PERSONAL - Modeling and Simulation

¢ Introduction to Mathematical Modeling

¢ Decision Models: Games, Strategies, Elections

o Generic Decision Model (1 Player)

= Strategies under Certainty

» Strategies under Risk

o Two-Player Zero Sum Game

= Strategy

o Group Decision Making_(Elections)

» Collective Choice Functions

e Scheduling

o Process Scheduling (DAG)

o Job-Shop Problems

o Types of Algorithms

e Population Dynamics

o Model of Malthus (1 Species)

o Model of Verhulst (1 Species)

o Logistic Growth (1 Species)

o Multiple Species

= Arms Race

= Equilibriums

Ordinary Differential Equations (ODEs)

Control Engineering, Fuzzy Logic

o Linguistic Variables

o Fuzzy Control System

Heat Transfer (3D Space + Time), PDEs

o Partial Differential Equations (PDEs)

= Solving Linear Systems

(Data) Traffic Simulation

o Modelling Queuing_Systems

o Stochastic Processes

o Traffic Flow

o Unsteady Situations

Introduction to Mathematical Modeling

o descriptive tools: algebraic equations, ODEs, PDEs

¢ manageability and solveability: existence, uniqueness of solutions; continuous dependency on
input data

¢ well-posed-problem: existence + uniqueness + stability of solution

¢ ill-posed-problem: potentially unstable; slight disturbances may completely falsify or invalidate
results

o inverse problem: result given, initial configuration wanted

e solution approaches: analytic, heuristic, direct- or approximate-numerical
e assessment: validation, accuracy

e classification: discrete vs. continuous, deterministic vs. stochastic

Decision Models: Games, Strategies, Elections

e certainty: all rules, actions, conditions, consequences etc. are known
¢ risk: some elements are known, others unknown

e uncertainty: no rules, actions, conditions, consequences etc. are known

Generic Decision Model (1 Player)

S': player / decision maker

Ay, ..., An: actions / strategies

* S1,...8p: states

IN: payoff matrix
o Nj;; € R: payoff for action A; (rows) in state s; (columns); the higher, the better
Strategies under Certainty
¢ best possible outcome: choose most profitable action for self
o formally: choose 7 € {1, ...,m} such that N;; = max; N;;
Strategies under Risk

e caution (max-min payoff): find the minimum (worst case) from each row, then find the maximum
(best case) among these

o formally: choose 7 € {1, ...,m} such that N;; = max; min; IV

o full risk (max-max payoff): find the maximum (best case) from each row, then find the maximum

(best case) among these
o formally: choose 7 € {1, ...,m} such that N;, = max; max; N;;

¢ alternative-caution (min-max risk): find the maximum (highest payoff) from each row of risk

matrix, then find the minimum (lowest risk) among these
o formally: choose 7 € {1, ...,m} such that R;; = min, max; R;;
» N; = max; N;;: maximal payoff with state j

» R;; = N;j — Njj: risk at action 7 with state j; for each column, subtract each value in
column from maximum of column

0 100 1-0 100 - 100 1 0
'e"a"‘p'e'N_(1 1>’R_<1—1 100—1)_(0 99)
Two-Player Zero Sum Game

o S1: win player
o Aj,..., Ap: win player actions (rows of matrix)
e So: loss player
o By, ..., By: loss player actions (columns of matrix)

e a;;: payoff of Sy to S

Strategy
¢ win player: maximize guaranteed win; find the minimum of each row, then find maximum among
these
o formally: choose i such that @; ;, = max; min; a;;

Ji
¢ loss player: minimize guaranteed loss; find maximum of each column, then find minimum among

these

o formally: choosej’ such that a’i;,}' = minj max; a;;
e inequality: guaranteed win of S is less or equal to guaranteed loss of Sy
o formally: a; j. < a;; < ai3,§'
o saddle point / equilibrium / optimal strategy pair: the same strategy is optimal for both
players

= formally: max; min; a;; = a;; = min; max; a;;
Group Decision Making (Elections)

o A: set of candidates (whom the public will vote for)

e r: A — N: surjective rank mapping of candidate to their respective rank from 1 to k

o there can be duplicate rankings (so 1 :...,2:...,2:...,4:..)

o r(x

) is the place of candidate

o preference relation: x is better than y if x's rank is lower than y's

= formally: zoy < r(z) < r(y)

= transitive and asymmetric

= transitive: if zpy and ypz, then xpz

= asymmetric: £y and ypx cannot hold simultaneously
alternative: zp"y <= r(z) < r(y)

= oy <= —(yo'z)

e I = {1, ey n}: set of voters, where each voter ¢ has a rank mapping 7; (i.e. their own preferences)

o Pj4: set of all possible relations on A to be found through a rank mapping

o formally: P4 = {o C A X A| pis generated by a rank mapping }

Collective Choice Functions

« collective choice function: K : P4 X ... Xx P4 — P4 (result same candidates as input

candidates)

o should adhere to democratic basic rules

K must be total on PX (individual freedom of decision making, any g; allowed)

result of K’ must always lie in P4 (result in same set as choices; holds in two-party
systems)

Pareto condition: supremacy of collective; if all voters prefer x, it can't be that y wins

independence of irrelevant alternatives; ballots with identical ranking w.r.t * and y must yield
same collective ranking w.rt x and y

exclusion of a dictator; no voter can always prevail

« majority decision (Condorcet method): xpy <= N(z,y) > N(y, z) with N (z,y) as
number of voters with o,y

o can lead to voting paradox (xpy, Yoz, zpx, violates transitivity), violates rule 2

¢ rank addition: sum up rank mappings of individual preferences

o formally: zoy <= Y., ri(z) < > 7ri(y)

o violates rule 4

¢ (!) Arrow's impossibility theorem: in the case of more than two candidates and more than one

voter, there cannot exist a collective choice function that satisfies all five democratic basic rules

Scheduling

° Ala

, A, tasks / jobs

e My,..., M,,: machines

. tgj): execution time for task A; on machine Mj

Process Scheduling (DAG)

e g;: start time of task 2

e t;: execution time of task 2

e c; = S; + t;: completion time of task ¢

o A; — Aj: precedence condition (task A; can only be started after A; is finished)
o formally: A; - A; <= ¢; <s;

e schedule: function, assigns start time s; to every task ¢

o admissible schedule: all precedence conditions are fulfilled
Job-Shop Problems

e job-shop model: a job is broken down into subjobs, each with their own execution times, requiring
a machine, where each machine can only process one subjob at a time with no recirculation (i.e.
every job requires every machine at most once)

e open shop model: arbitrary permutability of a tasks subjobs between respective machines

o flow shop model: job-shop but all subjobs pass through the machines in the same order
Types of Algorithms
¢ Online Algorithm: processes input in a serialized way, i.e. the entire input does not need to be
available from the start (e.g. insertion sort)
o Offline Algorithm: must have the whole input data available from the beginning (e.g. selection sort)

¢ Greedy Algorithm: always makes the locally optimal choice at each stage (e.g. Dijkstra’s algorithm)

e Approximation Algorithm: computes a solution in polynomial time to (typically NP-hard)
optimization problems and guarantees that the solution is within a certain factor of the optimal
solution

Population Dynamics

e time — ordinary differential equations

¢ time + space — partial differential equations

Model of Malthus (1 Species)

y: constant birth rate per time unit and per individual

d: constant death rate per time unit and per interval

A = v — §: constant growth rate

ODE: p(t) = Ap(t)

« solution: p(t) = pye™ with p(0) = py (exponential growth or exponential decay)
Model of Verhulst (1 Species)

e ¥(t) = 70 — 11p(t): linear birth rate per time unit

d(t) = do + 61p(t): linear death rate per time unit
o v >dp >0
o v1,01 >0

8. . I
* Do = H. population limit

ODE: p(t) = —m - (p(t) — po) Withm = 71 + &1
solution: p(t) = puo + (Po — Po)e” ™ with p(0) = pg

Logistic Growth (1 Species)

¢ ODE: p(t) = a - p(t) — b- p*(t) with p(0) = po and a@ > b > 0 (S-shape)

- . E— a.p
° solutlon.p(t) = b.p0+(a—b0-po)e’“t
o limit: limy o, p(t) = &
o py < 3 = inflection point exists, so p(t) < p forallt
a
b

o py > § == monotonically decreasing, so p(t) > % forall ¢

Multiple Species

« p(t) = f(p(t),q(t)) - p(t)
q(t) = g(p(t),q(t)) - q(t)

f, g: growth rates

[¢]

[¢]

equilibrium: no more population change

= f(P,@) =9(P,q) =0

(¢]

stationary solution: p(t) = p,q(t) = ¢
f09) =93 =0 — p(t) =4(t) =0

Arms Race

[¢]

o x(t),y(t): arms expenditures
e m, n: disarmament rates

e a,b: armament rates

¢, d: constant contributions to (dis-)armament

owes (20)- (7 %) () ()

Equilibriums

o attractiveness of equilibrium: negative real parts of the eigenvalues of the Jacobian of
(f (p,q) -p)
9(p,q) - q
e competition: both species have the same characteristics and compete for the same habitat (e.g.
lions vs leopards)
°o fp(p,q), fo(P:q); 9p(P; 0), 94(P, @) <O, pP,g>0
o linear model: f(p,q) = a1 +a2-p+asz-q, g(p,q) =as+as-p+as-q
= aj,aq4 >0

az, as, as, ag <0
as - ag > asg - as

W B 03040106 = _ 4105040
p= azag—azas T azas—azas

o . o Q a a,
= equilibrium ensured if 5? > 541 > E:
e predator-prey: one species is the natural predator of another (e.g. foxes vs. rabbits)

o fo(p,9), 9p(Pyq),94(p,q) <0, fy(p,q) >0, p,q > 0(ie.predator P w/ f benefits from
high population of prey QQ w/ q)

o linear model: f(p,q) =a;+ay-p+as-q, g(p,q) =as+as-p+as-q

" ap,0s5,0¢ < 0
a3 > 0 (for predator P and prey (@, can vary depending on who's who)

¢ symboisis: both benefit from eachother in a community (e.g. parasite vs. host)

Ordinary Differential Equations (ODEs)

e see NumProg script (machine numbers, rounding and rounding errors, condition, stability,
stiffness, explicit / implicit euler, heun, runge-kutta, local / global discretization error, order of
convergence, ill-conditioned and well-conditioned problems)

« initial value problem: value at the beginning of the considered time interval is given
o finite differences approximation: y;,1 = yx + 6t - f(tx, yr)

¢ boundary value problem: values on the boundary points of the interval are given
o Dirichlet boundary conditions: values y/(t) are given

= finite differences approximation: {j = y(H&)_%ggngy(t_&)

y(t+8t)—y(t—at)

= central difference: y(t) — o

o Neumann boundary conditions: values of first derivative ¢(t) are given

Control Engineering, Fuzzy Logic

e X: crisp set (i.e. a mathematical set in the typical sense)

o A:fuzzy set over X, characterized by a membership function

https://hendrik.fam-moe.de/en/tutorials/

. ,u(-, X, fl) X — [O, 1]: membership function, stating the degree of membership for each
element x to which it belongs to the corresponding fuzzy set

. supp(4) = {r e X:pu(z,X, A) > 0}: support, all elements with positive membership degree

e Ay ={(z,pu(z, X,A): 2z € X Ap(z,X,A) > a}: a-level-set / -cut, all elements with degree
above a certain threshold

. A T a: cut fuzzy set, "cut" / limit all degrees higher than o down to «
Linguistic Variables

¢ linguistic variable: name v and possible values (linguistic terms), where each linguistic variable
has an associated crisp set X and each linguistic term is a fuzzy set defined over the crisp set X
(i.e. each term has a respective membership function)

o example:

= linguistic variable: "TEMPERATURE"
= assigned crisp set: real axis (temperature values)

= linguistic terms: "FREEZING" - "COLD" - "NEUTRAL" - "WARM" - "HOT"

Fuzzy Control System

1. Fuzzification: definition of linguistic variables, terms and membership functions
2. Rule Base: definition of IF-THEN rules
3. Inference Operators: transfer fuzziness of measured variables to control variables

4. Defuzzification: calculation of crisp control values

Heat Transfer (3D Space + Time), PDEs

e heat equation: k - AT = T;
o K= pﬁc: thermic diffusion coefficient
= k: thermal conductivity
= p: density
= ¢: specific heat capacity
o AT :=T,, +T,, + T,: Laplace operator (sum of second derivatives)
o linear, second order PDE in d dimensions
= linear: only linear combinations of derivatives (i.e. no products etc.)
= second order: only function, first and second derivative

» d = 4: three spatial dimensions + time; & = (z, y, 2; t)

S O O X
o o x O
o & OO
o O O O

Partial Differential Equations (PDEs)

elliptic PDE: matrix A is positive or negative definite

o example: Laplace equation Au = 0

hyperbolic PDE: matrix A has one positive and d — 1 negative eigenvalues (or vice-versa)

o example: heat equation Au = u;

parabolic PDE: one eigenvalue of A is zero, all others have the same sign; rank of A and b

together is d
o example: wave equation Au = uy

see slides for finite difference & finite element method...

Solving Linear Systems
e see NumProg script (Richardson, Jacobi, Gaul3-Seidel, Steepest Descent)
« iterative methods: lim; ., z(9) = z

o speed of convergence: ||z — z("t1)|| < ||z — 2 ||* with 0 < v < 1 and convergence
order s

¢ relaxation methods / smoothers: Richardson, Jacobi, Gaul3-Seidel, SOR / damped
o el = ac(i) — x: error of current approximation
o () =p— Az = Az — Az = — AeW: residual of current approximation
o Mz 4 (A — M)z = b: general formula
o solved: (D) = z() 4 pr-170)
o A= M + (A — M) with Mz = b easy to solve and small diff. A — M w.r.t matrix norm
o common: A = L4 + D4 + U4 (lower triangular, diagonal, upper triangular)
= Richardson: M =1
= Jacobi: M = Dy
= GauB-Seidel: M = Dy + Ly
= SORM =1D,+ L,
. m}(jﬂ) _ :c,(f) + o
o damping: multiplication of correction with a factor 0 < a < 1

= common with Jacobi

o over-relaxation: multiplication of correction with a factor 1 < o < 2

https://hendrik.fam-moe.de/en/tutorials/

= successive over-relaxation: a > 1 for GauR-Seidel

(Data) Traffic Simulation

T': random variable (some capital letter...)
p(T <t)=Fr(t f fr(z)dz: distribution of T
fr(x): density of T’
o [fola)de -
E(T) = [_t- fr(t)dt: expectation value
V(T) = ()= [(t — E(T))? - fr(t)dt: variance, standard deviation
(T) = E(T
(A|B) = 40B). conditional probability
p(

: coefficient of variation (relative)

° °
=)

»(B)

T<t+At|T >t)= %)(;’T(t) conditional probability

hr(t) = fr(t)

= Tmh®O- hazard rate; risk of interval end in time (e.g. a customer arrives in the next At

seconds)

negative exponential distribution: predicts time interval between two event occurences

Poisson distribution: predicts number of event occurences in an interval (memoryless, i.e.
independent of history)

o 1J: event (hazard) rate, constant

. hT(t) 9= E(#ofeventsin [tl,tz])

to—1t1

o \: arrival rate
o [service rate
o B(T) =3 V(T) = 4. 0o(T) = 1, B(X) =
e Forward Recurence Time (FRT, VRZ): remaining time to next event

o Backward Recurrence Time (BRT, RRZ): time elapsed since last event
2
o E(FRT) = E(BRT) = $ 2000 — £ (1 4 0*(T))
o uniform distribution [0, a]: E(FRT) = § < E(T)
o Poisson process: E(FRT) = E(T)
o process with o(T") > 1: E(FRT) > E(T) (Hitchhiker's paradox)
Modelling Queuing Systems

¢ functional unit (FU): unit delimited by impact or assignment

o service unit (SU), instance: functionality does not include data transport (e.g. cashier)

o canal (C): data transport between service units (e.g. CPU-RAM bus)

system: service unit consisting of several service units (e.g. house of doctor's offices)
job: occupies a service unit (e.g. print job)
dwelling time y: total time that a job stays in the service unit from start to completion
oy=b+tw
capacity k: maximum number of jobs a service unit can process at the same time
o k = 1: simple service unit (e.g. portaloo)
filling f: number of jobs in a service unit

o f = 0: empty service unit

o

f > 0: busy service unit

[¢]

f = k: occupied service unit#
f=1L

. E(Ys) = E(BS)7 E(DS) - E(IBS)
f.

 relative filling

[¢]

(¢]

[¢]

closed queuing network: constant filling

o open queuing network: variable filling

throughput d: average number of jobs completed within a time interval of a service unit

maximum throughput c: maximum possible throughput

d.

utilization r = . relative throughput

service time b: net dwelling time of a job (i.e. dwelling time without waiting time or dwelling time
with f = 1)

waiting time w: waiting time of a job
Little's Law: E(F') = E(D) - E(Y') (average filling is throughput times average dwelling time)
o k=1 — E(F)=E(D)-EB) =22 = g(R)
queuing system (QS): system in which jobs can't get lost (i.e. if service unit is occupied, job waits
in canals)
o elementary queuing system (elQS)
= one canal as waiting pool with capacity kw p
= one service unit with capacity kg or ky simple service units
inter-arrival time: timespan between two consecutive arrival events
o D: deterministic | constant

1

o M: Markovian; negative exponentially distributed w/ distribution 1 — e~ and expected value 3

o G: general, arbitrarily distributed

Kendall notation: arrival process | service process | n = ksy | kwp | N | D

o M |M|1: arrival and service process negative exponentially distributed, one service unit

= B(F) =

- E(D) =\

» B(B) =1

- B(Y) =22

= E(W) = {= - E(B)

o M \G |1: arrival process negative exponentially distributed, service process arbitrarily
distributed, one service unit

task stream: arrival process + type of task (e.g. (M, type A))

task load: set of task streams

Vv; = g((gs)) number of visits of vertex ¢ (ratio between throughput at ¢ and throughput of network)

traffic bottleneck: vertex / vertices with maximum utilization E(R;) (max. 1)

o E(Rrp) = max; E(R;) = max; E(Di)

Ci

__ ¢rB __ : Ci
o CS—E—mlniV—z

Stochastic Processes

stochastic process: random variable X depending on time ¢

o continuous process: X (t) € R
o discrete process: X (t) € N, Z
o process in continuous time: ¢t € R

o process in discrete time: ¢ countable

 state space: set of possible values of X

« stationary process: distribution stays the same in time, E/(X (t)) = E(X) (as such, no
absorbing states)

« independent process: not depending on former results, p(X (t3) < xo | X (t1) = 1) =
p(X (t2) < x2)
e Markov process: new state depends only on current state and not previous history

» homogeneous Markov process (HMP): transition probabilities are constant, p(X (¢,1) <
Zn.1 | X(t,) = x,) (here discrete)

o irreducible: all states are reachable from each other

= all states are either transient or positively recurrent or null recurrent

= if one state is periodic, all states are with same period length

o closed subset of states: impossible to escape in complementary set

o absorbing state: closed subset consisting of only one state

o

[e]

recurrence probability: f; = p(X (¢, x) =i,k > 1| X(¢,) = 1), probability that
sometime in the future, we revisit node ¢ given we're currently in ¢

recurrence time k or K
recurrent state: f; = 1 (i.e. we'll surely come back)
periodic: k € {j - ko | 7, ko € N} (i.e. happens every k units of time)
positively recurrent: f; = 1, E(K) < 00 (you'll be back in finite time)
null recurrent: f; = 1, E(K) = 00 (you would have to wait an infinite amount of time)
transient: f; < 1 (uncertain recurrence)
state probabilities: p; () = Y7, p;(tr_1) - pji (sum of probability of state 7 in last time
step times transition probability from 5 to 7) with Y7 | p;(¢;) = 1

= irreducible, aperiodic =—> Jlimy, ., p;(tx) = p;

= transient/null rec.: p; = 0

= pos. recurrent: p; > 0

transition probabilities: p;; (discrete time)

transition rates: \;; (continuous time)

 homogeneous birth-death process (HBDP): Markov chain where state values may only change in

in- / decrements of 1 (as such, only one succesor state)

Traffic Flow

o

Euler description: outside observer
Lagrange description: perspective of participant
l: size of car (all cars same size)

v: traffic velocity, tempo of the cars in km/h

U:Umax'(l_L)

QIII&X

o v—)Oforg—)gmaX:%

o linear: v — Uy for o — 0

o: traffic density, number of cars per section in cars/km

f: traffic flow, throughput at a checkpoint in cars/h

o f=0-v
o f=f(e)=v(0)-0

o parabolic: f(0) = Umax - 0 (1 — L)

Qmax

= f—0foro— Omax; 0 — 0

o cubic: f(0) = Vpax - 0 - (1 —ao— /8'92)

= f— 0foro— Omax, 0 — 0

= f'— Upax foro — 0
" U(Qmax) =0
" fl(Qopt) =0or fmax

ay B
o cubic, better: f(0) = Vpax - 0 - (1 — (L))

Omax

e d= 1@%91'1: distance of two cars (road length normalized to 1)

Unsteady Situations

 o(z,t): density at location z at time ¢

e f(z,t): flow at location z at time ¢

o fg: signal velocity (i.e. propagation of information of a change or disturbance); always less or
equal to car velocity

m 00, v = v, f—0, fg:U
° Qt(x’t) +f:c(xat) =0
© Qt(x’t) +f9(9($at)) ’ Qw(m?t) =0

e n(t) = f;:; o(x, t)dx: number of cars on the track at time ¢

o m(t) = f(at) — f(bt) = — [fulz,t)da

e T = g entrance, T = b exit

