
PERSONAL - Virtualization Techniques

Introduction

ISA Emulation

Terminology

Emulation

Interpretation vs. Binary Translation

Fast Emulation (Adaptive)

Interpretation

Binary Translation

Process VMs

Components

Compatibility

State Mapping

High-Level Language VMs

Java Virtual Machine (JVM)

Comparison: ISA vs. V-ISA

Implementation

System VMs

State Management

Resource Control

CPU Virtualization

Memory Virtualization

I/O Virtualization

Optimizations

Introduction

virtual machine (VM): virtualization or emulation of a computer system

abstraction: simplification of a system for a given purpose, with unnecessary details omitted

e.g. "root, branches, leaves" (complex) vs. "tree" (abstraction)

(fixed) interface: decouples development of layer implementations, increases exchangability
(usually fixed ISA + OS)

https://en.wikipedia.org/wiki/Virtual_machine

e.g. a program designed for the x86 ISA and Windows can run on any* computer with Windows
and a processor implementing the x86 ISA, e.g. AMD Opteron, Intel Core i7...

(!) inflexible: given binary bound to fixed platform (e.g. you can't natively run an x86 Windows
application on an ARM-based UNIX system), optimizations hardware-bound, changes to ISA /
OS interfaces not possible

virtualization: construction of a virtual environment for an inner system using an outer system

virtual interface: provided to the inner system by the outer system (action)

inner system: guest system (virtual)

outer system: host system (real)

formal: given two structures and ...

abstraction: simplified model abstracts complex model

virtualization: virtual machine is realized by real machine

elements: states in / disjoint sets of states in

elements in : states of the simplified model / virtual machine

(!) every state in must be mappable to a set of states in !

abstraction: every simplified state must be realizable in complex model

virtualization: every virtual state must be implementable by real machine

elements in : disjoint sets of states in complex model / real machine

monomorphism (injective mapping):

operations: state transitions

abstraction:

: abstraction mapping function from state in to disjoint sets of states in

: state-transition in

: set of states-transition in

for any state transition in , there exists a matching function mapping
sets of states in

virtualization:

: virtualization mapping function from guest state to host set of states in

: state-transition in

: set of states-transition in

for any state transition in , there exists a matching function
mapping sets of states in

(!) difference: virtualization usually does not hide complex details; abstraction simplifies one
thing, while virtualization maps among different things

X Y

X Y

X Y

X Y

X

X Y

Y

X → Y

S ​ =j
′ A(op(S ​)) =i op (A(S ​))′

i

A S X S′ Y

op X

op′ Y

op X op′

Y

S ​ =j
′ V (exec(S ​)) =i exec (V (S ​))′

i

V X S′ Y

exec X

exec′ Y

exec X exec′

Y

https://en.wikipedia.org/wiki/Virtualization

resource: computer environments consist of various resources, on different abstraction layers,
accessed via interfaces

categories:

I/O (e.g. hard drive, network card, GPU, display, mouse, keyboard...), memory (e.g. RAM,
SQL database...), execution (e.g. CPU, interpreter...), others (e.g. time, credentials, user
roles, PIDs...)

OS-managed vs. not-OS-managed

system seen by user application: user ISA, virtual address space, OS syscalls

system seen by OS: complete ISA, physical address space, direct I/O

strategies:

partitioning (e.g. break down large hard drive into multiple smaller ones, time
multiplexing...)

indirection (e.g. virtual memory implemented by page tables, register stored in register
...)

hypervisor / virtual machine monitor (VMM): a type of computer software, firmware or hardware
that creates and runs virtual machines

classification of VMs:

by abstraction level of machine interface (e.g. System VMs vs. Process VMs) (*)

by virtualization technique (e.g. full virtualization vs. paravirtualization)

by amount of virtualization covered by HW (i.e. VM source line count)

types of VMs:

system VMs: virtualization of a complete system environment, including I/O devices

subtypes: by privilege level...

type I: system level, bare-metal (native) (e.g. Xen, Hyper-V...)

type II: user level, on top of OS (e.g. QEmu)

splitted: some parts on system level, some on user level (e.g. VirtualBox,
VMware...)

process VMs: virtualization of a process environment, where every process gets its own
environment

containers: OS-level virtualization, same OS and ISA, communicating processes split
into groups with own environments (e.g. namespaces, cgroups, chroot...)

HLL VMs (high level language VMs): programs using ISA of HLL-VM, OS calls done by
HLL platform library (e.g. JVM, HTML5/JS...)

ISA Emulation

i j

https://en.wikipedia.org/wiki/Hypervisor

Terminology

virtualization: focus on providing virtual environment, not on how to get there

emulation: implementation technique; mapping of one (operation of an) interface to another

(!) produces the same effect (functional behavior) (e.g. call on x86 jal on RISC-V,

functionally)

simulation: method used to derive behavior for a system model (not only functionality, but also
estimation of non-functional behavior, such as power consumption or performance...)

Emulation

emulation of a source ISA (guest) via a target ISA (host)

components: instruction set, registers, memory model, interrupt handling

Interpretation vs. Binary Translation

interpretation: step-by-step emulation of every instruction

high asymptotic runtime, low setup time

binary translation: previous compilation of code blocks (i.e. sequences of instructions are
translated from a source instruction set to the target instruction set); may include optimization (which
increase setup time...)

low asymptotic runtime, high setup time

(!) rule of thumb:

if an instruction is ran only once, use interpretation

if an instruction is ran multiple times (very often), use binary translation

Fast Emulation (Adaptive)

emulation loop: fetch, decode, choose to interpret or use binary translation based on profiling data

Interpretation

emulation loop (decode-and-dispatch): central loop until halt or interrupt; fetch and decode the
next instruction and dispatch it to an interpretation routine

(*) branch optimization: reduce number of branches, use static prediction (e.g. tell compiler which
branch is more likely), make branches predictable (e.g. avoid push / ret or call / pop)

optimizations: various optimizations done to reduce branching as much as possible...

indirect threaded interpretation: eliminates interpreter loop and uses dispatch LUT...

etymology: the switch statement is replaced by an indirect jump using the address of the

emulation routine found in a new dispatch lookup table

problem: jumps are time consuming (branch mispredictions, pipeline conflicts)

→

https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Binary_translation
https://en.wikipedia.org/wiki/Indirect_branch

solution: decode next instruction at the end of the current instruction's emulation routine;
eliminate main loop switch statement using dispatch lookup table (key: opcode [+

extended opcode], value: address of interpretation routine)

predecoding: parse instruction and put it in a form that's easier to interpret (e.g. instead of
using opcodes, extended opcodes and arguments separately, convert them to a single value)

problem: single source instruction interpreted multiple times (instruction consists of multiple
parts instead of just one; operands are coded in bits, which ruin alignment)

solution: convert to intermediate form (usually by combining separate information of
opcodes and extended opcodes into one single, "new" opcode), store in easily accessible,
aligned fields (array of structs containing instruction information)

target program counter (TPC): used to index into predecoding table

source program counter (SPC): used for jumps or when explicitly using PC

need space for predecode table; noticeable improvement for CISC interpretation

direct threaded interpretation: remove indirection caused by dispatch table...

problem: overhead created by centralized dispatch table (memory access + register indirect
branch)

solution: replace opcodes in intermediate code with actual addresses of interpreter routines

may cause portability issues, but there exist workaround (e.g. using relative addresses,
using gcc's && operator...)

interpreting CISC: problematic due to variability in opcode length, structure...

problem 1: complex operations

solution: hybrid decode-and-dispatch and threaded methods

simple instructions: direct threaded

complex instructions: centralized decode-and-dispatch function

problem 2: predecoding before interpretation difficult due to variable space needed for each
instruction (you'd have to use the maximum space needed, even for simple instructions, to
maintain consistency) and variable opcode lengths (detecting boundaries becomes difficult)

solution: two-step process

first interpretation: do predecoding on the fly and fill predecode table

further interpretations: use predecoded data

Binary Translation

source registers usually mapped to target registers

static binary translation: translation of entire program before emulation

problem: code discovery (e.g. indirect jump with register contents unknown until runtime, CISC
ISAs...), code location (e.g. jump addresses)

solution: dynamic binary translation, code caches

unit: dynamic basic block (BB)

static basic block: single entry point, single exit point (begin and end at all branch instructions
and branch targets)

dynamic basic block: determined by flow of program during execution (begin at instruction
immediately executed after branch, end at next branch or jump) always leads to new
translation if branch into middle of block is encountered (no entry found in translation table)

execution: emulation manager (EM), starting with SPC...

is there a corresponding SPC-TPC entry in the translation table?

no: interpret and translate code and place into code cache; update translation table

yes: branch to TPC and execute translated block

get SPC for next block...

code cache: similar to processor cache, but with some differences...

~: limited size replacement strategy needed (e.g. LRU, LFU, FIFO...)

*: variable sizes of translated blocks; may have interdependencies among entries (chaining)

problems: self-modifying code (cache must be invalidated), self-referencing code (must be
according to source code, not translated code), trap handling (correct state must be produced)

keep copy of original code...

solution 1: hardware assisted; guest code is write protected - any attempt to write a page
containing translated code results in a trap, after which the runtime can invalidate all the
code on said page (can be very slow)

solution 2: check for modification before every BB execution (also very slow)

solution 3: for cases in which the HW allows separate instruction and data caches, the
translation system can detect instruction cache invalidation instructions in guest code

eviction: different strategies are used when the code cache is full...

LRU (least recently used): evict least recently used BB

advantage: makes the most sense

problems: must maintain order of uses, which adds additional overhead; must update
all predecessor blocks; cache fragmentation when removing blocks throughout the
cache

complete flush: completely invalidate entire cache

advantage: eliminate stale control paths that have changed and no longer reflect the hot
path

problem: frequently used BBs have to be retranslated from scratch

coarse-grained FIFO: partition code cache into blocks; flush block when full

→

→

advantage: no backpointers needed for code blocks within a FIFO block

code management: an emulator can examine the executed source code in any detail, which is
useful for collecting program data (e.g. memory accesses, thread tracing...), hence, same-ISA
emulation also makes sense

optimizations: similar to interpretation...

chaining: the counterpart to threading in interpreters

problem: branching back to EM every time after exiting a translated block

solution: link blocks into chains as they are constructed

replace jump and link back to EM with direct branch to successor block at translation
time

unknown successor: when possible, replace JAL with successor address; for
indirect jumps, do if-then-else-chains, with the most common targets first, then table
lookup as a last resort; for function call returns, use shadow stack to avoid map
lookup

unchaining: when translated blocks are removed; translation table should contain
references to predecessors of a block

superblock: a block of code with a single entry point but several possible exit points

problem: jumps are still expensive...

solution: combine (ideally frequently used) sequence of BBs

for individual BBs...

common subexpression elimination: searches for instances of identical expressions, and
replaces them with a single variable holding the computed value

constant propagation, constant folding, strength reduction: evaluate constant
expressions at compile time, substitute values of known constants in expressions at compile
time, recognize and use more efficient operations (e.g. << 1 instead of * 2)

copy propagation: replace occurrences of targets of direct assignments with their values
(i.e. eliminate y = x)

multi-versioning: translate same BB multiple times, specialized according to input data

multi-stage emulation: multiple optimization levels, modification of translations (concatenate
instead of chain, duplicate same translation a la loop unrolling, generate superblocks)

profiling: measurement of runtime behavior (either via injection of measurement code or by using
HW performance counters)

node profile (BB profile): how often was a block executed? (required for multi-stage emulation)

edge profile: how often was a jump taken? (required for optimal superblock creation)

problems²: register architectures (target might have less registers than source), condition codes
(e.g. x86 sets these automatically, SPARC sets them explicitly, MIPS doesn't have any lazy→

https://en.wikipedia.org/wiki/Common_subexpression_elimination
https://en.wikipedia.org/wiki/Constant_folding
https://en.wikipedia.org/wiki/Copy_propagation

evaluation, store operands and operations and evaluate codes only when needed), data formats
(e.g. some ISAs may not support floating point arithmetic), memory address resolution (e.g. byte /
halfword / word addressing), memory data alignment (e.g. word access lower bits 00, halfword
access lowest bit 0), byte order (big vs. little endian)

Process VMs

goal: emulation a user level process for a possibly different ISA and / or OS (emulation of user ISA
and ABI, with each guest getting its own environment; process(es) running inside process VM look
exactly the same as host processes and can interact with eachother); embed it into host OS as
seamlessly as possible

Components

loader: writes guest code and data into memory and loads runtime code

initialization: allocates memory for the code cache and other tables used during emulation; invokes
host OS to establish signal handlers, primarily for exceptions

emulation manager: uses interpretation and / or binary translation using a predecoding / code
cache

code cache manager: decides which translations should be flushed out

profiling data: dynamically collected; used to guide optimization during translation process

OS call emulator: translates guest syscall into appropriate host OS call(s); handles result

interrupt / exception emulator: handles traps and interrupts directed at guest process; precision
(i.e emulating complete state) is important!

helper tables: tables that help with precise exception handling

Compatibility

compatibility: the accuracy with which a guest's behavior is emulated on the host platrform

intrinsic / strict compatibility: 100% accuracy, including processor bugs, implementation-
defined behavior etc.; guest process cannot detect any difference in virtual vs. real environment

formally: given for a guest system running on a
host system , is completely emulated via (i.e. has to be known
completely)

extrinsic / relaxed compatibility: compatibility only holds for a subset of program binaries;
relies on externally provided assurances / certifications of compatibility (e.g. all programs
compiled with a specific compiler, program formally verified, limited resource requirements,
certain bugs not present...)

formally: constructed such that is sufficiently approximated

conditions: conditions are imposed on a subset of guest software w.r.t...

S ​ =j
′ V (exec(s ​)) =i exec (V (s ​))′

i X

Y exec exec′ exec

exec′′ exec′

state mapping: extrinsic compatibility only achieved for processes that do not exceed
certain memory space

mapping of control transfers: extrinsic compatibility only achieved for programs where
trap conditions are known not to occur

user-level instructions (floating point instructions): extrinsic compatibility only
achieved for programs where accuracy is sufficient to satisfy user's needs

OS operations: guest OS may avoid certain OS features to achieve extrinsic
compatibility

verification: complete verification extremely difficult, but can be simplified by splitting up operations
and states of a process

operations: execution of user ISA vs. interaction with OS (syscalls, exceptions / interrupts)

state: user-managed state (memory, registers...) vs. OS-managed state (storage devices,
networks...)

consistency of state mapping only checked at borders of operation sequences (user-OS); these
are the only points where the state may be made visible to the outside

State Mapping

split on types: registers, memory, storage... (guest-host types don't have to match, e.g. guest
registers can be mapped in host memory)

register mapping: based on number of registers

less guest ISA registers than host ISA registers: possible to map all guest registers to host
registers

same / similar number of registers: might be theoretically possible, but problematic (e.g. EM
needs registers for its own use, like interpretation) use register context block

more guest ISA registers than host ISA registers: must use register context block, must be
managed at runtime

memory address space mapping: map guest address space to host address space and maintain
protection requirements (i.e. map guest address to host address) (assuming flat, linear
memory structure; not segmented...)

translation table: akin to a page table; fragmented, slow, but can be used as general solution
(e.g. emulating 64-bit guest on 32-bit host)

formally: A' = (A & (PageLen - 1)) + AddrTab[A / PageLen] (offset inside page +

index in translation table)

direct / offset translation: mapping via some fixed offset (can be 0 if the guest OS allocates
address ranges); contiguous, efficient (best case 1-to-1 translation for offset 0), but typically for
this to work, the host memory (including memory needed for VMM) must be larger than guest
memory

formally: A' = offset + A

→

A A′

compatibility: based on size of host OS memory

host OS memory larger than guest OS memory + VMM memory: high performance,
intrinsic VM implementation possible

host OS memory not larger than guest OS memory + VMM memory: either performance
or intrinsic compatibility must be sacrificed

sacrificing performance: use offsets or, worse, translation tables

sacrificing intrinsic compatibility: the guest process doesn't have to use the
maximum possible amount of memory, only a smaller chunk

protection: support restrictions (r,w,x) placed on different regions of memory space

translation table: directly supported in table; just add an information bit for the
corresponding entry (slow, but correct)

direct / offset translation: host-supported memory protection (i.e. VMM directs host OS to
implement page protection, via either syscall (mprotect()) or signal (SIGSEGV))

page size differences: easy if the guest OS page size is bigger than host OS page size,
difficult otherwise (e.g. two pages with different protections in one host OS page)

exception emulation: assuming precise (!) exceptions (where all instructions before have been
executed, no instructions following were executed, and w.l.o.g. hasn't been executed)

exception (trap): direct result of program execution, produced by a specific instruction (e.g.
division by 0, memory violation)

interrupt: async, external event (e.g. async I/O, async IPC)

ABI visible: exceptions that are visible at ABI level, including all exceptions returned to the
application via an OS signal (which itself also includes all exceptions that cause the program to
terminate)

ABI invisible: the ABI is unaware of the exceptions existence (no signal, no termination) (e.g.
timer interrupt for scheduling)

exception detection: various ways

interpretive trap detection: trap explicitly checked as part of interpretation routine (e.g.
overflow recognized by explicitly comparing input operands and final sum); can always be
done, albeit (very) inefficient

hardware-triggered exception: registration of notification for all possible exception types at
host OS by VMM (initializer), semantic check (i.e. check if the semantics of the exception
are slightly different from guest to host OS), translation of host OS notifications into
corresponding guest OS notifications

issues: if there are differences in ABI visibility or functionality between a guest and host OS
exception, this could lead to some problems

guest ABI visible, host ABI invisible: use interpretive trap detection

X

X X

guest ABI invisible, host ABI visible: needs check whether exception should be
ignored

one exception type in host ABI for multiple exception types in guest ABI: needs
differentiation at runtime (e.g. host has same overflow exception for integers and FP)

interrupt handling: depends on method of emulation

interpretation: delay fine; let routine finish, then create exception state and call interrupt
handler

binary translation: more difficult due to possiblity of chaining causing huge delays once
interrupt is received, transfer control from translated block back to runtime, unlink translated
block from subsequent blocks, return control to translated block, runtime handles interrupt
after translated block finishes

assumptions: no loops in translation block, target code is at a precise interruptible state

OS emulation: since a process VM is only required to maintain compatibility at ABI level, only the
function or semantics of OS calls are emulated, not the actual individual instructions of the guest OS
code

same OS: while the syscalls themselves may be the same, arguments and return values may
be formatted differently (e.g. arguments passed via the stack instead of registers) conversion
wrapper needed (can be inlined for optimization)

different OS: no general solution here, since OS calls are generally much more complicated
than ISA stuff (e.g. file systems, device I/O, process management...) and some are downright
impossible (e.g. if a guest OS has a time-of-day feature, but the host OS doesn't, it becomes
impossible to emulate); done on a case-by-case basis, similar to porting code from one OS to
another, but more general

High-Level Language VMs

high-level language VM (HLL VM): special kind of process VM, where the (virtual) ISA only
consists of user-level instructions and is not designed for a real hardware processor (so, it should*
only be executed on a virtual processor); rather, it's designed to be supported on a number of
operating systems and hardware platforms (also, the virtual ISA contains a lot of metadata)

advantages: depending on the use case...

the ABI (V-ISA, metadata, library functions) is freely constructible

abstractions: more specific abstractions as a result of decoupling from hardware ISAs (e.g.
complex types, synchronization abstractions like monitors)

robustness: strong type-checking and garbage collection, among others

security and protection: guest programs operate within their own sandboxes

compact code: easier to share via network

platform-independent programs: enables platform-independent distribution of application
software through use of platform-independent code and metadata

→

→

end user: can run on every new processor, can use new hardware extensions (e.g. SSE),
availability not dependent on developer porting for target system

software developer: larger market, correctness checked only against documented ABI (so
no processor bugs, undocumented features or other quirks) no porting required (and, by
extension, no maintenance of multiple ports)

hardware manufacturer: larger market, free from ISA compatibility requirement

disadvantages: the traditional disadvantages come with being a VM...

additional VM dependency: more memory, potentially slow with bad implementations

target hardware performance optimizations by programmers not possible

Java Virtual Machine (JVM)

metadata: format and semantics of code and data, specified in .class file

class metadata: module, base class, interfaces, visibility

method metadata: signature, sync properties

variable metadata: type

data types: primitives (ìnt , char , float ...), references (null , objects, arrays)

data storage: global (global variables), local (method-local variables), operand (temporary storage
for variables while they are being operated on)

stack: holds local and operand storage, aswell as function arguments; no objects or arrays, just
references

global memory: heap of unspecified size; can hold static and dynamic objects; objects can only
be accessed via references of appropriate type

constant pool: holds constant data; defined in .class files

instructions: 1 byte opcode + 0 or more optional operands (index: indices in constant pool or local
storage; data: immediate data or offsets for branching)

types: data transfer, conversions, ALU functions, jumps (restricted to current method)

binary classes: loaded on demand, verified at load time

contains: magic number, version info, constant pool (constant values and references), access
flags (public/private/protected, interface, abstract...), this class, super class, interfaces, fields,
methods, attributes...

not a Von-Neumann architecture: separates code from data (they are treated as distinct kinds of
things which are accessed via separate means), no registers (stack-based)

Comparison: ISA vs. V-ISA

metadata: included in V-ISA

memory: typed, unlimited, no pointers or pointer arithmetic in V-ISA (only references, which are
always valid)

https://en.wikipedia.org/wiki/Von_Neumann_architecture

exception handling: local / verifiable in V-ISA; precise barely needed

instructions: flags avoided in V-ISA; stack-based

code vs. data detection: specified in V-ISA metadata

self modifying code: prohibited in V-ISA

OS dependence: avoided in V-ISA through platform library

Implementation

major components: class loader subsystem, memory system (incl. garbage collected heap),
emulation manager

memory: program code, global memory, stacks (JVM, native library code)

program counter, stack pointer implicit (cannot be inspected by program)

garbage collector: responsible for finding objects no longer needed to make room for new
objects

object becomes garbage when it becomes unreachable

mark-and-sweep: start with root references, mark all reachable objects, sweep (free)
unmarked objects

optimizations: compactification on high fragmentation, generational GC (separate pools for
long and short lived objects; GC called more frequently on short pool), concurrent GC (run in
background; synchronisation required!)

emulaton engine: as seen before...

native method interface: interface for accessing OS-managed functions, e.g. I/O or graphics
operations

class loader: dynamically finds and loads binary classes; verifies correctness and consistency
of binary classes; network integration (fetching .class files over network)

multiple loader instances for different security domains (sandboxes)

optimizations: done below the plaform interface (so, not in javac , but in the JVM implementation)

function inlining: classic optimization technique for OOP (+: no overhead for call, -: larger
binary, code explosion)

virtual function inlining: guarded, since type needs to be checked at runtime

multiversioning: generate multiple versions of a method on demand, choose at runtime

object layout: object nesting, replace local objects with local variables

System VMs

system VM: virtualization of a complete system environment, including hardware, using a virtual
machine monitor (VMM) / hypervisor

use cases: multiprogramming, multiple secure environments, mixed-OS environments, legacy
applications, multiplatform app development, transitioning to a new OS, system software
development, OS training, help desk support, OS instrumentation / profiling, event monitoring,
checkpointing...

outward appearance: illusion of multiple machines, acheived either through software or through
replicating of a subset of hardware resources

assumptions (for this chapter): same ISA, single-processor systems

State Management

indirection: state of guest is held in fixed location in host memory hierarchy with a VMM-managed
pointer indicating currently active guest state (similar to how page tables work with page table
pointers)

problem: inefficient if the memory resource that holds the guest state has characteristics that
are different from those on the native platforms (e.g. mapping registers to values in memory,
such that guest register copy operations become host memory operations, which are much
slower)

copying: copy guest state to natural level in memory hierarchy (e.g. copy guest registers to host
registers), then copy back on switch to different guest OS (one-time overhead; preferable for
frequently used state information, like general purpose registers)

Resource Control

resources assigned to VM on creation; it is important for the VMM to be able to get these resources
back to be able to assign them to a different VM, so the VMM maintains overall control over the
hardware resources

privileged resource: host resource that cannot be assigned to a guest, either because it is needed
by the VM(M?) itself, or because the assignment is not revocable at any time

(!) every privileged resource must be emulated

time sharing: using an interval timer (privileged), perform guest OS switch (in interrupt handler);
privileged resources not used directly by VM; rather, they are emulated by the VMM

problem: frequent switching high overhead; infrequent switching suboptimal resource
usage

native VM: +: full access to physical resources, -: needs drivers for hardware to make use of

hosted VM: +: access to abstract host OS resources, -: slow

dual-mode hosted VM: +: can use host HW via kernel module (for performance critical resources,
e.g. MMU, exceptions...)

CPU Virtualization

methods: emulation (always possible; only option if guest and host ISAs differ) vs. direct native
execution (possible only if host ISA and guest ISA are the same, under certain conditions*; has to

→ →

be revocable!)

goal: maximize performance, i.e. use direct native execution whenever possible

privileged instruction: traps if the machine is in user mode, doesn't trap if the machine is in system
mode (in VMM: separate interpreter for each privileged instruction)

control-sensitive (w) instruction: instruction that attempts to change the configuration of
resources in the system (e.g. mode of system, phyiscal memory assigned to a program) (e.g. load
PSW LPSW traps in user mode, set CPU timer SPT traps in user mode)

behavior-sensitive (r) instruction: instruction whose behavior / result depends on the
configuration of resource (e.g. load real address LRA depends on mapping of real memory

resource, pop stack into flags register POPF acts as no-op for interrupt-enable flag)

innocuous instruction: instruction that is neither control-sensitive, nor behavior-sensitive

Popek & Goldberg sufficient condition for processor ISA virtualization: every sensitive
instruction (i.e. every instruction accessing a privileged resource) is privileged (i.e. traps in user
mode)

all nonprivileged instructions can be executed natively on the host platform without emulation

critical instruction: sensitive, but not privileged (i.e. doesn't generate a trap in user mode, e.g.
POPF) ISA violates P&G

solution 1: patching (scan guest code before execution, replace critical instructions with
trap to VMM)

solution 2: hardware-assisted (e.g. Intel VTX's VMX mode)

hybrid VM: some nonprivileged instructions must be emulated

Memory Virtualization

physical memory: actual hardware memory, on host

real memory: the guest VM's illusion of physical memory; VMM maps guest's real memory to
physical memory

VMM maintains real map table mapping guest real pages to physical pages (used for I/O
operations, for instance, which operate on real addresses)

some pages of guest real memory may not be mapped to physical memory

real memory of VM can be larger than physical memory

memory management unit (MMU): translates virtual memory addresses into physical addresses in
main memory (privileged resource)

translation lookaside buffer (TLB): memory cache that stores the recent translations of virtual
memory to physical memory, part of the unit's MMU

page table architected (page table specified in ISA): TLB not visible to operating system
(maintained and used only by hardware); page table lookups done completely in hardware (TLB

→

https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Translation_lookaside_buffer

miss hardware finds entry in page table and will only cause a page fault for the OS to handle if
the entry is not mapped to physical memory) (e.g. x86, ARM)

shadow page table: maps virtual guest pages to physical host pages; maintained by VMM,
actually used by hardware to translate virtual addresses and update TLB; done by updating
page table pointer to point to shadow page table

page fault while VMM active: different possibilities...

page mapped in virtual page table of guest OS: page fault entirely handled by VMM,
invisible to guest OS (because a page fault would not have happened if the guest OS were
running natively); possibly a result of the page being swapped out by the VMM and needs to
be brought back

page not mapped in virtual page table of guest OS: VMM transfers control to trap handler
of guest (indicating PF), guest OS modifies PT, caught by VMM, which then updates PT and
SPT mapping

faulty access: guest OS passes SEGFAULT signal

TLB architected (TLB specified in ISA): TLB visible to operating system, page table format
defined by OS (i.e. hardware unaware of page table structure; TLB miss trap to OS) (e.g. MIPS,
SPARC)

VMM maintains copies of each guest's TLB (virtual TLB, VTLB) and manages real TLB

simple method: rewrite TLB whenever a guest VM is activated using guest virtual and
(translated) host physical addresses from guest TLB

problem: high overhead each time a switch happens (from one guest VM to another or from
a guest VM back to the VMM, and vice-versa), especially for large TLBs

address space identifier (ASID): a tag used in TLB entries to distinguish between different
virtual address spaces; allows multiple processes to have address space mappings in a TLB
simultaneously instead of having to flush the TLB each time (so, for instance, ASID 10 belongs
to process ID 1, ASID 20 belongs to process ID 2 and so on; this also allows processes to have
the "same" virtual page address in the TLB simultaneously, i.e. PID 1 has page 100 in TLB with
ASID 10, PID 2 has different page 100 in TLB with ASID 20 and so on...)

ASID register: stores ASID of current process; checked against ASID in TLB entry as part of
address translation

each guest has a virtual ASID register; VMM maintains real ASID register

memory ballooning: a technique that is used to eliminate the need to overcommit host memory
used by virtual machines (VMs) by letting each VM effectively "give back" unused pages of (virtual)
memory

balloon driver: inflate (allocate memory in the guest) or deflate (release memory)

I/O Virtualization

VMM intercepts guest request to I/O device and carries it out using the physical device

→

→

https://en.wikipedia.org/wiki/Memory_ballooning

anything above hardware level (syscall, drivers) is OS-specific

dedicated devices (pass-through): by nature dedicated to a particular guest (or at the very least
given a very large amount of time; e.g. display, keyboard, mouse, audio); device doesn't have to be
virtualized; requests bypass VMM and go directly to / from guest OS (in practice still routed through
VMM due to guest OS running in user mode + interrupt interception done by VMM which determines
that it came from a passthrough device, which then forwards it to guest OS)

advanced programmable interrupt controller (APIC): allows flexible interrupt routing and
catching on host

input-output memory management unit (IOMMU): MMU connecting DMA-capable I/O bus to
main memory; maps device addresses (memory mapped I/O addresses) to physical addresses;
guest OSs can use hardware not designed for virtualization, with the IOMMU handling
remapping

multiplexing: revoke device (save and restore state)

single-root I/O virtualization (SR-IOV): PCIe extension; device can be configured to look like
multiple devices on a PCIe bus, so that each virtual PCIe card is passed-through to a guest (e.g.
Infiniband)

partitioned devices: partition available resources among VMs (e.g. large disks partitioned into
several smaller virtual disks, made available to VMs as dedicated devices)

VMM maps and translates virtual parameters into physical parameters (e.g. track and sector
locations)

shared devices: shared across multiple guest VMs at a fine time granularity (e.g. network adapter,
with each guest VM having its own virtual network address, maintained by the VMM for each guest
VM)

spooled devices: spooling, i.e. shared but at a much higher granularity (e.g. printer)

nonexistent physical devices: VMM "behaves" like emulated physical device (e.g. guest VMs
connected to eachother via a shared network without an actual physical network card; the VMM
intercepts the I/O requests and emulates the transmission of network packets)

Optimizations

bottlenecks: startup, instruction emulation (switching between user and system mode), interrupt
handling (via VMM), guest switching (saving and restoring states), resource emulation

hardware extensions (e.g. ISA: Intel VTX)

nested page tables: additional page table layer, where inner page table layers are passed
through to guests, so no MMU emulation (SPTs) needed (may, however, be expensive)

tagged TLB: simultaneous TLB entries of multiple guests (ASIDs)

multiple timers: directly supported in hardware

paravirtualization: bypassing virtualization needs by modification of guest to use VM-specific
extensions to the machine interface; using "hypercalls" instead of instructions / hardware interfaces

https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Input%E2%80%93output_memory_management_unit
https://en.wikipedia.org/wiki/Single-root_input/output_virtualization

critical instructions are removed in favor of hypercalls

techniques: replacing I/O drivers (e.g. VirtualBox guest additions), direct detection via OS (e.g.
Linux's ParaVirt Interface), on-the-fly patching

reduced guests: application with only required OS functionality provided by libraries (e.g.
MirageOS w/ OCaml); one privilege level only for guest

guest migration: cold migration (stop guest on host 1, transfer state to host 2, resume guest on
host 2) vs. hot / live migration (transfer only "snapshots", i.e. "diffs")

Summary by Flavius Schmidt, ge83pux, 2025.
https://home.cit.tum.de/~scfl/

https://home.cit.tum.de/~scfl/

