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Traffic Flow

Unsteady Situations

Introduction to Mathematical Modeling

descriptive tools: algebraic equations, ODEs, PDEs

manageability and solveability: existence, uniqueness of solutions; continuous dependency on
input data

well-posed-problem: existence + uniqueness + stability of solution

ill-posed-problem: potentially unstable; slight disturbances may completely falsify or invalidate
results

inverse problem: result given, initial configuration wanted

solution approaches: analytic, heuristic, direct- or approximate-numerical

assessment: validation, accuracy

classification: discrete vs. continuous, deterministic vs. stochastic

Decision Models: Games, Strategies, Elections

certainty: all rules, actions, conditions, consequences etc. are known

risk: some elements are known, others unknown

uncertainty: no rules, actions, conditions, consequences etc. are known

Generic Decision Model (1 Player)

: player / decision maker

: actions / strategies

: states

: payoff matrix

: payoff for action  (rows) in state  (columns); the higher, the better

Strategies under Certainty

best possible outcome: choose most profitable action for self

formally: choose  such that 

Strategies under Risk

caution (max-min payoff): find the minimum (worst case) from each row, then find the maximum
(best case) among these

formally: choose  such that 
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∈î {1, ...,m} N  =jî max  N  i ij
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full risk (max-max payoff): find the maximum (best case) from each row, then find the maximum
(best case) among these

formally: choose  such that 

alternative-caution (min-max risk): find the maximum (highest payoff) from each row of risk
matrix, then find the minimum (lowest risk) among these

formally: choose  such that 

: maximal payoff with state 

: risk at action  with state ; for each column, subtract each value in
column from maximum of column

example: , 

Two-Player Zero Sum Game

: win player

: win player actions (rows of matrix)

: loss player

: loss player actions (columns of matrix)

: payoff of  to 

Strategy

win player: maximize guaranteed win; find the minimum of each row, then find maximum among
these

formally: choose  such that 

loss player: minimize guaranteed loss; find maximum of each column, then find minimum among
these

formally: choose  such that 

inequality: guaranteed win of  is less or equal to guaranteed loss of 

formally: 

saddle point / equilibrium / optimal strategy pair: the same strategy is optimal for both
players

formally: 

Group Decision Making (Elections)

: set of candidates (whom the public will vote for)

: surjective rank mapping of candidate to their respective rank from  to 
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there can be duplicate rankings (so )

 is the place of candidate 

preference relation:  is better than  if 's rank is lower than 's

formally: 

transitive and asymmetric

transitive: if  and , then 

asymmetric:  and  cannot hold simultaneously

alternative: 

: set of voters, where each voter  has a rank mapping  (i.e. their own preferences)

: set of all possible relations on  to be found through a rank mapping

formally:  is generated by a rank mapping 

Collective Choice Functions

collective choice function:  (result same candidates as input
candidates)

should adhere to democratic basic rules

 must be total on  (individual freedom of decision making, any  allowed)

result of  must always lie in  (result in same set as choices; holds in two-party
systems)

Pareto condition: supremacy of collective; if all voters prefer , it can't be that  wins

independence of irrelevant alternatives; ballots with identical ranking w.r.t  and  must yield
same collective ranking w.r.t  and 

exclusion of a dictator; no voter can always prevail

majority decision (Condorcet method):  with  as
number of voters with 

can lead to voting paradox ( , violates transitivity), violates rule 2

rank addition: sum up rank mappings of individual preferences

formally: 

violates rule 4

(!) Arrow's impossibility theorem: in the case of more than two candidates and more than one
voter, there cannot exist a collective choice function that satisfies all five democratic basic rules

Scheduling

: tasks / jobs
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: machines

: execution time for task  on machine 

Process Scheduling (DAG)

: start time of task 

: execution time of task 

: completion time of task 

: precedence condition (task  can only be started after  is finished)

formally: 

schedule: function, assigns start time  to every task 

admissible schedule: all precedence conditions are fulfilled

Job-Shop Problems

job-shop model: a job is broken down into subjobs, each with their own execution times, requiring
a machine, where each machine can only process one subjob at a time with no recirculation (i.e.
every job requires every machine at most once)

open shop model: arbitrary permutability of a tasks subjobs between respective machines

flow shop model: job-shop but all subjobs pass through the machines in the same order

Types of Algorithms

Online Algorithm: processes input in a serialized way, i.e. the entire input does not need to be
available from the start (e.g. insertion sort)

Offline Algorithm: must have the whole input data available from the beginning (e.g. selection sort)

Greedy Algorithm: always makes the locally optimal choice at each stage (e.g. Dijkstra’s algorithm)

Approximation Algorithm: computes a solution in polynomial time to (typically NP-hard)
optimization problems and guarantees that the solution is within a certain factor of the optimal
solution

Population Dynamics

time  ordinary differential equations

time + space  partial differential equations

Model of Malthus (1 Species)

: constant birth rate per time unit and per individual

: constant death rate per time unit and per interval

: constant growth rate

ODE: 
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solution:  with  (exponential growth or exponential decay)

Model of Verhulst (1 Species)

: linear birth rate per time unit

: linear death rate per time unit

: population limit

ODE:  with 

solution:  with 

Logistic Growth (1 Species)

ODE:  with  and  (S-shape)

solution: 

limit: 

 inflection point exists, so  for all 

 monotonically decreasing, so  for all 

Multiple Species

: growth rates

equilibrium: no more population change

stationary solution: 

Arms Race

: arms expenditures

: disarmament rates

: armament rates

: constant contributions to (dis-)armament

ODEs: 

Equilibriums
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 (t)ẏ
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attractiveness of equilibrium: negative real parts of the eigenvalues of the Jacobian of

competition: both species have the same characteristics and compete for the same habitat (e.g.
lions vs leopards)

linear model: 

equilibrium ensured if 

predator-prey: one species is the natural predator of another (e.g. foxes vs. rabbits)

 (i.e. predator  w/  benefits from
high population of prey  w/ )

linear model: 

 (for predator  and prey , can vary depending on who's who)

symboisis: both benefit from eachother in a community (e.g. parasite vs. host)

Ordinary Differential Equations (ODEs)

see NumProg script (machine numbers, rounding and rounding errors, condition, stability,
stiffness, explicit / implicit euler, heun, runge-kutta, local / global discretization error, order of
convergence, ill-conditioned and well-conditioned problems)

initial value problem: value at the beginning of the considered time interval is given

finite differences approximation: 

boundary value problem: values on the boundary points of the interval are given

Dirichlet boundary conditions: values  are given

finite differences approximation: 

central difference: 

Neumann boundary conditions: values of first derivative  are given

Control Engineering, Fuzzy Logic

: crisp set (i.e. a mathematical set in the typical sense)

: fuzzy set over , characterized by a membership function
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: membership function, stating the degree of membership for each
element  to which it belongs to the corresponding fuzzy set

: support, all elements with positive membership degree

: -level-set / -cut, all elements with degree
above a certain threshold

: cut fuzzy set, "cut" / limit all degrees higher than  down to 

Linguistic Variables

linguistic variable: name  and possible values (linguistic terms), where each linguistic variable
has an associated crisp set  and each linguistic term is a fuzzy set defined over the crisp set 
(i.e. each term has a respective membership function)

example:

linguistic variable: "TEMPERATURE"

assigned crisp set: real axis (temperature values)

linguistic terms: "FREEZING" - "COLD" - "NEUTRAL" - "WARM" - "HOT"

Fuzzy Control System

1. Fuzzification: definition of linguistic variables, terms and membership functions

2. Rule Base: definition of IF-THEN rules

3. Inference Operators: transfer fuzziness of measured variables to control variables

4. Defuzzification: calculation of crisp control values

Heat Transfer (3D Space + Time), PDEs

heat equation: 

: thermic diffusion coefficient

: thermal conductivity

: density

: specific heat capacity

: Laplace operator (sum of second derivatives)

linear, second order PDE in  dimensions

linear: only linear combinations of derivatives (i.e. no products etc.)

second order: only function, first and second derivative

: three spatial dimensions + time; 
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Partial Differential Equations (PDEs)

elliptic PDE: matrix  is positive or negative definite

example: Laplace equation 

hyperbolic PDE: matrix  has one positive and  negative eigenvalues (or vice-versa)

example: heat equation 

parabolic PDE: one eigenvalue of  is zero, all others have the same sign; rank of  and 
together is 

example: wave equation 

see slides for finite difference & finite element method...

Solving Linear Systems

see NumProg script (Richardson, Jacobi, Gauß-Seidel, Steepest Descent)

iterative methods: 

speed of convergence:  with  and convergence
order 

relaxation methods / smoothers: Richardson, Jacobi, Gauß-Seidel, SOR / damped

: error of current approximation

: residual of current approximation

: general formula

solved: 

 with  easy to solve and small diff.  w.r.t matrix norm

common:  (lower triangular, diagonal, upper triangular)

Richardson: 

Jacobi: 

Gauß-Seidel: 

SOR: 

damping: multiplication of correction with a factor 

common with Jacobi

over-relaxation: multiplication of correction with a factor 
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successive over-relaxation:  for Gauß-Seidel

(Data) Traffic Simulation

: random variable (some capital letter...)

: distribution of 

: density of 

: expectation value

: variance, standard deviation

: coefficient of variation (relative)

: conditional probability

: conditional probability

: hazard rate; risk of interval end in time (e.g. a customer arrives in the next 

seconds)

negative exponential distribution: predicts time interval between two event occurences

Poisson distribution: predicts number of event occurences in an interval (memoryless, i.e.
independent of history)

: event (hazard) rate, constant

: arrival rate

: service rate

, , , 

Forward Recurence Time (FRT, VRZ): remaining time to next event

Backward Recurrence Time (BRT, RRZ): time elapsed since last event

uniform distribution : 

Poisson process: 

process with :  (Hitchhiker's paradox)

Modelling Queuing Systems

functional unit (FU): unit delimited by impact or assignment

service unit (SU), instance: functionality does not include data transport (e.g. cashier)

canal (C): data transport between service units (e.g. CPU-RAM bus)
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system: service unit consisting of several service units (e.g. house of doctor's offices)

job: occupies a service unit (e.g. print job)

dwelling time : total time that a job stays in the service unit from start to completion

capacity : maximum number of jobs a service unit can process at the same time

: simple service unit (e.g. portaloo)

filling : number of jobs in a service unit

: empty service unit

: busy service unit

: occupied service unit#

:

: relative filling

closed queuing network: constant filling

open queuing network: variable filling

throughput : average number of jobs completed within a time interval of a service unit

maximum throughput : maximum possible throughput

utilization : relative throughput

service time : net dwelling time of a job (i.e. dwelling time without waiting time or dwelling time
with )

waiting time : waiting time of a job

Little's Law:  (average filling is throughput times average dwelling time)

queuing system (QS): system in which jobs can't get lost (i.e. if service unit is occupied, job waits
in canals)

elementary queuing system (eIQS)

one canal as waiting pool with capacity 

one service unit with capacity  or  simple service units

inter-arrival time: timespan between two consecutive arrival events

D: deterministic / constant

M: Markovian; negative exponentially distributed w/ distribution  and expected value 

G: general, arbitrarily distributed

Kendall notation: 
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: arrival and service process negative exponentially distributed, one service unit

: arrival process negative exponentially distributed, service process arbitrarily
distributed, one service unit

task stream: arrival process + type of task (e.g. )

task load: set of task streams

: number of visits of vertex  (ratio between throughput at  and throughput of network)

traffic bottleneck: vertex / vertices with maximum utilization  (max. 1)

Stochastic Processes

stochastic process: random variable  depending on time 

continuous process: 

discrete process: 

process in continuous time: 

process in discrete time:  countable

state space: set of possible values of 

stationary process: distribution stays the same in time,  (as such, no
absorbing states)

independent process: not depending on former results, 

Markov process: new state depends only on current state and not previous history

homogeneous Markov process (HMP): transition probabilities are constant, 
 (here discrete)

irreducible: all states are reachable from each other

all states are either transient or positively recurrent or null recurrent

if one state is periodic, all states are with same period length

closed subset of states: impossible to escape in complementary set

absorbing state: closed subset consisting of only one state
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recurrence probability: , probability that
sometime in the future, we revisit node  given we're currently in 

recurrence time  or 

recurrent state:  (i.e. we'll surely come back)

periodic:  (i.e. happens every  units of time)

positively recurrent:  (you'll be back in finite time)

null recurrent:  (you would have to wait an infinite amount of time)

transient:  (uncertain recurrence)

state probabilities:  (sum of probability of state  in last time
step times transition probability from  to ) with 

irreducible, aperiodic 

transient / null rec.: 

pos. recurrent: 

transition probabilities:  (discrete time)

transition rates:  (continuous time)

homogeneous birth-death process (HBDP): Markov chain where state values may only change in
in- / decrements of 1 (as such, only one succesor state)

Traffic Flow

Euler description: outside observer

Lagrange description: perspective of participant

: size of car (all cars same size)

: traffic velocity, tempo of the cars in km/h

 for 

linear:  for 

: traffic density, number of cars per section in cars/km

: traffic flow, throughput at a checkpoint in cars/h

parabolic: 

 for 

cubic: 

 for 
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 for 

 or 

cubic, better: 

: distance of two cars (road length normalized to 1)

Unsteady Situations

: density at location  at time 

: flow at location  at time 

: signal velocity (i.e. propagation of information of a change or disturbance); always less or
equal to car velocity

: number of cars on the track at time 

 entrance,  exit

f →′ v  max ϱ → 0

v(ϱ  ) =max 0

f (ϱ  ) =′
opt 0 fmax

f(ϱ) = v  ⋅max ϱ ⋅ 1 −  ( (
ϱ  max

ϱ )
α

)
β

d =  

ϱ−1
1−ϱ⋅l

ϱ(x, t) x t

f(x, t) x t

f  ϱ

ϱ → 0, v → v  , f →max 0, f  =ϱ v

ϱ  (x, t) +t f  (x, t) =x 0

ϱ  (x, t) +t f  (ϱ(x, t)) ⋅ϱ ϱ  (x, t) =x 0

n(t) =  ϱ(x, t)dx∫
x=a
x=b

t

n  (t) =t f(a, t) − f(b, t) = −  f  (x, t)dx∫
a

b
x

x = a x = b


