; ∀ (T, t)∈set (zip Ts ts). T t;
map size abbrev ts = ns; is cval v]]
=⇒ k ∈ C set f Ts ns
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We can eliminate the assumption in Lemma 6.10 by relaxing the property to an inequal-
ity (and thus including those numbers m for which R rev ′ [m, n] does not hold):

Lemma 6.13. C rev ′ [m, 1] ≤ 3

Proof. The Isabelle proof is solved by the auto method using lemmas 6.10 and 4.15 after
applying a case analysis on whether R rev ′ [m, n] holds.

Before we derive a lemma describing a runtime upper bound for the recursion case, we
lay the foundations for discharging properties about C rev ′ [m, n]. With help of the fastforce
method we can automatically prove from Corollary 5.26 (the main result of chapter 5) and
the knowledge that lists are always constructor values that C set rev ′ [is cval, is list] [m, n]
is finite.

Lemma 6.14. finite (C set rev ′ [is cval, is list] [m, n])

We now want to derive a sort of recursion equation for the complexity upper bound of
rev’ in the case that the second argument of rev’ is greater than one:

Lemma 6.15.
[[1 < n; R rev ′ [m, n]]] =⇒ ∃m ′ n ′. n ′< n ∧ C rev ′ [m, n] ≤ 4 + C rev ′ [m ′, n ′] ∧ R rev ′ [m ′, n ′]

Proof. Let M be C rev ′ [m, n]. From the assumptions and lemmas 4.14 (for a non-empty
Cset the corresponding C is contained in the Cset) and 6.14 we can assume the existence of
expressions t1, t2 and v that adhere to the following properties:

• is cval t1

• |t1| = m

• is list t2

• |t2| = n

• rev ′ $$ ts→M v

• is cval v

From is list t2 we show the thesis by a case analysis on the is list predicate. As we have
postulated n > 1, the case of the empty list is trivial. Thus, we can assume a value x and a
list xs where x is the head of t2 and xs is the tail of t2. With the help of Lemma 6.8 we then
have rev ′ $$ [t1, t2]→4 rev ′ $$ [x ## t1, xs]. From Lemma 4.10 (continuation of small-step
reduction sequences) and the knowledge that as v is a constructor value it is also a normal
form, we can then show that the last reduction result can be reduced to v in M − 4 steps.
With the additional knowledge we have about x, xs, t1 and v, it is obvious that M − 4
has to be contained in C set rev ′ [is cval, is list] [|x ## t1|, |xs|] allowing us to derive the
inequality C rev ′ [m, n] ≤ 4 + C rev ′ [|x ## t1|, |xs|] by means of Lemma 4.16 (elements of
a finite Cset are bounded by its corresponding C) and the finiteness of the Cset for rev’. In
the same way, we can also conclude R rev ′ [|x ## t1|, |xs|]. It is obvious that |xs|< n, which
together with the last two properties constitutes the thesis.
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Contrast this informal proof with the Isar proof script given in Figure 6.1. The over-
all proof structure is very similar to the structure of the informal proof, although some
arguments necessitate more detailed reasoning. The process of discharging the reducibil-
ity assumption breaks down into three Isar proof steps, because the assumption first has
to be discharged to obtain a list ts of length two, which then allows us to obtain its two
list elements and to transfer the properties from ts to its elements. The following lemma,
named list length 2 D in the Isar proof script, states that any list of length two consists of
two elements:

Lemma 6.16. |xs| = 2 =⇒ ∃ a b. xs = [a, b]

We note that this argument can be carried over completely analogously to programs
with any number of arguments, provided that first a lemma analogous to Lemma 6.16 is
proven for the correct list size. The only further step that is not in a natural analogy to the
informal reasoning is the argument that M − 4 is contained in C set rev ′ [is cval, is list] [|x
## t1|, |xs|]. We first need to explicitly apply Lemma 6.12 as an introduction rule and then
issue Isabelle to solve the subgoal that demands reducibility by assumption, before we can
let the auto method take care of the rest. However, this combination of proof methods can
simply be duplicated for a similar proof step in other complexity analyses.

Analogous to the approach for the base case, we now eliminate the reducibility assump-
tion by weakening the statement to contain an inequality.

Lemma 6.17. 1 < n =⇒ ∃m ′ n ′. n ′< n ∧ C rev ′ [m, n] ≤ 4 + C rev ′ [m ′, n ′]

Again, after a case analysis on whether R rev ′ [m, n] holds, the proof obligations can
be solved by applications of automatic methods using lemmas 6.15 and 6.13. Now we are
ready to resolve the recurrence to obtain an upper bound for C rev ′ [m, n]. As the reduction
in Lemma 6.17 needs four steps and the reduction in the base case needs only three steps,
it easy to guess that the following upper bound statement has to hold:

Theorem 6.18. C rev ′ [n, m] ≤ 4 + C rev ′ [n ′, m ′]

Proof. The proof is by a strong induction overm. We have two base cases. Ifm is zero, then
C rev ′ [n, m] is zero by Lemma 4.17 and if m is one, then Lemma 6.13 directly yields the
thesis. For the induction step we can assume the induction hypothesis ∀m ′ n. m ′< m =⇒
C rev ′ [n, m ′] ≤ 4 ∗ m ′. From Lemma 6.17 we can find natural numbers n′ and m′ such that
m′ < m and C rev ′ [n,m]≤ 4 + C rev ′ [n ′,m ′] hold. Together with the induction hypothesis,
this yields the thesis.

Once again, the Isar proof script for Theorem 6.18 is depicted in Figure 6.2 for compar-
ison. The only technical difference that can be found here is that the induction rule used
does not directly yield the two base cases, but we have to handle those by applying a case
distinction on m first.

For completeness, we demonstrate how to derive an upper bound for the runtime com-
plexity of rev from Theorem 6.18. As we can always reduce a closed application of rev to an
application of rev’ in the case that we provide sensible arguments to rev, we can see that we
only have to add two to the upper bound for rev’ to get an upper bound rev. The relation
between rev and rev’ in terms of reduction is given as follows:
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lemma C step rev ′:
n > 1 =⇒ R rev ′ [m,n] =⇒
∃ m ′ n ′. n ′< n ∧ C rev ′ [m,n] ≤ 4 + C rev ′ [m ′,n ′] ∧ R rev ′ [m ′,n ′]

proof −
assume n > 1 R rev ′ [m,n]
def M ≡ C rev ′ [m,n]
obtain ts :: expr list and v where ts:
length ts = 2 rev ′ $$ ts→M v is cval v valid terms [is cval,is list] [m,n] ts

using fin red C elem C set[OF C set finite ′ 〈R rev ′ [m,n]〉]
by (auto simp: eval nat numeral M def )
then obtain t1 t2 where ts2:ts = [t1,t2] by (blast dest: list length 2 D)
with ts have t1t2: is cval t1 is list t2 |t1| = m |t2| = n
by (auto simp: valid terms def )+
from 〈is list t2〉 show ?thesis
proof (cases rule: is list.cases)

case Nil thus ?thesis using 〈n > 1〉 t1t2 by auto
next

case (Cons x xs)
with rev ′ red cons[OF 〈is cval t1〉 ] have rev ′ $$ [t1,t2]→4 rev ′ $$ [x ## t1,xs] by force
with n steps sub final[OF this cval final] ts ts2 have rev ′ $$ [x ## t1,xs]→M − 4 v by auto
with 〈is cval x〉 〈is list xs〉 〈is cval t1〉 〈|t1| = m〉 〈is cval v〉
have ∗:M − 4 ∈ C set rev ′ [is cval,is list] [ |x##t1|, |xs| ]

apply (intro C set I)
apply assumption
apply auto

done
from C ge[OF C set finite ′ this] have C rev ′ [m, n] ≤ 4 + C rev ′ [ |x##t1|, |xs| ]
by (auto simp: C def M def )
moreover have 0 < |xs| |xs| < n using Cons(1) 〈|t2| = n〉 by auto
moreover from ∗ have R rev ′ [ |x##t1|, |xs| ] unfolding reducible def by blast
ultimately show ?thesis by auto

qed
qed

Figure 6.1.: The Isar proof script for Lemma 6.15
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lemma rev ′ linear complexity:
C rev ′ [n, m] ≤ 4 ∗ m

proof (induction m arbitrary: n rule: less induct)
case (less m)
show ?case
proof (cases m ≤ 1)
case True
thus ?thesis using complexity 0[OF C set finite ′] C rev ′ base case[of n] by (cases m) auto

next
case False
with C step le[of m n] less obtain n ′m ′where ∗:
m ′< m C rev ′ [n, m] ≤ 4 + C rev ′ [n ′, m ′] by auto
with less.IH[of m ′ n ′] show ?thesis by auto

qed
qed

Figure 6.2.: The Isar proof script for Theorem 6.18

Lemma 6.19. is cval v =⇒ Reverse.rev $$ [v]→2 rev ′ $$ [nil, v]

Similar to the approach taken above, we first show the upper bound under the assump-
tion reducible rev [is list] [m].

Lemma 6.20. reducible rev [is list] [m] =⇒ C rev [is list] [m] ≤ 2 + 4 ∗ m

Proof. Analogous to the proof of Lemma 6.15, we show M − 2 ∈ C set rev ′ [is cval, is list]
[1, m] with the help of Lemma 6.19. From the knowledge that C is always an upper bound
for the elements in a corresponding finite Cset (Lemma 4.16), we find that C-rev’-1-m is an
upper bound for M − 2, thus yielding the thesis by means of Lemma 6.14.

The similarity between the informal proofs of Lemma 6.20 and Lemma 6.15 carries over
to their Isar proof scripts just as well, as can be seen by comparison with Figure 6.3.

With this result and Lemma 4.15, the proof of the final theorem describing the com-
plexity of rev is now automatic after a case distinction on whether reducible rev [is list] [m]
holds.

Theorem 6.21. C rev [is list] [m] ≤ 2 + 4 ∗ m

6.3. Complexity Analysis for concat

A possible definition of the common list concatenation program in PMλ is the following:

Definition 6.22.
concat ≡
µ ′′concat ′′. FN ′′xs ′′⇒ FN ′′ys ′′⇒

MATCH V ′′xs ′′WITH
′′Nil ′′� []⇒ V ′′ys ′′ ‖
′′x ′′## ′′xs ′′⇒ V ′′x ′′## V ′′concat ′′ $ V ′′xs ′′ $ V ′′ys ′′
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lemma rev linear complexity1:
reducible rev [is list] [m] =⇒ C rev [is list] [m] ≤ 2 + 4 ∗ m

proof −
assume A: reducible rev [is list] [m]
def M ≡ C rev [is list] [m]
obtain ts :: expr list and v where ts:
length ts = 1 rev $$ ts→M v is cval v valid terms [is list] [m] ts
by (auto intro: fin red complexity D[OF C set finite ′′ 〈reducible rev [is list] [m]〉] simp: M def )
then obtain t where ts2: ts = [t] by (blast dest: list length 1 D)
with ts have t: is list t |t| = m by (force simp: valid terms def )+
with rev rev ′ red ts2 have red: rev $$ ts→2 rev ′ $$ [nil, t] by auto
from t 〈is cval v〉 n steps sub final[OF ts(2) red cval final]
have ∗:M − 2 ∈ C set rev ′ [is cval, is list] [1,m]

apply (intro C set I)
apply assumption
apply auto

done
from C ge[OF C set finite ′ this] have M − 2 ≤ C rev ′ [1, m] .
thus ?thesis using rev ′ linear complexity[of 1 m] unfolding M def by linarith

qed

Figure 6.3.: The Isar proof script corresponding to Lemma 6.20

We work directly on the interesting part of the function and abstain from wrapping
a letrec-construct around it, as in the preceding section we have already shown how to
derive from a complexity upper bound for the latter version a complexity upper bound
for the former version. The helpful quality of our complexity analysis for concat is that it
is completely analogous to the complexity analysis for rev’ to the extent that the Isar proof
scripts are just duplicates of each other for the most part. Thus, we will skip proofs without
further notice in the following discussion if they transfer directly from rev’ to concat aside
from most obvious adjustments (such as renaming or argument reordering).

The reduction behavior for the cases of an empty and a composite list are described by
lemmas 6.23 and 6.24.

Lemma 6.23. is cval ys =⇒ concat $$ [nil, ys]→3 ys

Lemma 6.24.
[[is cval ys; is cval x; is cval xs]] =⇒ concat $$ [x ## xs, ys]→4 x ## (concat $$ [xs, ys])

The only notable difference to rev’ here is that the reduction result for the composite list
does not contain an application of rev’ again but rather a list constructor in its outermost
position.

Similarly to Lemma 6.9 we have:

Lemma 6.25.
[[concat $$ [t1.0, t2.0]→k v; is list t1.0; |t1.0| = 1; is cval t2.0; is cval v]] =⇒ t1.0 = nil
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We introduce the abbreviating notations Cconcat for C rev ′ [is cval, is list] and Rconcat for
reducible rev ′ [is cval, is list]. Note here that the types are swapped compared to rev’, as the
argument that the recursion is following is the first one for concat and not the second one.

The analogy also extends to the upper bound result for the base case:

Lemma 6.26. C concat [1, n] ≤ 3

Clearly, the finiteness lemma for theCset corresponding to concat is proved as easily with
the help of Corollary 5.26 as for rev′:

Lemma 6.27. finite (C set concat [is list, is cval] [m, n])

This enables us to prove an upper bound for the complexity of concat in the case where
the first argument is of size greater than one.

Lemma 6.28.
[[1 < m; R concat [m, n]]] =⇒ ∃m ′<m. C concat [m, n] ≤ 4 + C concat [m ′, n] ∧ R concat [m ′, n]

Proof. As the reduction behavior for the composite case differs between concat and rev’, this
is the lemma in whose proof a small derivation from the analog for rev’ has to be expected
(this also reflected by the fact that the second size bound does not change here). We display
the Isar proof script in Figure 6.4 for comparison with the proof of Lemma 6.15 (cf. Figure
6.1) and explicate their discrepancies. The crucial difference is that we have to argue here
that the property Concat.concat $$ [t1, t2] →4 x ## (Concat.concat $$ [xs, t2]) implies that
there also has to be some list xs′, to which Concat.concat $$ [xs, t2] can be reduced in M − 4
steps. Only then we can bound R concat [m, n] with a term involving Cconcat for a smaller
size bound for the first argument, because only then can we find some Cset for concat in
which M − 4 is contained. The remaining part of the proof then again resembles the proof
of Lemma 6.15.

Once again, we eliminate the reducibility assumption.

Lemma 6.29. 1 < m =⇒ ∃m ′<m. C concat [m, n] ≤ 4 + C concat [m ′, n]

Thus, we arrive at the final theorem about the complexity of concat.

Theorem 6.30. C concat [m, n] ≤ 4 ∗ m

Proof. For completeness we give the Isar proof script in Figure 6.5 and note that one proof
step is saved here compared to the proof of Theorem 6.18 in the induction step, because
fortunately the force method can already successfully prove the whole proof obligation
automatically.

6.4. Complexity Analysis for reverse

The proof for the result about the upper bound for the complexity of rev (cf. Theorem 6.21)
already gave a glimpse into how results for the complexity of subroutines can be reused
to derive complexity upper bounds for larger programs that rely on these subroutines. As
such a procedure will be elementary to most practical complexity analysis, we want to
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lemma C step concat:
m > 1 =⇒ R concat [m,n] =⇒
∃ m ′. m ′< m ∧ C concat [m,n] ≤ 4 + C concat [m ′,n] ∧ R concat [m ′,n]

proof −
assume m > 1 R concat [m,n]
def M ≡ C concat [m,n]
obtain ts :: expr list and v where ts:
length ts = 2 valid terms [is list, is cval] [m,n] ts concat $$ ts→M v is cval v
using fin red C elem C set[OF C set finite ′ 〈R concat [m,n]〉]
by (auto simp: eval nat numeral M def )
then obtain t1 t2 where ts2:ts = [t1,t2] by (blast dest: list length 2 D)
with ts have t1t2: is list t1 is cval t2 |t1| = m |t2| = n
by (force simp: valid terms def )+
from 〈is list t1〉 show ?thesis
proof (cases rule: is list.cases)

case Nil thus ?thesis using 〈m > 1〉 t1t2 by auto
next

case (Cons x xs)
with concat red step 〈is cval t2〉 have concat $$ [t1,t2]→4 x##(concat $$ [xs, t2]) by auto
from n steps sub final[OF this cval final] ts ts2 have x##(concat $$ [xs,t2])→M − 4 v
by auto
from cons val red[OF this cval final[OF 〈is cval x〉]] ts ts2 obtain xs ′where
concat $$ [xs,t2]→M − 4 xs ′ is cval xs ′ by blast
with 〈is list xs〉 〈is cval t2〉 〈|t2| = n〉 〈is cval xs ′〉
have ∗: M − 4 ∈ C set concat [is list, is cval] [ |xs|, n]

apply (intro C set I)
apply assumption
apply auto

done
from C ge[OF C set finite ′ this] 〈m > 1〉 have C concat [m, n] ≤ 4 + C concat [ |xs|, n]
by (auto simp: M def )
moreover have 0 < |xs| |xs| < m using Cons(1) 〈|t1| = m〉 by auto
moreover from ∗ have R concat [ |xs|, n] unfolding reducible def by blast
ultimately show ?thesis by auto

qed
qed

Figure 6.4.: The Isar proof script for Lemma 6.28
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theorem concat linear complexity:
C concat [m, n] ≤ 4 ∗ m

proof (induction m rule: less induct)
case (less m)
show ?case
proof (cases m ≤ 1)
case True
thus ?thesis using complexity 0[OF C set finite ′] C concat base case[of n] by (cases m) auto

next
case False
with C step le[of m n] less show ?thesis by force

qed
qed

Figure 6.5.: The Isar proof script for Theorem 6.30

conclude this chapter by demonstrating how such a technique can be employed to show
a quadratic complexity upper bound for another, more naive version of the list reversal
program that relies on the list concatenation program from the last section as a subroutine.
The program definition is straightforward:

Definition 6.31.
reverse ≡
µ ′′reverse ′′. FN ′′xs ′′⇒
MATCH V ′′xs ′′WITH
′′Nil ′′� []⇒ nil ‖
′′x ′′## ′′xs ′′⇒ concat $ (V ′′reverse ′′ $ V ′′xs ′′) $ (V ′′x ′′## nil)

As before, we describe the reduction behavior in the cases of empty and composite lists.

Lemma 6.32. reverse $$ [nil]→2 nil

Lemma 6.33.
[[is cval x; is cval xs]]
=⇒ reverse $ (x ## xs)→Suc (Suc (Suc 0)) concat $ (reverse $ xs) $ (x ## nil)

As the reverse program relies on the idea of reversing a list’s tail and appending the head
of the list to the result, a lemma that captures the essence of this behavior will come in
handy for an analysis of the program’s complexity:

Lemma 6.34.
[[reverse $ xs→n ys; is cval x; is cval xs]]
=⇒ reverse $ (x ## xs)→3 + n concat $ ys $ (x ## nil)

Proof. The lemma follows directly from Lemma 6.33 and the reduction properties of the n
small-step relation as mentioned in Chapter 4.
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Analogous to the preceding analyses we prepare

Lemma 6.35. [[reverse $$ [t]→k v; is cval t; |t| = 1; is cval v]] =⇒ t = nil

and show an upper bound for the base case:

Lemma 6.36. C reverse [1] = 2

We abbreviate C reverse [is list] as Creverse and reducible reverse [is list] as Rreverse and
restate the finiteness property of the Cset corresponding to reverse.

Lemma 6.37. finite (C set rev ′ [is cval, is list] [m, n])

The proofs for the last lemmas are completely analogous to the respective proofs for
rev’ and have therefore been skipped. Unfortunately, the proof of an upper bound for the
complexity of reverse in the case of composite list arguments does not transfer as nicely
from the analysis of rev’. In preparation, we need to prove additional semantic properties
about concat and reverse. Firstly, given lists as inputs, concat outputs a list whose size is
smaller by one than the sum of the sizes of the inputs (the uncommon lemma statement
produces a rule convenient for use by Isabelle proof methods):

Lemma 6.38.
[[is list xs; is list ys;∧

n zs. [[concat $$ [xs, ys]→n zs; is list zs; |xs| + |ys| = Suc |zs|]] =⇒ thesis
]] =⇒ thesis

Proof. The proof employs a rule induction on the is list predicate’s rules for xs. The case of
the empty list follows trivially from Lemma 6.23. For the case of a composite list x##xswe
can first reduce concat $$ [x ## xs, ys] to x ## (concat $$ [xs, ys]) in four steps using Lemma
6.24. We discharge the induction hypothesis to obtain a list zs with |xs| + |ys| = Suc |zs|,
such that concat $$ [xs, ys] can be reduced to zs in n steps. We now can reduce concat $$
[x ## xs, ys] to x##zs in n + 4 steps and the equation |x##xs| + |ys| = Suc |x##zs| is
derived easily.

We use this to show that reverse produces a list of equal size from an input list.

Lemma 6.39.
[[is list xs;

∧
n ys. [[reverse $$ [xs]→n ys; is list ys; |xs| = |ys|]] =⇒ thesis]] =⇒ thesis

Proof. Again, the proof uses a rule induction on the is list predicate’s rules for xs and the
base case also follows trivially from Lemma 6.32. For the case of a composite list x##xs
we can first reduce reverse $$ [x ## xs] to concat $ (reverse $ xs) $ (x ## nil). We discharge
the induction hypothesis to obtain a list ys with |xs| = |ys|, such that reverse $$ [xs] can be
reduced to ys in n steps. Now we use the last result to find a list zs with |xs|+ |x##nil| =
Suc |zs|, such that concat $ ys $ (x ## nil) can be reduced to zs. We get |xs| + |x| = |zs|
and from the reduction properties of the nsmall-step relation we can conclude that reverse
$$ [x ## xs] can be reduced to zs.

These lemmas are the only additional instruments needed to derive a complexity upper
bound for reverse in the case of a composite input list.

49



Lemma 6.40.
[[1 < n; R rev ′ [m, n]]] =⇒ ∃m ′ n ′. n ′< n ∧ C rev ′ [m, n] ≤ 4 + C rev ′ [m ′, n ′] ∧ R rev ′ [m ′, n ′]

Proof. The general layout of the proof is similar to lemmas 6.15 and 6.28. The Isar proof
script is given in Figure 6.6. We define M as C reverse [n], obtain a list t of size n and a
constructor value v such that reverse $$ [t]→M v holds, and employ a case analysis on the
list property of t. The case of the empty list is trivial. For the composite case we suppose
t = x ## xs for a constructor value x and a list xs. We use Lemma 6.33 to get reverse $$
[t] →3 concat $$ [reverse $ xs, x ## nil] and use Lemma 6.39 to find a number of steps k
and a list ys of the same size as xs such that reverse $$ [xs] →k ys holds. Then we know
k ∈ C set reverse [is list] [|xs|] and thus k ≤ C reverse [|xs|]. Lemma 6.34 gives us reverse $

(x ## xs)→3 + k concat $$ [ys, x ## nil]. With the help of Lemma 6.38 the last reduction
result can be reduced to some list zs in a number of steps l, implying that l ∈ C set concat
[is list, is cval] [|ys|, |x ## nil|] and the inequality l ≤ C concat [|ys|, |x ## nil|] hold. This
way we have bounded l by some complexity expression for which we have already found
another useful bound given by Theorem 6.30 and thus we get l ≤ 4 ∗ (|ys|). We can put
our previous findings together to get reverse $$ [x ## xs] →3 + k + l zs. Hence, from the
determinism properties of the nsmall-step relation, we also know v = zs andM = 3+k+ l
and therefore get an upper bound for M : M ≤ 3 + C reverse [|xs|] + 4 ∗ (|xs|). This yields
the thesis by final argumentation analogous to the previous proofs.

Once again, the reducibility assumption can be eliminated.

Lemma 6.41. 1 < n =⇒ ∃m ′ n ′. n ′< n ∧ C rev ′ [m, n] ≤ 4 + C rev ′ [m ′, n ′]

Ultimately, we can solve the recurrences to arrive at the final upper bound theorem.

Theorem 6.42. C reverse [n] ≤ 3 ∗ n + 4 ∗ n ∗ n

Proof. The general proof idea is analogous to the previous results, but the induction step
requires a few easy arithmetic approximations that cannot automatically be applied very
well by Isabelle, but rather have to be manually expiated in the corresponding Isar proof
script (cf. Figure 6.7). Individual proof steps are solved by applications of the first-order
proof method metis for which the particular rule sets have been found by a first-order proof
search with the sledgehammer tool [3].
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lemma C step reverse:
n > 1 =⇒ R reverse [n] =⇒
∃ n ′. n ′< n ∧ C reverse [n] ≤ 3 + C reverse [n ′] + 4∗n ′∧ R reverse [n ′]

proof −
assume n > 1 R reverse [n]
def M ≡ C reverse [n]
obtain ts :: expr list and v where ts:
length ts = 1 reverse $$ ts→M v is cval v valid terms [is list] [n] ts
using fin red C elem C set[OF C set finite ′ 〈R reverse [n]〉]
by (auto simp: eval nat numeral M def )
then obtain t where ts = [t] by (blast dest: list length 1 D)
with ts have t: is list t |t| = n by (force simp: valid terms def )+
from 〈is list t〉 show ?thesis
proof (cases rule: is list.cases)
case Nil thus ?thesis using 〈n > 1〉 t by auto

next
case (Cons x xs)
hence reverse $$ [t]→3 concat $$ [reverse $ xs, x ## nil]
using reverse red cons 〈is list t〉 by (auto simp add: eval nat numeral)
obtain ys k where red1:reverse $$ [xs]→k ys is list ys |xs| = |ys|
by (auto intro: reverse list red[OF 〈is list xs〉])
have ∗:k ∈ C set reverse [is list] [ |xs| ]
by (rule C set I) (fastforce simp: 〈is list xs〉 〈is list ys〉 intro: red1)+
from C ge[OF C set finite ′ this] have le1:k ≤ C reverse [ |xs| ] .
have red2:reverse $ (x ## xs)→3 + k concat $$ [ys, x ## nil]
using reverse cont[OF 〈is cval x〉] 〈is list xs〉 red1(1) by auto
obtain zs l where red3: concat $$ [ys, x ## nil]→l zs is list zs
by (blast intro: concat list red[OF 〈is list ys〉] 〈is cval x〉)
from 〈is list zs〉 red3 〈is list ys〉 〈is cval x〉
have l ∈ C set concat [is list, is cval] [ |ys|, |x ## nil| ]

apply (intro C set I)
apply fastforce+

done
from C ge[OF Concat.C set finite ′ this] have l ≤ C concat [ |ys|, |x ## nil| ] .
hence le2:l ≤ 4 ∗ ( |ys| ) using concat linear complexity[of |ys| |x ## nil|] by auto
have reverse $$ [x##xs]→3 + k + l zs using red2 red3 by (subst relpowp add) fastforce
from ts(2,3) 〈ts = [t]〉 Cons(1) 〈is list zs〉 final red unique1[OF this] have 3+k+l = M
by (auto simp: cval final)
hence M ≤ 3 + C reverse [ |xs| ] + 4 ∗ ( |xs| ) using le1 le2 by (auto simp: 〈|xs| = |ys|〉)
moreover have 0 < |xs| |xs| < n using Cons(1) 〈|t| = n〉 by auto
moreover from ∗ have R reverse [ |xs| ] unfolding reducible def by blast
ultimately show ?thesis by (auto simp: M def )

qed
qed

Figure 6.6.: The Isar proof script corresponding to Lemma 6.40
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lemma reverse quadratic complexity:
C reverse [n] ≤ 3 ∗ n + 4 ∗ n ∗ n

proof (induction n rule: less induct)
case (less n)
show ?case
proof (cases n ≤ 1)
case False
with C step le[of n] less obtain n ′where ∗:
n ′< n C reverse [n] ≤ 3 + C reverse [n ′] + 4∗n ′ by auto
with less.IH less.prems have C reverse [n ′] ≤ 3 ∗ n ′+ 4 ∗ n ′ ∗ n ′ by blast
with ∗(2) have C reverse [n] ≤ 3 ∗ (Suc n ′) + 4 ∗ n ′ ∗ (Suc n ′) by auto
also have . . . ≤ 3 ∗ (Suc n ′) + 4 ∗ (Suc n ′) ∗ (Suc n ′)
by (metis Suc3 eq add 3 Suc leD Suc le mono add mult distrib2 le refl mult le mono1

nat mult commute)
also from 〈n ′< n〉 have . . . ≤ 3 ∗ n + 4 ∗ (Suc n ′) ∗ n
by (metis add le mono less eq Suc le mult le mono2)
also from 〈n ′< n〉 have . . . ≤ 3 ∗ n + 4 ∗ n ∗ n
by (metis Suc3 eq add 3 Suc le mono add mult distrib less eq Suc le

mult le cancel2 nat mult le cancel disj)
finally show ?thesis by auto

next
case True thus ?thesis using complexity 0[OF C set finite ′] C reverse base case less
by (cases n) auto

qed
qed

Figure 6.7.: The structured proof for Theorem 6.42
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Part III.

Discussion and Conclusion
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7. Discussion and Related Work

This chapter gives an overview of previous efforts related to this work and discusses how
they compare to our approach. The first section presents some related approaches to define
the semantics of a functional language. Afterwards, different attempts to automatically
derive the runtime complexity of programs in functional languages are surveyed. Finally,
we briefly mention previous work that tried to formalize computability theory. We want
to restate that the ultimate goal of this work is actually to combine both – the formalization
of a functional language together with a formalization of tools to automatically derive the
(worst case) runtime complexity of programs in this language. To the best of the author’s
knowledge such an undertaking has yet to be completed successfully.

7.1. Comparison With Other Language and Semantics Definitions

When we defined PMλ and its semantics in Chapter 3, we already briefly discussed pop-
ular alternatives we could have chosen to define the semantics. We now give an overview
of some previous approaches that have been made to formalize (with the help of a proof
assistant) the definition of programming languages and their operational semantics. We
note that, due to the simplicity of our language, all of these approaches in a way subsume
our efforts (excluding pattern matching for some of them) such that our efforts here are
not actually a new research contribution.

The definition of an operational big-step semantics for Standard ML (SML) – The Def-
inition of Standard ML by Milner et al. [24] – is one of the earliest attempts to define a
formalized (in the sense of formal mathematical prose) semantics for a large-scale, real-
world functional language. Many efforts to mechanize a semantics for SML with the help
of a proof assistant have tried to follow this specification but failed due to various reasons
as described by Owens [29], including the bugs of this specification in its original [13] and
its revised version [34]. Intensive work has been done to formalize the semantics of large
subsets of the imperative languages Java [16] and C [27]. The scope of this work, however,
has been constrained to analyze the algorithmic complexity of programs in a functional
ML-style language; thus these approaches are not of greater interest for this work.

Two successful attempts have been made to formalize the semantics of a realistic ML-
style language and to proof the type soundness of the language based on this formal-
ization. The subject of study of the first approach [19] is SML. An internal language is
used, into which the full SML language can be translated. However, such a translation
would not fit the primary scope of our work, for the translation would introduce algorith-
mic overhead. Moreover, this approach mainly concentrates on the accurate modeling of
SML’s module system and on the verification of the type safety of the internal language.
Again, both lie outside of the main theme of this work. Finally, the formalization with
the Twelf proof assistant necessitated the introduction of evaluation contexts, which we
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decided to abstain from for reasons explained in Chapter 3 (following the argumentation
of Owens [29]).

The second approach is a direct formalization of an operational small-step semantics for
OCamllight, a significant subset of OCaml, by Owens [29]. The author has looked into this
approach at the beginning stages of his work, but has found the size of the formalization
too overwhelming for use in the present work. Instead, the author has decided to keep
the definition of PMλ as simple as possible but to add a certain ML-style character of the
language by adding pattern matching. Among the attempts to define a formalized oper-
ational semantics for a realistic programming language, the definition of our operational
(small-step) semantics is closest to Owens’s work as he also defines a small-step opera-
tional semantics for a ML-style language and employs textual substitution for the defini-
tion of these semantics. For a discussion of further approaches to formalize the definition
of ML-style languages, we refer to Owens [29].

Apart from the ML universe there have been attempts to formalize the semantics for
Lisp-style languages and the CRWL logic. Matthews and Findler [23] have defined an op-
erational semantics for the core of Scheme with the help of PLT Redex, a domain-specific
language for the specification of operational semantics. They employ Felleisen Hieb-style
reduction contexts, whose usage we have decided to avoid as discussed above. Using PLT
Redex, they have been able to build a test suite for their specification, but they do not pro-
vide a proof-assistant formalization of their proof. Additionally, their work concentrates
on modeling special features of Scheme which are irrelevant for our work, such as call/cc
and dynamic-wind.

Just as we did, Fraguas et al. [8] also used Isabelle to formalize the semantic framework
CRWL. Besides the fact that they use Isabelle, their work does not have any important
relation to our semantics formalization as they aim at languages that support far more ad-
vanced features than the basic functionality of ML-style languages we aim for. Moreover,
the CRWL semantics internalize reduction contexts which would naturally force us to use
these.

Lösch and Pitts [22] defined the language PNA (Programming with Name Abstractions)
together with an operational semantics as an extension to Plotkin’s PCF language [32]
with names. Our language is closer to PCF than to PNA because our language just adds
variable names to reference names bound under λ-abstractions, compared to PNA, where
variable names are first class citizens adding some sort of meta-programming facility to
the language. Our pattern matching mechanism also does not have any parallel in PNA.
Still, for the definition of our programming language semantics, we most closely follow
the approach taken by Lösch and Pitts.

Summarizing, intensive work has been done to formalize the operational semantics of
(nearly) whole real-world functional languages, although the involved complexity (and
mere size of the formalizations) can reach a high degree of sophistication. Therefore, we
have chosen to base our work on a language that is among the most simplistic functional
languages to keep the formalization’s size to a bearable level. However, the wealth of
successful formalizations available shows that the basic approach of our work could in
principle be extended to a more feature-rich language; albeit this could drastically increase
the complexity of the formalization.
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7.2. Complexity Analysis for Functional Languages

In the first part of this section we want to briefly discuss some older approaches to au-
tomatically deriving the (mostly average) runtime complexity of programs in functional
languages. The field was pioneered by Wegbreit [37] with his Metric system. It is able to
derive the mean and variance of the runtime for a first-order subset of Lisp programs to-
gether with an upper and a lower bound on the runtime through statistical analysis. The
user has to provide conditional distributions for tests in conditionals and statistical inde-
pendence of these tests is assumed, which poses a major limitation as the user has to assure
the soundness of the analysis through the system.

The ACE system [18] is able to derive the worst-case complexity for a subset of FP pro-
grams. Programs are transformed from an initial program to a function describing its
complexity, which is then transformed to a non-recursive expression. The last step makes
use of a library of predefined recursive definitions. If a non-recursive version is success-
fully obtained, it can be further transformed into a version that consists only of canonical
functions such as logarithms or polynomials. Through the elimination of the assumption
of statistical independence, the ACE system is applicable to a substantially larger set of
programs than Metric.

A similar approach has been taken by Rosendahl [33]. His system is able to automat-
ically derive an upper bound of the complexity of a first-order subset of Lisp programs.
An initial transformation step derives from a program a so-called step-counting version, on
which then an abstract interpretation is performed to arrive at a program that gives an up-
per bound of the program’s execution time. Rosendahl presents non-mechanized proofs
for the correctness of the system.

All three systems share the property of requiring input programs in a closed form, which
prohibits modularity of the analysis. Numerous even more advanced systems exist whose
basic approaches are similar to the Metric system [7, 40]. For all of the mentioned ap-
proaches it is unclear how they could be integrated into our framework as it is non-obvious
how a formal verification of their correctness could be approached.

A different approach settles on automatic amortized resource analysis [10, 11]. Hoff-
mann et al. [10] studied a first-order fragment of Ocaml, Resource Aware ML (RAML), to
obtain multivariate polynomial bounds for functions with several arguments. Their ap-
proach is not verified and it is not clear how their approach could be integrated into our
framework, as complexity bounds for RAML programs are generated at compilation time.

We have found three more recent attempts that tried to automatically infer recurrences
describing the upper bound of a functional program’s complexity and also tried to auto-
matically resolve these recurrences. Of course, this adds up a greater degree of sophis-
tication compared to our approach, as in our framework both steps have to be executed
manually. Nonetheless, none of these approaches have been formalized – and as the recur-
rence solving steps rely on computer algebra systems, this also seems to be an unrealistic
goal which will not be fully achieved in the near future. Anyhow, strong evidence for
the soundness for all of the approaches exists. The following gives a short summary and
comparison of these approaches.

Benzinger [2] presented a system to automatically analyze the complexity of programs
synthesized from proofs (so-called proof extracts) in the Nuprl proof development system.
His system is capable of handling programs with primitive recursion, first-order func-
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tions, and a subclass of higher-order functions. The programs are limited to operating on
integers and (lazy) lists. Benzinger introduced a calculus that enables one to define ab-
stract functions and lists, in which the concrete computation of subterms is abstracted by
terms describing only the complexity of the subterm computation; this yields support for
higher-order functions (by replacing them with first-order complexity descriptions) and
built-in lists. His approach consists of two stages. First, using abstract interpretation, a
symbolic evaluator simultaneously produces recurrence equations and a raw complexity
expression. These are then simplified in the next step by repeatedly calling a recurrence
solving subprocedure, which in part relies on the computer algebra system (CAS) Math-
ematica, to replace recursive terms with closed ones. The final output of the procedure is
either a closed complexity expression or a partially simplified expression for which unre-
solved recurrences are reported. Benzinger states that the answer is not provably correct
by means of automatic theorem proving, although he claims that this defect could be re-
solved in the future by adapting the system such that it produces a verifiable proof for the
program complexity along the way.

In principle, a symbolic evaluator similar to Benzinger’s could also be added to our
framework, provided that the soundness of the evaluator is also proved. However, con-
sidering that Benzinger’s system is already made up of over 3000 lines of code, such an
undertaking would most likely require great formalization efforts. As Isabelle and other
proof assistants currently provide no means for a CAS integration, it is clear that at least
in the near future the recurrences will still have to be resolved by manual proof efforts.

A simpler possible extension to our current framework that would use a similar idea
to Benzinger’s symbolic evaluator can be imagined: a simple (partial) evaluation function
could be defined that maps any expression to a pair of a reduced expression and the num-
ber of reduction steps required to arrive at the reduced expression. If the soundness of
the function was proved, it could then be used to replace those proof steps that currently
require the explicit statement of such reductions. The quality of the function would cru-
cially determine the amount of simplification gained by this approach: on the one hand the
function’s range should be as large as possible, but on the other hand its reduction results
should also be as ”interesting” as possible, e.g. it should preferably reduce the expression
to a point where the recursive definition of a function has been substituted once. Due to
time constraints, the author has not managed to fully evaluate the feasibility of such an ap-
proach, but during initial experimentation he found it hard to reach a satisfying result for
the second aspect while keeping the complexity of the soundness proof down to a bearable
level.

A related approach that extends Benzinger’s work in part was taken by Jouannaud and
Xu [12]. Except that they study the complexity of programs extracted from proofs devel-
oped with the Coq proof assistant rather than the Nuprl proof assistant, their approach is
in its main ideas similar to Benzinger’s, although it is applicable to a greater number of
programs. However, the main limitations remain: only the complexity of programs work-
ing on lists and natural numbers that use at most one recursive call can be automatically
calculated. A soundness or completeness proof has not been attempted. From the simi-
larities of the two approaches it follows that they should also be equally portable to our
framework.

An entirely different approach for the automatic inference of equations describing the
(worst-case) runtime complexity of functional programs was taken by Vasconcelos and

58



Hammond [36]. They used a type-based analysis to automatically infer first-order cost
equations for a simple functional language that is closely related to ours; the main dif-
ference is that their language does not provide pattern matching, but rather provides el-
ementary datatypes for booleans, natural numbers and lists together with corresponding
primitive operations. Similarly to Benzinger’s approach, a CAS must be used to obtain
closed-form solutions from these equations. The analysis is based on an effect system
using sized types as an extension to the Hindley-Milner polymorphic type system. This
systems adds a subscript to most types which specifies an upper bound for its size. Func-
tion types carry a subscript that describes an upper bound for the evaluation cost of the
function body. A type reconstruction algorithm is employed to derive for an expression in
the language a cost effect, a sized type and corresponding recurrence equations. The cost
model differs slightly from ours in that Vasconcelos and Hammond define the equivalent
to our runtime notion only through the number of β-reduction steps appearing along a
reduction sequence. However, for asymptotic analyses this difference looses any signifi-
cance.

As Benzinger, Vasconcelos and Hammond have not made any attempts to formally ver-
ify the soundness or completeness of their approaches, although they claim that their re-
sults would naturally carry over from known proofs for other type and effect systems.
The types of programs supported by the analysis of Vasconcelos and Hammond are sim-
ilar to that of Benzinger’s approaches, despite that their approach does not work for all
primitive recursive programs. Due to the similarity of the language studied by Vascon-
celos and Hammond, and PMλ, it seems reasonable to argue that their approach could
also be translated into an extension for our framework. However, to retain a formalization
for the whole framework, a soundness proof for the type and effect system and the type
reconstruction algorithm would have to be formalized, which would again be a project
requiring substantial effort.

7.3. Formalizations for Computational Theory

We briefly mention previous efforts to formalize computational theory with the help of
proof assistants. None of these approaches have been used for complexity analysis – due to
their intricacy they also do not seem to be easily applicable to this kind of analysis. Turing
machines have been formalized with Isabelle [39] and the Matita theorem prover [1]. The
former work features a short (1500 lines of code) formalization of Turing machines. How-
ever, the translations required to construct universal Turing machines encompass well over
10000 lines of code. As these comparatively simple forms of compilation require such large
formalizations, it is reasonable to argue that the formalization of a compiler that translates
programs in even a simple language to Turing machines would be a quite onerous project.
However, such a compiler would be necessary to reason about program complexity with
Turing machines. Instead of Turing Machines, a different computational model was used
by Norrish [28]. He mechanized a proof for the computational equivalence of λ-calculus
and recursive functions. This work is highly non-trivial so it is also undesirable to use
these computation models for formally verified complexity analysis.
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8. Conclusion

We constructed a framework for formally verified runtime complexity analysis of func-
tional programs in Isabelle/HOL. Afterwards we showed how it can be used in an end-
user setting by demonstrating how to analyze the worst-case of complexity of three con-
crete example programs. The process involved the definition of the deeply-embedded pro-
gramming language PMλ. A corresponding small-step operational semantics assigned a
meaning to the language. This semantics was then used to build a notion of runtime for
the language by simply defining runtime for an PMλ-expression e as the number of small-
steps it takes to arrive from e at a normal form. We showed that the phrase ”the number of
small-steps” conveys the correct meaning, as the determinism of the small-step semantics
tells us that there will be always at most one such number.

From this simple runtime measure, we derived a runtime complexity measure for termi-
nating functions applied to the correct number of arguments, i.e. we derived a complexity
measure for closed programs. The definition imposes further restrictions on the closed pro-
grams on top of the fundamental idea that complexity analysis looks at functions with
arguments that are bounded in size. Each of the functions’ arguments is restricted to a
certain type described by an HOL predicate and the reduction result of programs is ex-
pected to be a constructor value. The former ensures a property that would be naturally
fulfilled by a more complex language that provides a type system, while the latter simpli-
fies the complexity analysis by constraining us to ”sensible” computations. We discussed
previously that an extension to general normal forms as reduction results should be pos-
sible without investing too much effort. However, especially for programs employed in a
high-security setting, the restriction would usually have to be postulated anyhow, as it is
not desirable that programs can get stuck in a error state. The same argument holds for
termination.

In order to complement the framework for complexity analysis, we had to show that
programs that are given inputs of bounded size can only exhibit a finite number of execu-
tion paths if computation terminates and arrives at a value. This was necessary because
the definition of our complexity measure employed the HOL Max-operator, which is only
defined on finite and nonempty sets. Finally, we demonstrated how a linear complexity
upper bound for a list concatenation and a tail-recursive list reversal program can be de-
rived with our framework. Additionally, we derived a quadratic upper bound for a naive
list concatenation based version of list reversal. The analysis of the latter involved the
reuse of the result for the complexity of the list concatenation subprocedure. We noticed
that the Isar proof scripts for the analyses for all three of the programs share a common
structure for the most part. On the one hand, this means that an end user can streamline
such proofs in a rote manner. On the other hand, the approach should be generalized
further. For instance, this could be done by providing a symbolic evaluation function as
discussed in the last section.

The size of our formalizations appears to be feasible for further extension. The core
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definitions and properties of the language, of its semantics and of the complexity definition
encompass around 550 lines of code (LOCs). The fundamental Isabelle theory file for list
programs and the theory files for the analyses for the example programs are each around
200 LOCs. The image is only tarnished by the formalization of Chapter 5: the structured
proofs for this intuitively simple theorem require 1000 LOCs.

8.1. Future Work

This work has presented a proof-of-concept for the construction of a framework that could
be used for practical, formally verified complexity analysis, rather than as a tool for directly
achieving the long-term goal of analyzing the complexity of typical HOL programs. Still,
we have taken a small step in the right direction. This final section will suggest areas that
would have to be investigated in order to make the framework suffice for the complexity
analysis of real-world programs.

Probably the most important alteration to our framework required to achieve this long-
term goal would be to make the deeply-embedded language expressive enough that, first,
HOL programs could be translated into the language while ensuring that the translation
preserves equivalence of the programs; and second that the translation would at least pre-
serve asymptotic complexity bounds. As we cannot directly reason about the structure of
HOL terms, it remains an open question how such a translation could be defined and how
it could be verified that it adheres to the mentioned properties, while keeping user inter-
action to a minimum. Moreover, it is not clear how expressive the language should be.
However, as we discussed in the last section, previous work has shown that the formal-
ization of the operational semantics for realistic functional languages is possible, although
the size of the formalizations can reach quite monstrous levels.

For our approach, any language with a corresponding small-step operational semantics
would be sufficient, although its expressive power should be as limited as possible in or-
der to minimize the size of the formalization of its semantics. A more complex language
would most likely also come along with a type system of its own. In this case, of course,
our complexity definition should be adopted such that it is constrained to well-typed pro-
grams rather than providing the ”types” via predicates on the inputs. Additionally, if a
more realistic language provided a mechanism, such as exception handling, that could
yield different types of legal computations, naturally our complexity definition should
be reconsidered to account for the different computation results. This list could well be
continued for pages, but the important point here is that, in principle, the approach of this
work could be extended to far more complex languages, although the formalization would
probably balloon. We want to mention that the first-order property of PMλ is currently its
biggest limitation. Thus, the semantics should be extended to higher-order functions and
the complexity of corresponding programs should be analyzed as a first step.

The second step to make our framework applicable to practical applications would be
to extend it with means of automatic complexity analysis. We have intensively discussed
related previous work in this field and noted that it should in principle be possible to
extend our frameworks with these or similar approaches. Again, the issue here is that the
formalization of these approaches would require significant effort. We also proposed a
more feasible extension: a partial function for symbolic evaluation could be defined that
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would try to reduce an input expression as far as possible. It would return the number of
reduction steps that are necessary for this reduction together with the resulting expression.
If the soundness of this function was proved, it could – depending on its quality – replace
a greater part of the argumentation required in our proof scripts. Compared to the other
approaches, the formalization of such a function would be quite lightweight.

Finally, minor additions could be made to our formalization. The result for the finiteness
of the number of possible reduction paths for programs with inputs of bounded size could
be generalized to normal forms rather than values as reduction results. The same holds
for the equivalence result between the big-step and small-step semantics.
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