PERSONAL - Modeling and Simulation

- Introduction to Mathematical Modeling
- Decision Models: Games, Strategies, Elections
 - Generic Decision Model (1 Player)
 - Strategies under Certainty
 - Strategies under Risk
 - Two-Player Zero Sum Game
 - Strategy
 - Group Decision Making (Elections)
 - <u>Collective Choice Functions</u>
- <u>Scheduling</u>
 - Process Scheduling (DAG)
 - Job-Shop Problems
 - Types of Algorithms
- Population Dynamics
 - Model of Malthus (1 Species)
 - Model of Verhulst (1 Species)
 - Logistic Growth (1 Species)
 - Multiple Species
 - Arms Race
 - Equilibriums
- Ordinary Differential Equations (ODEs)
- Control Engineering, Fuzzy Logic
 - Linguistic Variables
 - Fuzzy Control System
- Heat Transfer (3D Space + Time), PDEs
 - Partial Differential Equations (PDEs)
 - Solving Linear Systems
- (Data) Traffic Simulation
 - Modelling Queuing Systems
 - Stochastic Processes

- Traffic Flow
 - <u>Unsteady Situations</u>

Introduction to Mathematical Modeling

- descriptive tools: algebraic equations, ODEs, PDEs
- manageability and solveability: existence, uniqueness of solutions; continuous dependency on input data
- well-posed-problem: existence + uniqueness + stability of solution
- **ill-posed-problem**: potentially unstable; slight disturbances may completely falsify or invalidate results
 - inverse problem: result given, initial configuration wanted
- solution approaches: analytic, heuristic, direct- or approximate-numerical
- assessment: validation, accuracy
- classification: discrete vs. continuous, deterministic vs. stochastic

Decision Models: Games, Strategies, Elections

- certainty: all rules, actions, conditions, consequences etc. are known
- risk: some elements are known, others unknown
- uncertainty: no rules, actions, conditions, consequences etc. are known

Generic Decision Model (1 Player)

- S: player / decision maker
- $A_1, ..., A_m$: actions / strategies
- *s*₁, ...*s*_{*n*}: states
- N: payoff matrix
 - $\circ \ N_{ij} \in \mathbb{R}$: payoff for action A_i (rows) in state s_j (columns); the higher, the better

Strategies under Certainty

- best possible outcome: choose most profitable action for self
 - $\circ~$ formally: choose $\hat{i} \in \{1,...,m\}$ such that $N_{\hat{i}j} = \max_i N_{ij}$

Strategies under Risk

- caution (max-min payoff): find the *minimum (worst case)* from each row, then find the *maximum (best case)* among these
 - $\circ~$ formally: choose $\hat{i} \in \{1,...,m\}$ such that $N_{\hat{i}j_i} = \max_i \min_j N_{ij_i}$

- full risk (max-max payoff): find the maximum (best case) from each row, then find the maximum (best case) among these
 - $\circ~$ formally: choose $\hat{i} \in \{1,...,m\}$ such that $N_{\hat{i}j_i} = \max_i \max_j N_{ij}$
- alternative-caution (min-max risk): find the *maximum* (*highest payoff*) from each row of *risk matrix*, then find the *minimum* (*lowest risk*) among these
 - $\circ~$ formally: choose $\hat{i} \in \{1,...,m\}$ such that $R_{\hat{i}j_i} = \min_i \max_j R_{ij}$
 - $N_j = \max_i N_{ij}$: maximal payoff with state j
 - $R_{ij} = N_j N_{ij}$: risk at action i with state j; for each column, subtract each value in column from maximum of column

• example:
$$N = \begin{pmatrix} 0 & 100 \\ 1 & 1 \end{pmatrix}$$
, $R = \begin{pmatrix} 1-0 & 100-100 \\ 1-1 & 100-1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 99 \end{pmatrix}$

Two-Player Zero Sum Game

- S_1 : win player
 - $A_1, ..., A_m$: win player actions (*rows* of matrix)
- S_2 : *loss* player
 - $B_1, ..., B_n$: loss player actions (*columns* of matrix)
- a_{ij} : payoff of S_2 to S_1

Strategy

- **win player**: maximize guaranteed win; find the *minimum* of each *row*, then find *maximum* among these
 - \circ formally: choose \hat{i} such that $a_{\hat{i},j_i} = \max_i \min_j a_{ij}$
- loss player: minimize guaranteed loss; find maximum of each column, then find minimum among these
 - $\circ\;$ formally: choose \hat{j} such that $a_{i_{\hat{j}},\hat{j}}=\min_{j}\max_{i}a_{ij}$
- inequality: guaranteed win of S_1 is *less or equal* to guaranteed loss of S_2
 - $\circ\;\;$ formally: $a_{\hat{i},j_{\hat{i}}} \leq a_{\hat{i},\hat{j}} \leq a_{i_{\hat{j}},\hat{j}}$
 - **saddle point / equilibrium / optimal strategy pair**: the same strategy is optimal for both players
 - formally: $\max_i \min_j a_{ij} = a_{\hat{i},\hat{j}} = \min_j \max_i a_{ij}$

Group Decision Making (Elections)

- A: set of *candidates* (whom the public will vote for)
- $r:A
 ightarrow \mathbb{N}$: surjective *rank mapping* of candidate to their respective rank from 1 to k

- there can be *duplicate* rankings (so 1:...,2:...,2:...,4:...)
- $\circ r(x)$ is the place of candidate x
- **preference relation**: x is better than y if x's rank is lower than y's
 - formally: $x \varrho y \iff r(x) < r(y)$
 - transitive and asymmetric
 - **transitive**: if $x \rho y$ and $y \rho z$, then $x \rho z$
 - **asymmetric**: $x \rho y$ and $y \rho x$ cannot hold simultaneously
 - alternative: $x \varrho^* y \iff r(x) \le r(y)$
 - $x \varrho y \iff \neg (y \varrho^* x)$
- $I = \{1, ..., n\}$: set of voters, where each voter *i* has a rank mapping r_i (i.e. their own preferences)
- P_A : set of *all possible relations* on A to be found through a rank mapping
 - formally: $P_A = \{ \varrho \subset A \times A \mid \varrho \text{ is generated by a rank mapping } r \}$

Collective Choice Functions

- collective choice function: $K: P_A \times ... \times P_A \rightarrow P_A$ (result same candidates as input candidates)
 - should adhere to democratic basic rules
 - K must be *total* on P^n_A (individual freedom of decision making, any ϱ_i allowed)
 - result of K must always lie in P_A (result in same set as choices; holds in two-party systems)
 - Pareto condition: supremacy of collective; if all voters prefer x, it can't be that y wins
 - independence of irrelevant alternatives; ballots with *identical ranking* w.r.t x and y must yield same *collective ranking* w.r.t x and y
 - exclusion of a dictator; no voter can always prevail
- majority decision (Condorcet method): $x \varrho y \iff N(x,y) > N(y,x)$ with N(x,y) as number of voters with $x \varrho_i y$
 - can lead to *voting paradox* ($x \varrho y, y \varrho z, z \varrho x$, violates transitivity), violates rule 2
- rank addition: sum up rank mappings of individual preferences
 - \circ formally: $x arrho y \iff \sum_{i=1}^n r_i(x) < \sum_{i=1}^n r_i(y)$
 - violates rule 4
- (!) Arrow's impossibility theorem: in the case of more than two candidates and more than one voter, there cannot exist a collective choice function that satisfies all five democratic basic rules

Scheduling

• $A_1, ..., A_n$: tasks / jobs

- $M_1, ..., M_m$: machines
- $t_i^{(j)}$: execution time for task A_i on machine M_j

Process Scheduling (DAG)

- *s_i*: start time of task *i*
- t_i : execution time of task i
- $c_i = s_i + t_i$: completion time of task i
- $A_i o A_j$: precedence condition (task A_j can only be started after A_i is finished)
 - \circ formally: $A_i o A_j \iff c_i \leq s_j$
- **schedule**: function, assigns start time s_i to every task i
 - admissible schedule: all precedence conditions are fulfilled

Job-Shop Problems

- **job-shop model**: a job is broken down into subjobs, each with their own execution times, requiring a machine, where each machine can only process one subjob at a time with *no recirculation* (i.e. every job requires every machine at most once)
- open shop model: arbitrary permutability of a tasks subjobs between respective machines
- flow shop model: job-shop but all subjobs pass through the machines in the same order

Types of Algorithms

- **Online Algorithm**: processes input in a serialized way, i.e. the entire input does not need to be available from the start (e.g. insertion sort)
- Offline Algorithm: must have the whole input data available from the beginning (e.g. selection sort)
- Greedy Algorithm: always makes the locally optimal choice at each stage (e.g. Dijkstra's algorithm)
- **Approximation Algorithm**: computes a solution in polynomial time to (typically NP-hard) optimization problems and guarantees that the solution is within a certain factor of the optimal solution

Population Dynamics

- time ightarrow ordinary differential equations
- time + space ightarrow partial differential equations

Model of Malthus (1 Species)

- γ : *constant* birth rate per time unit and per individual
- δ : *constant* death rate per time unit and per interval
- $\lambda=\gamma-\delta$: *constant* growth rate
- ODE: $\dot{p}(t) = \lambda p(t)$

• solution: $p(t) = p_0 e^{\lambda t}$ with $p(0) = p_0$ (exponential growth or exponential decay)

Model of Verhulst (1 Species)

- $\gamma(t)=\gamma_0-\gamma_1 p(t)$: *linear* birth rate per time unit
- $\delta(t)=\delta_0+\delta_1 p(t)$: *linear* death rate per time unit
 - $\circ \ \gamma_0 > \delta_0 > 0$
 - $\circ \ \gamma_1, \delta_1 > 0$
- $p_{\infty}=rac{\gamma_{0}-\delta_{0}}{\gamma_{1}+\delta_{1}}$: population limit
- ODE: $\dot{p}(t) = -m \cdot (p(t) p_\infty)$ with $m = \gamma_1 + \delta_1$
- solution: $p(t)=p_{\infty}+(p_0-p_{\infty})e^{-mt}$ with $p(0)=p_0$

Logistic Growth (1 Species)

- ODE: $\dot{p}(t) = a \cdot p(t) b \cdot p^2(t)$ with $p(0) = p_0$ and $a \gg b > 0$ (S-shape)
- solution: $p(t) = rac{a \cdot p_0}{b \cdot p_0 + (a b \cdot p_0) e^{-at}}$
- limit: $\lim_{t o \infty} p(t) = rac{a}{b}$
 - $\circ \ p_0 < rac{a}{b} \implies$ inflection point exists, so $p(t) < rac{a}{b}$ for all t
 - $\circ \ p_0 > rac{a}{b} \implies$ monotonically decreasing, so $p(t) > rac{a}{b}$ for all t

Multiple Species

- $\dot{p}(t) = f(p(t), q(t)) \cdot p(t)$ $\dot{q}(t) = g(p(t), q(t)) \cdot q(t)$
 - $\circ f,g$: growth rates
 - equilibrium: no more population change
 - $f(\overline{p},\overline{q}) = g(\overline{p},\overline{q}) = 0$
 - stationary solution: $p(t) = \overline{p}, q(t) = \overline{q}$
 - $\circ \ f(\overline{p},\overline{q})=g(\overline{p},\overline{q})=0 \implies \dot{p}(t)=\dot{q}(t)=0$

Arms Race

- x(t), y(t): arms expenditures
- *m*, *n*: disarmament rates
- *a*, *b*: armament rates
- c, d: constant contributions to (dis-)armament

• ODEs:
$$\begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} = \begin{pmatrix} -m & a \\ b & -n \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} + \begin{pmatrix} c \\ d \end{pmatrix}$$

Equilibriums

• attractiveness of equilibrium: negative real parts of the eigenvalues of the Jacobian of

 $\begin{pmatrix} f(p,q) \cdot p \\ g(p,q) \cdot q \end{pmatrix}$

- **competition**: both species have the same characteristics and compete for the same habitat (e.g. lions vs leopards)
 - $\circ \ f_p(p,q), f_q(p,q), g_p(p,q), g_q(p,q) < 0, \ \ p,q > 0$
 - $\circ~$ linear model: $f(p,q)=a_1+a_2\cdot p+a_3\cdot q,~~g(p,q)=a_4+a_5\cdot p+a_6\cdot q$

 - $\overline{p} = \frac{a_3 a_4 a_1 a_6}{a_2 a_6 a_3 a_5}, \ \overline{q} = \frac{a_1 a_5 a_4 a_2}{a_2 a_6 a_3 a_5}$
 - equilibrium ensured if $rac{a_2}{a_5} > rac{a_1}{a_4} > rac{a_3}{a_6}$
- predator-prey: one species is the natural predator of another (e.g. foxes vs. rabbits)
 - $\circ \ f_p(p,q), g_p(p,q), g_q(p,q) < 0, \ \ f_q(p,q) > 0, \ \ p,q > 0 \ (\text{i.e. predator } P \text{ w/ } f \text{ benefits from high population of prey } Q \text{ w/ } q)$
 - \circ linear model: $f(p,q) = a_1 + a_2 \cdot p + a_3 \cdot q, \ g(p,q) = a_4 + a_5 \cdot p + a_6 \cdot q$
 - $a_2, a_5, a_6 < 0$ $a_3 > 0$ (for predator P and prey Q, can vary depending on who's who)
- symboisis: both benefit from eachother in a community (e.g. parasite vs. host)

Ordinary Differential Equations (ODEs)

- see <u>NumProg</u> script (machine numbers, rounding and rounding errors, condition, stability, stiffness, explicit / implicit euler, heun, runge-kutta, local / global discretization error, order of convergence, ill-conditioned and well-conditioned problems)
- initial value problem: value at the beginning of the considered time interval is given
 - $\circ~$ finite differences approximation: $y_{k+1} = y_k + \delta t \cdot f(t_k,y_k)$
- boundary value problem: values on the boundary points of the interval are given
 - Dirichlet boundary conditions: values y(t) are given
 - finite differences approximation: $\ddot{y} = rac{y(t+\delta t)-2y(t)+y(t-\delta t)}{(\delta t)^2}$
 - central difference: $\dot{y}(t) = rac{y(t+\delta t)-y(t-\delta t)}{2\delta t}$
 - Neumann boundary conditions: values of first derivative $\dot{y}(t)$ are given

Control Engineering, Fuzzy Logic

- X: crisp set (i.e. a mathematical set in the typical sense)
- \ddot{A} : fuzzy set over X, characterized by a membership function

- $\mu(\cdot, X, \tilde{A}): X \to [0, 1]$: membership function, stating the degree of membership for each element x to which it belongs to the corresponding fuzzy set
- $\mathrm{supp}(ilde{A})=\{x\in X: \mu(x,X, ilde{A})>0\}$: support, all elements with positive membership degree
- $\tilde{A}_{\alpha} = \{(x, \mu(x, X, \tilde{A}) : x \in X \land \mu(x, X, \tilde{A}) \ge \alpha\}$: α -level-set / -cut, all elements with degree above a certain threshold
- + $ilde{A}\uparrow lpha$: cut fuzzy set, "cut" / limit all degrees higher than lpha down to lpha

Linguistic Variables

- **linguistic variable**: name v and possible values (linguistic terms), where each *linguistic variable* has an associated *crisp set* X and each *linguistic term* is a *fuzzy set* defined over the crisp set X (i.e. each term has a respective membership function)
 - example:
 - Iinguistic variable: "TEMPERATURE"
 - assigned crisp set: real axis (temperature values)
 - Iinguistic terms: "FREEZING" "COLD" "NEUTRAL" "WARM" "HOT"

Fuzzy Control System

- 1. Fuzzification: definition of linguistic variables, terms and membership functions
- 2. Rule Base: definition of IF-THEN rules
- 3. Inference Operators: transfer fuzziness of measured variables to control variables
- 4. Defuzzification: calculation of crisp control values

Heat Transfer (3D Space + Time), PDEs

- heat equation: $\kappa \cdot \Delta T = T_t$
 - $\kappa = \frac{k}{\rho c}$: thermic diffusion coefficient
 - k: thermal conductivity
 - ρ : density
 - c: specific heat capacity
 - $\circ~\Delta T:=T_{xx}+T_{yy}+T_{zz}$: Laplace operator (sum of second derivatives)
 - \circ linear, second order PDE in d dimensions
 - linear: only linear combinations of derivatives (i.e. no products etc.)
 - second order: only function, first and second derivative
 - d = 4: three spatial dimensions + time; $\vec{x} = (x, y, z; t)$

•
$$A = \begin{pmatrix} \kappa & 0 & 0 & 0 \\ 0 & \kappa & 0 & 0 \\ 0 & 0 & \kappa & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}, \quad a = f = 0$$

Partial Differential Equations (PDEs)

- elliptic PDE: matrix A is positive or negative definite
 - **example**: Laplace equation $\Delta u = 0$
- hyperbolic PDE: matrix A has one positive and d-1 negative eigenvalues (or vice-versa)
 - \circ example: heat equation $\Delta u = u_t$
- parabolic PDE: one eigenvalue of A is zero, all others have the same sign; rank of A and b together is d
 - **example**: wave equation $\Delta u = u_{tt}$
- see slides for finite difference & finite element method...

Solving Linear Systems

- see <u>NumProg</u> script (Richardson, Jacobi, Gauß-Seidel, Steepest Descent)
- iterative methods: $\lim_{i
 ightarrow\infty}x^{(i)}=x$
 - \circ speed of convergence: $||x-x^{(i+1)}|| < \gamma ||x-x^{(i)}||^s$ with $0 < \gamma < 1$ and convergence order s
- relaxation methods / smoothers: Richardson, Jacobi, Gauß-Seidel, SOR / damped
- $e^{(i)} = x^{(i)} x$: *error* of current approximation
- $r^{(i)} = b Ax^{(i)} = Ax Ax^{(i)} = -Ae^{(i)}$: *residual* of current approximation
- $Mx^{(i+1)} + (A-M)x^{(i)} = b$: general formula
 - $\circ\;$ solved: $x^{(i+1)}=x^{(i)}+M^{-1}r^{(i)}$
 - $\circ A = M + (A M)$ with Mx = b easy to solve and small diff. A M w.r.t matrix norm
 - **common**: $A = L_A + D_A + U_A$ (lower triangular, diagonal, upper triangular)
 - Richardson: M = I
 - Jacobi: $M = D_A$
 - Gauß-Seidel: $M = D_A + L_A$
 - SOR: $M = \frac{1}{\alpha}D_A + L_A$

 $\bullet \ x_k^{(i+1)} = x_k^{(i)} + \alpha y_k$

- \circ damping: multiplication of correction with a factor 0 < lpha < 1
 - common with Jacobi
- $\circ~$ over-relaxation: multiplication of correction with a factor 1 < lpha < 2

• successive over-relaxation: $\alpha > 1$ for Gauß-Seidel

(Data) Traffic Simulation

- T: random variable (some capital letter...)
- $p(T \leq t) = F_T(t) = \int_{-\infty}^t f_T(x) dx$: distribution of T
- $f_T(x)$: density of T

 $\circ ~ \int_{-\infty}^{\infty} f_T(x) dx = 1$

- $E(T) = \int_{-\infty}^{\infty} t \cdot f_T(t) dt$: expectation value
- $V(T) = \sigma^2(T) = \int_{-\infty}^{\infty} (t E(T))^2 \cdot f_T(t) dt$: variance, standard deviation
- $\varrho(T) = rac{\sigma(T)}{E(T)}$: coefficient of variation (relative)
- $p(A|B) = rac{p(A \cap B)}{p(B)}$: conditional probability
- $p(T \leq t + \Delta t \mid T > t) = rac{F_T(t + \Delta t) F_T(t)}{1 F_T(t)}$: conditional probability
- $h_T(t) = \frac{f_T(t)}{1 F_T(t)}$: hazard rate; risk of interval end in time (e.g. a customer arrives in the next Δt seconds)
- negative exponential distribution: predicts time interval between two event occurences
- Poisson distribution: predicts number of event occurences in an interval (memoryless, i.e. independent of history)
 - ϑ : event (hazard) rate, constant

•
$$h_T(t) = artheta = E(rac{\# ext{ of events in } [t_1,t_2]}{t_2-t_1})$$

- \circ λ : arrival rate
- μ : service rate

$$\circ ~~ E(T)=rac{1}{artheta}$$
 , $V(T)=rac{1}{artheta^2}$, $arrho(T)=1$, $E(X)=\lambda$

- Forward Recurence Time (FRT, VRZ): remaining time to next event
- Backward Recurrence Time (BRT, RRZ): time elapsed since last event

•
$$E(\text{FRT}) = E(\text{BRT}) = \frac{1}{2} \frac{E(T^2)}{E(T)} = \frac{E(T)}{2} (1 + \varrho^2(T))$$

- \circ uniform distribution [0,a]: $E(\mathrm{FRT}) = rac{a}{3} < E(T)$
- Poisson process: E(FRT) = E(T)
- $\circ\;$ process with arrho(T)>1: $E(\mathrm{FRT})>E(T)$ (Hitchhiker's paradox)

Modelling Queuing Systems

- functional unit (FU): unit delimited by impact or assignment
 - service unit (SU), instance: functionality does not include data transport (e.g. cashier)
 - canal (C): data transport between service units (e.g. CPU-RAM bus)

- system: service unit consisting of several service units (e.g. house of doctor's offices)
- job: occupies a service unit (e.g. print job)
- dwelling time y: total time that a job stays in the service unit from start to completion

 $\circ y = b + w$

• capacity k: maximum number of jobs a service unit can process at the same time

• k = 1: *simple* service unit (e.g. portaloo)

- filling f: number of jobs in a service unit
 - f = 0: *empty* service unit
 - f > 0: *busy* service unit
 - f = k: occupied service unit#

•
$$f = 1$$
:

0

•
$$E(Y_S) = E(B_S), \ E(D_S) = \frac{1}{E(B_S)}$$

- $\frac{f}{k}$: *relative* filling
- closed queuing network: constant filling
- open queuing network: variable filling
- throughput d: average number of jobs completed within a time interval of a service unit
- maximum throughput c: maximum possible throughput
- **utilization** $r = \frac{d}{c}$: relative throughput
- service time b: net dwelling time of a job (i.e. dwelling time without waiting time or dwelling time with f = 1)
- waiting time w: waiting time of a job
- Little's Law: $E(F) = E(D) \cdot E(Y)$ (average filling is throughput times average dwelling time)

$$k=1 \implies E(F)=E(D)\cdot E(B)=rac{E(D)}{c}=E(R)$$

- queuing system (QS): system in which jobs can't get lost (i.e. if service unit is occupied, job waits in canals)
 - elementary queuing system (elQS)
 - one canal as waiting pool with capacity k_{WP}
 - one service unit with capacity k_U or k_U simple service units
- inter-arrival time: timespan between two consecutive arrival events
 - D: deterministic / constant
 - M: Markovian; *negative exponentially* distributed w/ distribution $1-e^{-\lambda t}$ and expected value $rac{1}{\lambda}$
 - G: general, arbitrarily distributed
- Kendall notation: arrival process | service process | $n = k_{SU}$ | k_{WP} | N | D

- $\circ~M|M|1$: arrival and service process negative exponentially distributed, one service unit
 - $E(F) = \frac{r}{1-r}$
 - $E(D) = \lambda$
 - $E(B) = \frac{1}{u}$
 - $E(Y) = \frac{E(B)}{1-r}$
 - $E(W) = \frac{r}{1-r} \cdot E(B)$
- $\circ M|G|1$: arrival process negative exponentially distributed, service process arbitrarily distributed, one service unit
- task stream: arrival process + type of task (e.g. (M, type A))
- task load: set of task streams
- $\nu_i = \frac{E(D_i)}{E(D_S)}$: number of visits of vertex *i* (ratio between throughput at *i* and throughput of network)
- traffic bottleneck: vertex / vertices with maximum utilization $E(R_i)$ (max. 1)

$$egin{array}{ll} \circ & E(R_{TB}) = \max_i E(R_i) = \max_i rac{E(D_i)}{c_i} \ \circ & c_S = rac{c_{TB}}{
u_{TB}} = \min_i rac{c_i}{
u_i} \end{array}$$

Stochastic Processes

- stochastic process: random variable X depending on time t
 - $\circ\;$ continuous process: $X(t)\in\mathbb{R}$
 - $\circ\;$ discrete process: $X(t)\in\mathbb{N},\mathbb{Z}$
 - $\circ\;$ process in continuous time: $t\in\mathbb{R}$
 - \circ process in discrete time: t countable
- state space: set of possible values of X
- stationary process: distribution stays the same in time, E(X(t)) = E(X) (as such, no absorbing states)
- independent process: not depending on former results, $p(X(t_2) \le x_2 \mid X(t_1) = x_1) = p(X(t_2) \le x_2)$
- Markov process: new state depends only on current state and not previous history
- homogeneous Markov process (HMP): transition probabilities are constant, $p(X(t_{n+1}) \le x_{n+1} \mid X(t_n) = x_n)$ (here discrete)
 - irreducible: all states are reachable from each other
 - all states are either transient or positively recurrent or null recurrent
 - if one state is periodic, all states are with same period length
 - closed subset of states: impossible to escape in complementary set
 - absorbing state: closed subset consisting of only one state

- recurrence probability: $f_i = p(X(t_{n+k}) = i, k \ge 1 \mid X(t_n) = i)$, probability that sometime in the future, we revisit node i given we're currently in i
- \circ recurrence time k or K
- \circ recurrent state: $f_i = 1$ (i.e. we'll surely come back)
- $\circ\;$ periodic: $k\in\{j\cdot k_0\mid j,k_0\in\mathbb{N}\}$ (i.e. happens every k units of time)
- $\circ\,\,$ positively recurrent: $f_i=1, E(K)<\infty$ (you'll be back in finite time)
- **null recurrent**: $f_i = 1, E(K) = \infty$ (you would have to wait an infinite amount of time)
- \circ transient: $f_1 < 1$ (uncertain recurrence)
- state probabilities: $p_i(t_k) = \sum_{j=1}^n p_j(t_{k-1}) \cdot p_{ji}$ (sum of probability of state j in last time step times transition probability from j to i) with $\sum_{i=1}^n p_i(t_k) = 1$
 - irreducible, aperiodic $\implies \exists \lim_{k o \infty} p_i(t_k) = p_i$
 - transient / null rec.: $p_i = 0$
 - pos. recurrent: $p_i > 0$
- \circ transition probabilities: p_{ij} (discrete time)
- **transition rates**: λ_{ij} (continuous time)
- homogeneous birth-death process (HBDP): Markov chain where state values may only change in in- / decrements of 1 (as such, only one succesor state)

Traffic Flow

- Euler description: outside observer
- Lagrange description: perspective of participant
- *l*: size of car (all cars same size)
- v: traffic velocity, tempo of the cars in km/h

$$\circ v = v_{\max} \cdot \left(1 - \frac{\varrho}{\varrho_{\max}}\right)$$

$$\circ \ v
ightarrow 0$$
 for $arrho
ightarrow arrho_{ ext{max}} = rac{1}{2}$

- $\circ~$ linear: $v
 ightarrow v_{
 m max}$ for arrho
 ightarrow 0
- *Q*: traffic density, number of cars per section in cars/km
- f: traffic flow, throughput at a checkpoint in cars/h

$$\circ \ f = arrho \cdot v$$

$$\circ \ f=f(\varrho)=v(\varrho)\cdot \varrho$$

$$\circ$$
 parabolic: $f(arrho) = v_{ ext{max}} \cdot arrho \cdot \left(1 - rac{arrho}{arrho_{ ext{max}}}
ight)$

•
$$f
ightarrow 0$$
 for $arrho
ightarrow arrho_{\max},arrho
ightarrow 0$

$$\circ~$$
 cubic: $f(arrho) = v_{ ext{max}} \cdot arrho \cdot ig(1 - lpha arrho - eta arrho^2ig)$

• f
ightarrow 0 for $arrho
ightarrow arrho_{ ext{max}},arrho
ightarrow 0$

- $f' o v_{
 m max}$ for arrho o 0
- $v(\varrho_{\max}) = 0$
- $f'(arrho_{\mathrm{opt}})=0$ or f_{max}
- $\circ~$ cubic, better: $f(arrho) = v_{ ext{max}} \cdot arrho \cdot \left(1 \left(rac{arrho}{arrho_{ ext{max}}}
 ight)^lpha
 ight)^eta$
- $d=rac{1-arrho\cdot l}{arrho-1}$: distance of two cars (road length normalized to 1)

Unsteady Situations

- $\varrho(x,t)$: density at location x at time t
- f(x,t): flow at location x at time t
 - f_{ϱ} : signal velocity (i.e. propagation of information of a change or disturbance); always less or equal to car velocity
 - $arrho o 0, ~v o v_{ ext{max}}, ~f o 0, ~f_arrho = v$
 - $\circ \ \varrho_t(x,t) + f_x(x,t) = 0$
 - $\circ \ arrho_t(x,t) + f_arrho(arrho(x,t)) \cdot arrho_x(x,t) = 0$
- $n(t) = \int_{x=a}^{x=b} arrho(x,t) dx$: number of cars on the track at time t

$$\circ \ n_t(t)=f(a,t)-f(b,t)=-\int_a^b f_x(x,t)dx$$

• x = a entrance, x = b exit