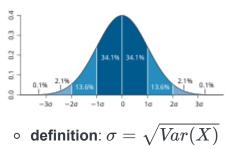
PERSONAL - Applied Regression

- <u>Recap: Basic Statistics</u>
- Introduction
- <u>Simple Linear Regression</u>
- Recap: Matrix Algebra
 - Operations and Special Types
- Simple Regression (Matrix)
- <u>Multiple Regression</u>
- Specification
- <u>Model Diagnostics</u>
- Lack of Fit
- Model Selection
- Nonlinear Regression
- Time Series Models
- Logistic Regression
- Poisson Regression
- Linear Mixed Effects Models
- Statistical Learning (Machine Learning)
 - Prediction Methods
 - Statistical Decision Theory
 - Categorical Data

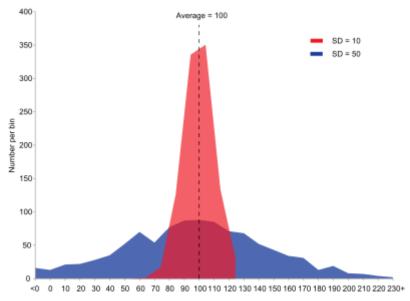
Recap: Basic Statistics

- mean (expected value): the mean of the possible values a random variable can take
 - notation: $E(X) = \mu$
 - finitely many outcomes: $E(X) = x_1p_1 + ... + x_np_n$
 - countably infinitely many outcomes: $E(X) = \sum_{i=1}^{\infty} x_i p_i$
 - random variables with density: $E(X) = \int_{-\infty}^{\infty} x f(x) dx$
 - properties:
 - E(c) = c
 - E(aX + b) = aE(x) + b
 - $E(a_1X_1 + ... + a_nX_n) = a_1E(X_1) + ... + a_nE(X_n)$

- $E(X_1 \cdot ... \cdot X_n) = E(X_1) \cdot ... \cdot E(X_n)$ for independent (uncorrelated) X_i
- $E(g(X)) = \int_{\mathbb{R}} g(x) f(x) dx$
- standard deviation: a measure of the amount of variation of the values of a variable about its mean

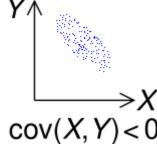


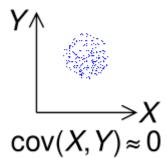
- <u>standard error</u>: the standard deviation of its sampling distribution or an *estimate* of that standard deviation
 - **definition**: $se = \frac{\sigma}{\sqrt{n}}$ for n observations
- variance: a measure of how far a set of numbers is spread out from their average value

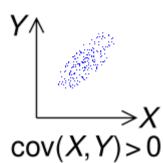


- notation: $Var(X) = \sigma^2$
- \circ definition: $Var(X) = E(X^2) E(X)^2$
- properties:
 - Var(c) = 0
 - Var(X+a) = Var(X)
 - $Var(aX) = a^2 Var(X)$
 - $Var(aX \pm bY) = a^2 Var(X) + b^2 Var(Y) \pm 2ab \ Cov(X, Y)$
 - $Var(X_1 + ... + X_n) = Var(X_1) + ... + Var(X_n)$ for independent (uncorrelated) X_i

• covariance: a measure of the joint variability of two random variables







- definition: Cov(X, Y) = E(XY) E(X)E(Y)
- $\circ\;$ positively correlated variables: Cov(X,Y)>0
- $\circ\;$ negatively correlated variables: Cov(X,Y) < 0
- $\circ~$ uncorrelated variables: Cov(X,Y)=0 (but not the other way around!)
 - independent variables: Cov(X, Y) = 0
- properties:
 - Cov(X, X) = Var(X)
 - Cov(X, Y) = Cov(Y, X)
 - Cov(X, c) = 0
 - $Cov(aX, bY) = ab \ Cov(X, Y)$
 - Cov(X + a, Y + b) = Cov(X, Y)
 - Cov(aX + bY, cW + dV) = acCov(X, W) + adCov(X, V) + bcCov(Y, W) + bdCov(Y, V)
- correlation: any statistical relationship, whether causal or not, between two random variables

• definition:
$$Corr(X,Y) = rac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

Introduction

- regression: creates a functional relationship between a response (dependent) variable and a set of explanatory (predictor) variables (covariates)
 - regression model: which explanatory variables have an effect on the response?
- deterministic relationship: a certain input will always lead to the same result
- parameter: an unknown constant, most likely to be estimated by collecting and using data
- **empirical model**: any kind of model based on **empirical observations** rather than on **mathematically describable** (theory-based) relationships of the system modelled
- **controlled experiment**: one where the experimenter can set the values of the explanatory variable(s)
- line definition (linear model): $y = eta_0 + eta_1 x \ (+\epsilon)$
 - β_0, β_1 : constants (parameters)
 - intercept β_0 : y when x = 0
 - **slope** β_1 : change in y if x is increased by 1 unit
 - *ϵ*: random disturbance (error)
 - $\beta_0 + \beta_1 x$: deterministic
 - *ε*: *random*, models **variability** in measurements around the **regression line**
 - *linear* in β_0 and β_1
 - $\circ\;$ for each experiment: $y_i=eta_0+eta_1x_i+\epsilon_i$
 - input and result: (x_i, y_i)
 - β_0, β_1 remain *constant*
 - x_i, ϵ_i vary per experiment i=1,2,...,n
 - mean $E(\epsilon_i) = 0$
 - variance $Var(\epsilon_i) = \sigma^2$
 - ϵ_i, ϵ_j independent *random* variables for $i \neq j$
 - x_i deterministic (i.e. the input data is clearly and certainly defined; it can also be noisy, in which case x_i is not deterministic)
 - $\implies y_i$ random variable; y_i, y_j independent for i
 eq j

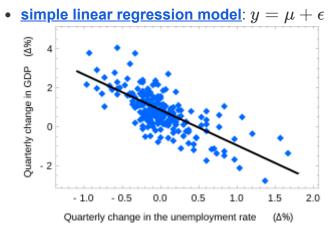
• mean
$$E(y_i) = E(\beta_0 + \beta_1 x_i + \epsilon_i) = \beta_0 + \beta_1 x_i + \underbrace{E(\epsilon_i)}_0 = \beta_0 + \beta_1 x_i$$

- variance $Var(y_i) = \sigma^2$
 - unexplained variability σ

$$\circ$$
 general: $y = \mu + \epsilon$

- deterministic component $\mu = eta_0 + eta_1 x_1 + ... + eta_p x_p$
 - explanatory variables $x_1, ..., x_p$ (assume fixed, measured without error)
 - β_i, i = 1, 2, ..., p: change in μ when changing x_i by one unit while keeping all other explanatory variables the same
 - $E(y) = \mu$, $Var(y) = \sigma^2$
- **linearity**: the derivatives of μ with respect to the parameters β_i do *not* depend on the variables
- notation: x_{ij} for the *i*-th unit (i.e. row in a table) and the *j*-th explanatory variable (i.e. column in a table) (R: table[i,j])
- dependent variable: depends on an independent variable

Simple Linear Regression



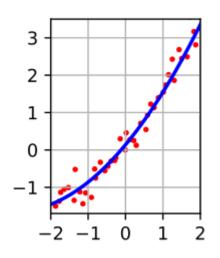
- \circ mean $E(y) = \mu = eta_0 + eta_1 x$
- \circ one **predictor (regressor)** variable x
- \circ one **response** variable y
- \circ random error ϵ
- \circ for n pairs of observations (x_i,y_i) : $y_i=eta_0+eta_1x_i+\epsilon_i, \;\;i=1,...,n$
 - *x_i not* random (can be selected by experimenter)

•
$$\epsilon_i \sim N(0,\sigma^2)$$

•
$$y_i \sim N(\mu_i, \sigma^2)$$
, where $\mu_i = eta_0 + eta_1 x_i$

- $E(\epsilon_i) = 0$
 - $E(y_i) = \mu_i = \beta_0 + \beta_1 x_i$
- $Var(\epsilon_i) = \sigma^2$
 - $Var(y_i) = \sigma^2$
- $Cov(\epsilon_i,\epsilon_j)=0$ for i
 eq j
 - any two observations y_i, y_j are *independent* for i
 eq j
- \circ goal: estimate eta_0,eta_1,σ^2 from available data (x_i,y_i)

- zero slope \implies absence of linear association
- unbiased parameter estimate: $E(\hat{ heta}) = heta$
 - $\circ~$ biased parameter estimate: $E(\hat{ heta})
 eq heta$
- <u>least squares estimation (LSE)</u>: a mathematical procedure for *finding the best-fitting curve to a* given set of points by minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve



 $\circ~$ goal: minimize $\sum_{i=1}^n (y_i - \hat{y}_i)^2$ where $\hat{y}_i = \hat{eta}_0 + \hat{eta}_1 x_i$ (fitted value)

• LSE
$$\hat{eta}_1 = rac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} = rac{s_{xy}}{s_{xx}}$$

• $s_{xy} = \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})$

•
$$s_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})(x_i - \overline{x})$$

• (!) reordering using $\sum_{i=1}^{n} (x_i - \overline{x}) = 0$:

•
$$\hat{eta}_1 = rac{\sum_{i=1}^n (x_i - \overline{x}) y_i}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

• $s_{xx} = \sum_{i=1}^n x_i (x_i - \overline{x})$

• LSE $\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$ • LSE $s^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{y}_i)^2$ • short: $s^2 - \frac{\sum_{i=1}^n e_i^2}{2}$

• short:
$$s^2 = rac{\sum_{i=1}^{n} c_i}{n-2}$$

- residual $e_i = y_i \hat{y}_i$
- degree of freedom: number of independent observations (n) minus the number of estimated parameters (here 2, β₀ and β₁)
- sample mean $\overline{x} = rac{1}{n} \sum_{i=1}^n x_i$
- result mean $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ $\overline{y} = \hat{\beta}_0 + \hat{\beta}_1 \overline{x}$

•
$$E(\hat{\beta}_1) = \beta_1$$

•
$$E(\hat{\beta}_0) = \beta_0$$

• $E(\overline{y}) = \beta_0 + \beta_1 \overline{x}$

- $E(s^2) = \sigma^2$
- $Var(\hat{\beta}_1) = \frac{\sigma^2}{s_{xx}}$
- $Var(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{s_{xx}}\right)$ • $se(\hat{\beta}_1) = \frac{s}{\sqrt{s_{xx}}}$
- maximum likelihood estimation (MLE): a method of estimating the parameters of an assumed probability distribution by maximizing a likelihood function

$$\circ ~~ \hat{\sigma}^2 = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$
 (biased!)

- <u>null hypothesis testing</u>: a method of statistical inference used to decide whether the data sufficiently supports a particular hypothesis
 - *t*-test: a statistical test used to test whether the difference between the response of two groups is statistically significant or not (here: two-sided)
 - $H_0: eta_1=0$ vs. $H_A: eta_1
 eq 0$ (\leq or >)

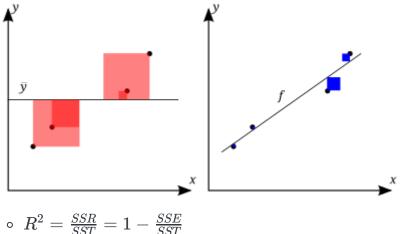
•
$$T=rac{\hat{eta}_1}{se(\hat{eta}_1)}\sim t_{n-2}$$

- α usually 0.05
 - quantile approach: reject H_0 if $|T| > t_{n-2,1-lpha/2}$
 - probability approach: reject H_0 if p-value is *less* than α
 - <u>p-value</u>: the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct
 - R: 2 * pt(abs(tval), df, lower.tail = FALSE)
 - the lower the *p*-value, the more far-fetched the null hypothesis is
- <u>confidence interval</u>: an interval which is expected to typically contain the parameter being estimated
 - $\circ ~ 100(1-lpha)\%$ confidence interval for $eta_1: \hateta_1 \pm t_{n-2,1-lpha/2} \cdot se(\hateta_1)$
 - general: Estimate ± (t value)(standard error of estimate)
- prediction of a new point: $y_p = \hat{eta}_0 + \hat{eta}_1 x + \epsilon$, where $\epsilon \sim N(0,\sigma^2)$
- **analysis of variance (ANOVA)**: a collection of statistical models and their associated estimation procedures used to analyze the differences between groups

$$\circ \ SST = SSR + SSE$$

Source	d.f.	SS (Sum of Squares)	MS (Mean Square)	F
Regression	1	$SSR = \sum_{i=1}^n (\hat{y}_i - \overline{y})^2$	MSR = SSR	$\frac{MSR}{MSE}$
Residual (Error)	n-2	$SSE = \sum_{i=1}^n (y_i - \hat{y}_i)^2$	$MSE = s^2$	
Total	n-1	$SST = \sum_{i=1}^n (y_i - \overline{y})^2$		

- <u>F-test</u>: any statistical test used to compare the variances of two samples or the ratio of variances between multiple samples
 - $\circ \hspace{0.1 cm} H_{0}: eta_{1}=0$ vs. $H_{A}: eta_{1}
 eq 0$
 - $\circ \ T \sim t_v \implies T^2 \sim F_{1,v}$
 - \circ quantile approach: reject H_0 if $F>F_{1,n-2,1-lpha}$ (qf(1 alpha, 1, n 2))
 - $\circ~$ probability approach: reject H_0 if P(f>F)<lpha where $f\sim F_{1,n-2}$
- <u>coefficient of determination</u>: the proportion of the variation in the dependent variable that is predictable from the independent variable(s)



• interpretation: $100R^2\%$ of the variation in y can be explained by x

$$\circ \ 0 \leq R^2 \leq 1$$

- the better the linear regression (right) fits the data in comparison to the simple average (left), the closer the value of R² is to 1
- <u>Pearson correlation</u>: a correlation coefficient that measures **linear (!)** correlation between two variables *x*, *y*

$$\circ r = \operatorname{sign}(\hat{eta}_1)\sqrt{R^2}$$

• in R...

•
$$\operatorname{cov}(\mathbf{x},\mathbf{y})$$
 returns $\frac{1}{n-1}\sum_{i=1}^n (x_i-\overline{x})(y_i-\overline{y})$

• var(x) returns
$$rac{1}{n-1}\sum_{i=1}^n (x_i-\overline{x})^2$$

- $\operatorname{cor}(x, y)$ returns $\frac{Cov(x,y)}{sd(x)sd(y)}$
- sd(x) returns sqrt(var(x))
- diagnostics: $y \sim N(eta_0 + eta_1 x, \sigma^2)$
 - independence: told by investigator
 - \circ **linearity**: plot *y* against *x*
 - \circ constant variance: plot $y \hat{y}$ against \hat{y}
 - \circ **normal distribution**: plot $y \hat{y}$ against normal quantiles

Recap: Matrix Algebra

- matrix: a rectangular array of numbers
 - \circ formally: $A \in p imes q$ (matrix A with p rows and q columns)
 - $A = (a_{ij})$, where a_{ij} is the entry in row i and column j
 - square matrix: same number of rows and columns (p = q)
 - det(AB) = det(A)det(B) (also written as |AB| = |A||B|)
 - identity matrix I: square matrix with ones in the diagonal and zeros everywhere else
 - zero matrix O: matrix of all zeros
 - o diagonal (square) matrix: all entries outside the diagonal are zero
- (column) vector: a matrix consisting of a single column
 - \circ formally: $oldsymbol{x} \in p imes 1$
 - $\boldsymbol{x} = (x_i)$
 - elements: $x_1, ..., x_p$
 - unit vector 1: vector with all elements equal to one
 - \circ zero vector **0**: vector with all elements equal to zero

Operations and Special Types

- matrix / vector addition: element-wise, same dimensions
- matrix / vector multiplication: for A ∈ p × q, B ∈ q × t, go through each row in the first matrix and multiply and add the elements with the elements of each column in the second matrix; that's one complete row in the result matrix
 - $\circ~$ formally: $C = AB = (c_{ij}) \in p imes t$ with $c_{ij} = \sum_{r=1}^q a_{ir} b_{rj}$
 - $\circ \ (AB)C = A(BC)$
 - $\circ \ (A+B)C = AC + BC$
 - $\circ \ A(B+C) = AB + AC$
- matrix transposition: interchange rows and columns
 - $\circ\;$ formally: $A'=(a_{ji})$ with $A\in q imes p$
 - \circ symmetric matrix: A = A'

$$\circ \ (A+B)' = A' + B'$$

 $\circ \ (A')' = A$

$$\circ (cA)' = cA'$$

- $\circ \ (AB)' = B'A'$ for $A \in m imes n, B \in n imes p$
- (inner) vector product: multiply element-wise, then add all together \rightarrow scalar

- \circ formally: $oldsymbol{x'y} = \sum_{i=1}^p x_i y_i$
- orthogonal vectors: inner product 0
- $\circ~$ euclidian norm (length): $||m{x}|| = \sqrt{m{x'}m{x}}$
- set of linearly dependent vectors: there exist scalars c_i , not all simultaneously zero, such that $c_1 x_1 + ... + c_k x_k = 0$
 - (!) at least one vector can be written as a linear combination of the remaining ones (for example, a column in a matrix is the summation of two other columns)
 - linearly independent: otherwise
- matrix rank: largest number of linearly independent columns (or rows)
 - nonsingular matrix: square matrix with rank equal to row / column number
 - formally: $A \in m imes m, \ rank(A) = m$
- matrix inverse: $AA^{-1} = A^{-1}A = I$
 - $\circ \ ABB^{-1}A^{-1}=I$
 - $\circ (A^{-1})' = (A')^{-1}$

$$\circ (\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$$

- $\circ~$ for nonsingular matrices: $(AB)^{-1}=B^{-1}A^{-1}$
- orthogonal (square) matrix: AA' = A'A = I
 - $\circ \ A' = A^{-1}$
 - the rows (columns) are mutually orthogonal
 - the length of the rows (columns) is one
 - $det(A) = \pm 1$
- trace of a (square) matrix: the sum of its diagonal elements
 - $\circ\;$ formally: $tr(A) = \sum_{i=1}^m a_{ii}$
 - $\circ tr(A) = tr(A')$
 - $\circ \ tr(A+B) = tr(A) + tr(B)$
 - tr(CDE) = tr(ECD) = tr(DEC) for conformable matrices C, D, E (matrices s.t. products are defined)
 - $\circ \ tr(c) = c$
 - \circ bonus: $E(tr(\cdot)) = tr(E(\cdot))$
- idempotent (square) matrix: AA = A
 - $\circ det(A) = 0 ext{ or } 1$
 - $\circ rank(A) = tr(A)$

Simple Regression (Matrix)

- simple regression (matrix approach): $y = Xeta + \epsilon$
 - $\boldsymbol{y}, \boldsymbol{\epsilon}$ are $(n \times 1)$ random vectors
 - $\circ~oldsymbol{X}$ is a (n imes 2) matrix (first col. ones, second column x_i
 - $\circ\;$ LSE $\hat{oldsymbol{eta}}=(X'X)^{-1}X'y$
 - $\circ~$ fitted value vector $\hat{y} = X \hat{eta}$
 - $\circ~$ residual vector $e=y-\hat{y}=y-X\hat{eta}$
 - \circ LSE $s^2 = rac{1}{n-2} oldsymbol{e}' oldsymbol{e}$
- random vector: vector $oldsymbol{y}$ of random variables
 - \circ mean (expected value) $E(m{y}) = (E(y_1),...,E(y_n))' = m{\mu}$ (non-random vector)
 - $E(y_i) = \mu_i$ • for a random matrix: $E(Y) = \begin{pmatrix} E(y_{11}) & \dots & E(y_{1n}) \\ \vdots & \ddots & \vdots \\ E(y_{n1}) & \dots & E(y_{nn}) \end{pmatrix}$ (non-random matrix)
 - properties: a scalar constant, b vector of constants, y random vector, A matrix of constants...
 - $E(a\boldsymbol{y} + \boldsymbol{b}) = aE(\boldsymbol{y}) + \boldsymbol{b}$
 - $E(A\boldsymbol{y}) = A \ E(\boldsymbol{y})$
 - $E(\boldsymbol{y}'A) = E(\boldsymbol{y})'A$
 - Var(Ay) = A Var(y)A'
 - if $oldsymbol{y}$ is normal distributed, so is $Aoldsymbol{y}$
- covariance matrix Σ : diagonal elements $Var(y_i)$, off-diagonal elements $Cov(y_i, y_j)$

• formally:
$$Var(Y) = \Sigma = \begin{pmatrix} E((y_1 - \mu_1)(y_1 - \mu_1)) & \dots & E((y_1 - \mu_1)(y_n - \mu_n)) \\ \vdots & \ddots & \vdots \\ E((y_n - \mu_n)(y_1 - \mu_1)) & \dots & E((y_n - \mu_n)(y_n - \mu_n)) \end{pmatrix} = E((y - \mu)(y - \mu)')$$

 $\circ \ \Sigma$ symmetric, because $Cov(y_i,y_j)=Cov(y_j,y_i)$

• Σ diagonal **if** observations (y_i) are independent, because $Cov(y_i, y_j) = 0, i
eq j$

Multiple Regression

- general linear model: $y = eta_0 + eta_1 x_1 + ... + eta_p x_p + \epsilon$
 - \circ response variable y
 - $\circ~$ several independent (predictor, explanatory) variables x_i
 - $\circ~~n$ cases, p predictor values: $y_i=eta_0+eta_1x_{i1}+...+eta_px_{ip}+\epsilon_i=\mu_i+\epsilon_i$
 - x_{ij} : value of the *j*-th predictor variable of the *i*-th case
 - $y_1,...,y_n$ iid., normal distributed, $y_i \sim N(\mu_i,\sigma^2)$

- μ_i non-random (deterministic)
- $E(\epsilon_i) = 0$ • $E(y_i) = \mu_i = \beta_0 + \beta_1 x_{i1} + ... + \beta_p x_{ip}$
- $Var(\epsilon_i) = \sigma^2$ • $Var(y_i) = \sigma^2$
- vector form: $oldsymbol{y} = Xoldsymbol{eta} + oldsymbol{\epsilon}$

$$\circ \ \boldsymbol{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \ \boldsymbol{y} \sim N(X\boldsymbol{\beta}, \sigma^2 I), \ E(\boldsymbol{y}) = X\boldsymbol{\beta}, \ Var(\boldsymbol{y}) = \sigma^2 I$$

$$\circ \ X = \begin{pmatrix} 1 & x_{11} & \dots & x_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{pmatrix} \text{ fixed, non-random, full rank}$$

$$\circ \ \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_p \end{pmatrix}$$

$$\circ \ \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}, \ \boldsymbol{\epsilon} \sim N(\boldsymbol{0}, \sigma^2 I), \ E(\boldsymbol{\epsilon}) = \boldsymbol{0}, \ Var(\boldsymbol{\epsilon}) = \sigma^2 I$$

- LSE: $\hat{oldsymbol{eta}} = (X'X)^{-1}X'oldsymbol{y}$
 - $\circ\;$ fitted values $oldsymbol{\hat{y}} = X oldsymbol{\hat{eta}} = H oldsymbol{y}$
 - $H = X(X'X)^{-1}X' \in n \times n$
 - *H* is the orthogonal projection of *y* onto the linear space spanned by column vectors of *X*
 - H symmetric (H' = H)
 - H idempotent (HH = H)
 - $E(\hat{\boldsymbol{y}}) = X\boldsymbol{\beta}$
 - $Var(\hat{\boldsymbol{y}}) = \sigma^2 H$
 - $\circ\;$ residuals $oldsymbol{e} = oldsymbol{y} oldsymbol{\hat{y}} = (I-H)oldsymbol{y}$
 - (I H) projects \boldsymbol{y} onto the *perpendicular* space to the linear space spanned by the column vectors of X
 - (I H) symmetric ((I H)' = (I H))
 - (I H) idempotent ((I H)(I H) = (I H))
 - rearranged: $oldsymbol{y} = oldsymbol{\hat{y}} + oldsymbol{e} = Holdsymbol{y} + (I-H)oldsymbol{y}$
 - E(e) = 0
 - $Var(e) = \sigma^2(I H)$

- $\circ E(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$
 - $E(\hat{\beta}_i) = \beta_i$
- $\circ \ Var(\boldsymbol{\hat{\beta}}) = \sigma^2 (X'X)^{-1}$
 - $Var(\hat{eta}_i)=\sigma^2 v_{ii}$, where v_{ii} is the corresponding diag. el. in $(X'X)^{-1}$
- MLE: $s^2 = \frac{SSE}{n-k-1} = \frac{1}{n-k-1} \sum_{i=1}^n (y_i \hat{y}_i)^2$ (for k predictors *not* including the intercept!)

Source	d.f.	SS (Sum of Squares)	MS (Mean Square)	F
Regression	k	$SSR = \sum_{i=1}^n (\hat{y}_i - \overline{y})^2$	$MSR = rac{SSR}{k}$	$\frac{MSR}{MSE}$
Residual (Error)	n-k-1	$SSE = \sum_{i=1}^n (y_i - \hat{y}_i)^2$	$MSE = rac{SSE}{n-k-1} = s^2$	
Total	n-1	$SST = \sum_{i=1}^n (y_i - \overline{y})^2$		

- alternative ANOVA calculations:
 - $\circ SST = \boldsymbol{y'y} n\overline{\boldsymbol{y}}^2$
 - $\circ SSE = \boldsymbol{y'y} \boldsymbol{\hat{\beta}'}X'X\boldsymbol{\hat{\beta}}$
 - $\circ \ SSR = SST SSE = \hat{\beta}' X' X \hat{\beta} n \overline{y}^2$
- multiple R^2 : "usefulness" of regression...
 - $\circ~R^2 = rac{SSR}{SST} = 1 rac{SSE}{SST}$ (variation due to regression over total variation)
 - $\circ\;$ adding a variable to a model increases the regression sum of squares, and hence R^2
 - if adding a variable only marginally increases R^2 , it might cast doubt on its inclusion in the model
- F-test: $H_0:eta_1=...=eta_k=0$ vs. $H_A:$ at least one $eta_j
 eq 0$
 - \circ alternative: $H_{restrict}: E(y) = eta_0$ vs. $H_{full}: E(y) = eta_0 + eta_1 x_1 + ... + eta_k x_k$
 - $\circ \ F = rac{MSR}{MSE} \sim F_{k,n-k-1}$ (bottom of R output)
 - quantile approach: reject H_0 if $F > F_{k,n-k-1,1-lpha}$
 - probability approach: reject H_0 if $P(F_{random} > F) < lpha$ where $F_{random} \sim F_{k,n-k-1}$
- t-test: $H_0: eta_j = 0$ vs. $H_A: eta_j
 eq 0$
 - $\circ \ t = rac{\hateta_j}{se(\hateta_j)} \sim t_{n-k-1}$
 - reject H_0 if $2 \cdot P(T > |t|) < lpha$ where $T \sim t_{n-k-1}$
 - = 100(1-lpha)% confidence interval for $eta_j:\hateta_j\pm t_{n-k-1,1-lpha/2}\cdot se(\hateta_j)$
- linear combination of coefficients: for when we want to estimate a result with given predictors
 - **example (book)**: estimating avg. formaldehyde concentration in homes with UFFI ($x_1 = 1$) and airtightness 5 ($x_2 = 2$)

- $\theta = \beta_0 + \beta_1 + 5\beta_2 = a'\beta$ with a' = (1, 1, 5)• estimate: $\hat{\theta} = a'\hat{\beta} = (1, 1, 5) \begin{pmatrix} 31.37\\ 9.31\\ 2.85 \end{pmatrix} = 54.96$
- additional sum of squares principle (linear hypthoseses): testing simultaneous statements about several parameters

• example:

- full model: $y=eta_0+eta_1x_1+eta_2x_2+eta_3x_3+\epsilon$
- restrictions: each restriction is one equation equaling 0
 - $\beta_1=2\beta_2$ (or $\beta_1-2\beta_2=0$)
 - $\beta_3 = 0$
- matrix form: matrix $A \in a \times (k+1)$ has one row for each restriction and one column per parameter (+ full rank)

•
$$\begin{pmatrix} 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- hypothesis: $H_0: A\boldsymbol{\beta} = \mathbf{0}$ vs. $H_A:$ at least one of these $\beta_j \neq 0$
 - alternative: $H_{restrict}: \mu = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$ vs. $H_{full}: \mu = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$
- restricted model: $y=eta_0+eta_2(2x_1+x_2)+\epsilon$
- $\circ~$ additional sum of squares: $SSE_{restrict}-SSE_{full}$
 - (!) for $\mu = \beta_0$: $SSE_{restrict} = SST$
- **test statistic**: $F = \frac{(SSE_{restrict} SSE_{full})/a}{SSE_{full}/(n-k-1)} \sim F_{a,n-k-1}$ for a rows in A, k parameters, n observations
 - reject H_0 if p-value < lpha

Specification

- one-sample problem: $y_i=eta_0+\epsilon_i$
 - $\circ y_1,...,y_n$ observations taken under uniform conditions from a stable model with mean level eta_0
 - $E(y_i) = \beta_0$
 - $\circ E(\boldsymbol{y}) = X\boldsymbol{\beta}$
 - $y = (y_1, ... y_n)'$
 - X = (1, ..., 1)'
 - $\boldsymbol{\beta} = \beta_0$

- $\circ \ \hat{\beta}_0 = \overline{y}$ $\circ \ \hat{\sigma}^2 = s^2 = \frac{s_{yy}}{n-1} = \frac{\sum_{i=1}^n (y_i - \overline{y})^2}{n-1}$ $\circ \ SSE = SST$
- **in R**: lm(y~1)

• two-sample problem:
$$y_i = egin{cases} eta_1+\epsilon_i & i=1,2,..,m \ eta_2+\epsilon_1 & i=m+1,...,n \end{cases}$$

- $\circ \ y_1,...y_m$ taken under one set of conditions (standard process), mean eta_1
- $\circ \,\, y_{m+1},...,y_n$ taken under another set of conditions (new process), mean eta_2
- $\circ~$ alternative: $y_i=eta_1x_{i1}+eta_2x_{i2}+\epsilon_i$
 - $E(y_i) = \beta_1 x_{i1} + \beta_2 x_{i2}$
 - x_{i1}, x_{i2} indicator variables

•
$$x_{i1} = \begin{cases} 1 & i = 1, 2, ..., m \\ 0 & i = m + 1, ..., n \end{cases}$$

• $x_{i2} = \begin{cases} 0 & i = 1, 2, ..., m \\ 1 & i = m + 1, ..., n \end{cases}$
• $E \begin{pmatrix} y_1 \\ \vdots \\ y_m \\ y_{m+1} \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \beta_1 + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \beta_2$
• matrix form $E(y) = X\beta$
• $X = \begin{pmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{pmatrix}$
• $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$

- in R: lm(y~x1+x2-1)
- \circ hypothesis: $eta_1=eta_2$
- polynomial models:
 - \circ linear: $y_i = eta_0 + eta_1 x_i + \epsilon_i$

•
$$X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$$

• $\lim(y \sim x)$

 $\circ~$ quadratic: $y_i=eta_0+eta_1x_i+eta_2x_i^2+\epsilon_i$

•
$$X = \begin{pmatrix} 1 & x_1 & x_1^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{pmatrix}$$
•
$$[\operatorname{Im}(y \sim x + I(x^2))]$$

 $\circ \;\; k$ -th degree: $y_i = eta_0 + eta_1 x_i + ... + eta_k x_i^k + \epsilon_i$

•
$$X = \begin{pmatrix} 1 & \dots & x_1^k \\ \vdots & \ddots & \vdots \\ 1 & \dots & x_n^k \end{pmatrix}$$

• $[\operatorname{Im}(y \sim \operatorname{poly}(x, \operatorname{degree}=k, \operatorname{raw}=T))]$

- systems of straight lines: yields of a chemical process which changes linearly with temperature...
 - $y_1, ..., y_m$: yields of a chemical process at temperatures $t_1, ..., t_m$ in the **absence** of a catalyst $(x_i = 0)$
 - $\circ y_{m+1},...,y_{2m}$: yields of a chemical process at the same temperatures $t_1,...,t_m$ in the **presence** of a catalyst ($x_i=1$)
 - case a (main effects): the catalyst has an effect; the effect is the same at all temperatures

$$lacksymbol{\mu}_i = egin{cases} eta_0 + eta_1 t_i & i = 1, 2, ..., m \ eta_0 + eta_1 t_{i-m} + eta_2 & i = m+1, ..., 2m \end{cases}$$

- alternative (indicator variable): $E(y_i) = eta_0 + eta_1 t_i + eta_2 x_i$

•
$$x_i = \begin{cases} 0 & i = 1, 2, ..., m \\ 1 & i = m + 1, ..., 2m \end{cases}$$

- $t_{i+m} = t_i, i = 1, 2, ..., m$
- matrix form: $E(oldsymbol{y}) = Xoldsymbol{eta}$

•
$$oldsymbol{y} = egin{pmatrix} y_1 \ dots \ y_m \ y_{m+1} \ dots \ y_{2m} \end{pmatrix}$$

•
$$X = \begin{pmatrix} 1 & t_1 & 0 \\ \vdots & \vdots & \vdots \\ 1 & t_m & 0 \\ 1 & t_1 & 1 \\ \vdots & \vdots & \vdots \\ 1 & t_m & 1 \end{pmatrix}$$

• $\beta = \begin{pmatrix} eta_0 \\ eta_1 \\ eta_2 \end{pmatrix}$

• hypothesis: $\beta_2=0$

• case b (interaction): the catalyst has an effect; the effect changes with temperature

- $\mu_i = eta_0 + eta_1 t_i + eta_2 x_i + eta_3 t_i x_i$ i = 1, 2, ..., 2m
- catalyst absent ($x_i=0$): $\mu_i=eta_0+eta_1t_i$ i=1,2,...,m
- catalyst absent ($x_i = 0$): $\mu_i = \beta_0 + \beta_1 t_i$ i = 1, 2, ..., mcatalyst present ($x_i = 1$): $\mu_i = \beta_0 + \beta_1 t_{i-m} + \beta_2 + \beta_3 t_{i-m}$ i = m+1, ..., 2m

•
$$\mu_i=eta_0+eta_2+(eta_1+eta_3)t_{i-m}$$

- matrix form: $E(oldsymbol{y}) = Xoldsymbol{eta}$

•
$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \\ y_{m+1} \\ \vdots \\ y_{2m} \end{pmatrix}$$

• $X = \begin{pmatrix} 1 & t_1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & t_m & 0 & 0 \\ 1 & t_1 & 1 & t_1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & t_m & 1 & t_m \end{pmatrix}$
• $\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$

- hypothesis: $eta_2=eta_3=0$ (no rejection ightarrow catalyst has no effect)
 - catalyst depends on temperature? $\beta_3=0$
- one-way classification (k-sample problem): comparison of several "treatments"; generalization of the two-sample problem
 - $\circ \,\, k$ catalysts, n_i observations with the i-th catalyst (i=1,...,k)
 - $n = n_1 + ... + n_k$ total observations

- y_{ij} : j-th observation from the i-th catalyst group ($i=1,...,k;\;\;j=1,...,n_i$)
 - $E(y_{ij}) = \beta_i$
- $\circ\;$ matrix form: $E(oldsymbol{y}) = Xoldsymbol{eta} = eta_1oldsymbol{x}_1 + ... + eta_koldsymbol{x}_k$
 - \boldsymbol{x}_i : regressor vectors indicating the group membership of the observations

$$lacksymbol{x}_{ji} = egin{cases} 1 & y_{ij} ext{ from group } i \ 0 & ext{ otherwise} \end{cases}$$

example (3 groups):

•
$$\boldsymbol{y} = \begin{pmatrix} y_{11} \\ \vdots \\ y_{1n_1} \\ y_{21} \\ \vdots \\ y_{2n_2} \\ y_{31} \\ \vdots \\ y_{3n_3} \end{pmatrix}$$

• $X = (\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3) = \begin{pmatrix} 1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 1 \end{pmatrix}$
• $\boldsymbol{\beta} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$

• LSE: $\hat{eta}_i = \overline{y}_i$

- \circ hypothesis: $eta_1=eta_2=...=eta_k$
- **alternative (reference group)**: relate group means to the mean of a reference group (here, the first group)

$$\begin{tabular}{ll} \begin{tabular}{ll} \begin{$$

- matrix form: $E(m{y})=Xm{eta}$ where $X=(m{1},m{x}_2,...,m{x}_k)$ and $m{eta}=(eta_1,\delta_2,...,\delta_k)'$
 - example (3 groups):

•
$$X = (\mathbf{1}, \mathbf{x}_2, \mathbf{x}_3) = \begin{pmatrix} 1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \vdots & \vdots & \vdots \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ \vdots & \vdots & \vdots \\ 1 & 0 & 1 \end{pmatrix}$$

• $\boldsymbol{\beta} = \begin{pmatrix} \beta_1 \\ \delta_2 \\ \delta_2 \end{pmatrix}$
LSE: $\hat{\boldsymbol{\beta}} = (\overline{y}_1, \ \overline{y}_2 - \overline{y}_1, \ \dots, \ \overline{y}_k - \overline{y}_1)'$

- **multicollinearity**: in the presence of one variable, the other is not important enough to have it included; the two variables express the same information, so there is no point to include both (p. 157 / 171)
 - typically shown by the fact that, in a model which includes both covariates, *neither* is significant on its own (t-test)
- **orthogonality**: special properties for X matrices with orthogonal columns (dot product of any two columns 0)...
 - **non-changing estimates**: β_i remains the same, regardless of how many variables there are in the model
 - additivity of SSRs: $SSR(x_1, ..., x_k) = SSR(x_1) + ... + SSR(x_k)$, for a differing number of variables in a model
 - **orthogonal** \implies **independence**: the components of $\hat{\beta}$ are independent (covariances between β_i zero)

Model Diagnostics

- possible reasons for a model being inadequate:
 - o inadequate functional form: missing needed variables and nonlinear components
 - incorrect error specification: non-constant $Var(\epsilon_i)$, non-normal distribution, non-independent errors
 - unusual observations: outliers playing a big part
- residual analysis: using the residual to assess the adequacy of a model
 - \circ <u>residual</u>: $e = y \hat{y}$
 - $\hat{\boldsymbol{y}} = H \boldsymbol{y}$
 - i-th case in dataset: $e_i = y_i \hat{y}_i$

- estimates the random component ϵ
- E(e) = (I H)E(y)
 - correctly specified model: E(e) = 0

•
$$E(e) = (I - H)E(y) = (I - H)X\beta = \dots = X\beta - X\beta = 0$$

- incorrectly specified model: $E(oldsymbol{e})
 eq oldsymbol{0}$
 - "true" model: $E(\boldsymbol{y}) = X\boldsymbol{\beta} + \boldsymbol{u}\gamma$
 - \boldsymbol{u} : regressor vector *not* in L(X)
 - γ: a parameter

•
$$E(\boldsymbol{e}) = (I - H)E(\boldsymbol{y}) = (I - H)(X\boldsymbol{\beta} + \boldsymbol{u}\gamma) = \gamma(I - H)\boldsymbol{u} \neq 0$$

- $\circ ~ oldsymbol{e}$ and $oldsymbol{\hat{y}}$ should be **uncorrelated**
 - fitted values should not carry any information on the residuals
 - in other words: a graph of the residuals against the fitted values should show no patterns
- \circ **properties**: for $oldsymbol{y} = Xoldsymbol{eta} + oldsymbol{\epsilon}$, where h_{ij} are elements of H_{\cdots}
 - $Var(\epsilon_i) = \sigma^2$ constant
 - $Var(e_i) = \sigma^2(1-h_{ii})$ not constant
 - $Cov(\epsilon_i,\epsilon_j)=0, \quad i
 eq j$ uncorrelated
 - $Cov(e_i,e_j)=-\sigma^2h_{ij}, \ i
 eq j$ not uncorrelated
- o standardized residuals: residuals standardized to have approx. mean zero and variance one
 - definition: $e_i^s = \frac{e_i}{s}$
 - recall: $\hat{\sigma}^2 = s^2 = rac{e'e}{n-k-1}$
- **<u>studentized residuals</u>**: the dimensionless ratio resulting from the division of a residual by an estimate of its standard deviation
 - $|d_i| > 2$ or 3 would make us question whether the model is adequate for that case i
 - a histogram or a dot plot of the studentized residuals helps us assess whether one or more of the residuals are unusually large
- serial correlation (autocorrelation): if a regression model is fit to *time series* data (e.g. monthly, yearly...), it is likely that errors are serially correlated (as opposed to the errors *ε*_t being independent for time indices *t*)
 - positively autocorrelated: a positive error last time unit implies a similar positive error this time unit
 - detection: calculate lag k sample autocorrelation r_k of the residuals ($r_0 = 1$)
 - measures the association within the same series (residuals) k steps apart
 - sample correlation between e_t and its k-th lag, e_{t-k}
 - lag k autocorrelation always between -1 and +1

- graphically: plot e_t against e_{t-k} and look for associations (positive: upwards, negative: downwards)
- in R: acf(fit\$residuals,las=1)
- $\circ~$ autocorrelation function (of the residuals): graph of autocorrelations r_k as a function of the lag k
 - two horizontal bands at $\pm \frac{2}{\sqrt{n}}$ are added to the graph
 - sample autocorrelations that are *outside* these limits are **indications of autocorrelation**
 - if (almost) all autocorrelations are within these limits, one can make the assumption of independent errors
- **Durbin-Watson test**: examines lag 1 autocorrelation r_1 in more detail; complicated to compute
 - $DW \approx 2$: independent errors
 - DW > 2 or DW < 2: *correlated* errors
- outlier: an observation that differs from the majority of the cases in the data set
 - one must distinguish among outliers in the y (response) dimension (a) vs. outliers in the x (covariate) dimension (b) vs. outliers in both dimensions (c)
 - x dimension: outliers that have unusual values on one or more of the covariates
 - $\circ y$ dimension: outliers are linked to the regression model
 - random component too large?
 - response or covariates recorded incorrectly?
 - missing covariate?
 - detection: graphically, studentized residual, leverage
- **influence**: an individual case has a **major influence** on a statistical procedure if the **effects** of the analysis are **significantly altered** when the case is **omitted**
- <u>leverage</u>: a measure of how far away the independent variable values of an observation are from those of the other observations
 - **definition**: h_{ii} for *i*-th independent observation, i = 1, ..., n (entry in hat matrix H)
 - properties:
 - h_{ii} is a function of the **covariates** (*x*) but not the response
 - h_{ii} is higher for x farther away from the centroid \overline{x}

•
$$\sum_{i=1}^{n} h_{ii} = tr(H) = k+1$$

- $\overline{h} = \frac{k+1}{n}$
- rule of thumb: a case for which the leverage exceeds twice the average is considered a high-leverage case
 - formally: $h_{ii} > 2\overline{h} = rac{2(k+1)}{n}$
- influence: study how the deletion of a case affects the parameter estimates

- $\circ\;$ after deleting the i-th case: $oldsymbol{y}=Xoldsymbol{eta}+oldsymbol{\epsilon}$ for the remaining n-1 cases
- $\hat{oldsymbol{eta}}_{(i)}$: the estimate of $oldsymbol{eta}$ without the i-th case
- $\hat{oldsymbol{eta}}$: the estimate of $oldsymbol{eta}$ for all cases
- $\circ\;$ influence of the i-th case: $\hat{oldsymbol{eta}} \hat{oldsymbol{eta}}_{(i)}$
- <u>Cook's D statistic</u>: estimate of the influence of a data point when performing a least-squares regression analysis
 - $D_i > 0.5$ should be examined
 - $D_i > 1$ great concern

Lack of Fit

- **lack of fit test**: can be performed if there are repeated observations at some of the constellations of the explanatory variables
 - formally: for n observations, only k different values of x were observed
 - there were n_i values of y measured at covariate value $x_i, \;\; i=1,...,k$
 - $x_1: y_{11}, ..., y_{1n_1}$
 - 6 6 6

 $x_k:y_{k1},...,y_{kn_k}$

- $\circ~$ one-way classification model: $y_{ij}=eta_1I(x_i=x_1)+...+eta_kI(x_i=x_k)+\epsilon_{ij}$
 - so, in essence, each individual result for a certain constellation x_i is just $\beta_i + \epsilon_{ij}$
 - $E(\epsilon_{ij}) = 0$
 - $Var(\epsilon_{ij}) = \sigma^2$
- matrix form: $oldsymbol{y} = Xoldsymbol{eta} + oldsymbol{\epsilon}$
 - $oldsymbol{y} \in n imes 1$: vector of responses, $n = \sum_{i=1}^k n_i$
 - $X \in n imes k$: design matrix with ones and zeros representing the k groups
 - $oldsymbol{eta} \in k imes 1$: vector of unknown means μ_i
- $egin{aligned} &\circ \ (\hat{eta}_1,...,\hat{eta}_k) = (\overline{y}_1,...,\overline{y}_k) \ &\bullet \ \overline{y}_i = rac{1}{n_i}\sum_{j=1}^{n_i}y_{ij} ext{ (avg. of group }i) \end{aligned}$
- $\circ~$ restricted (parametric) model: $y_{ij}=eta_0+eta_1x_i+\epsilon_{ij}$ estimate via least squares
- \circ PESS: $PESS = SSE_{full} = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} \overline{y}_i)^2$
 - **d.f.** number of observations minus number of groups (n k)
- \circ LFSS: $LFSS = \sum_{i=1}^k n_i (\overline{y}_i \hat{eta}_0 \hat{eta}_1 x_i)^2 \geq 0$
 - **d.f.** number of groups k number of parameters (lin: 2 params.)
 - $SSE_{restrict} = PESS + LFSS$

- $SSE_{restrict} \ge SSE_{full}$

-
$$F = \frac{LFSS/(k-\dim(\beta))}{PESS/(n-k)} \sim F_{k-\dim(\beta),n-k}$$

- <u>variance-stabilizing transformations</u>: find a simple function g to apply to values x in a data set to create new values y = g(x) such that the variability of the values y is not related to their mean value
 - $\circ~~{f assume}~y=\mu+\epsilon$ where μ is a fixed mean
 - $Var(y) = (h(\mu))^2 \sigma^2$ has a non-constant variance that depends on the mean
 - h known
 - goal: find g(x) such that Var(g(x)) is constant and does not depend on μ
 - $Var(g(y)) = (g'(\mu))^2 (h(\mu))^2 \sigma^2$
 - goal: find g such that $g'(\mu)=rac{1}{h(\mu)}$, such that finally $Var(g(y))pprox\sigma^2$
 - example: $h(\mu) = \mu \implies g'(\mu) = rac{1}{\mu} \implies g(\mu) = \ln(\mu)$
 - **Box-Cox transformations**: find λ s.t. the transformed response $y_i^{(\lambda)}$ minimizes $SSE(\lambda)$ (done in a table, compare various λ s to their $SSE(\lambda)$ s)
 - $\lambda = 0$: log transform using limit $lm(log(...) \sim .., data=...)$
 - $\lambda = \frac{1}{2}$: square root transform $lm(sqrt(...) \sim .., data=...)$
 - $\lambda = 1$: no transform $[lm(\dots -., data=...)]$
 - $\lambda = 2$: square transform $lm((\ldots)*(\ldots)*\ldots)$, data=...)
 - in R: library(MASS); boxcox(fit)

Model Selection

- goal: given observational data, find the best model which incorporates the concepts of model fit and model simplicity
 - increasing the number of predictors increases variability in the predictions
 - $Var(\hat{y}) = \sigma^2 H \implies$ average variance $\frac{1}{n} \sum_{i=1}^n Var(\hat{y}) = \frac{\sigma^2(k+1)}{n}$ for k covariates and sample size n
 - multicollinearity: different methods of analysis may end up with final models that look very different, but describe the data equally well

- <u>model selection</u>: given observations on a repsonse y and q potential explanatory variables $v_1, ..., v_q$, select a model $y = \beta_0 + \beta_1 x_1 + ... + \beta_p x_p + \epsilon$ where...
 - $\circ \;\; x_1,...,x_p$ is a subset of the original regressors $v_1,...,v_q$
 - no important variable is left out of the model
 - no unimportant variable is included in the model
- all possible regressions: fit 2^q models if q variables are involved
 - $\circ \ R_k^2 = 1 rac{SSE_k}{SST}$ for k variables and k+1 regression coefficients
 - increase in k means decrease in SSE_k , approaching 0 when k=n-1
 - increase in R^2 means decrease in s^2
 - SST does not depend on the covariates; just on y (see definition)
 - therefore, R² approaches 1 as k increases, so we don't use R², since we'd just choose the model with the most variables
 - $\circ R^2_{adj}$: adjusted R^2
 - remedies the problem of R^2 continually increasing by dividing the degrees of freedom
 - ideal model and choice of k: highest R_{adi}^2
 - equivalent: smallest s^2
 - AIC: Akaike's Information Criterion
 - prefer models with **smaller** AIC
 - BIC: Bayesian Information Criterion
 - larger penalty for more variables
- **automatic model selection methods**: forward selection, backward elimination, stepwise regression (needed in R: library(MASS)
 - forward selection: start with the smallest model, build up to the optimal model
 - in R: stepAIC(lm(y~1, data=dataset), direction = "forward", scope =
 list(upper = lm(y~., data=dataset))[, k = log(nrow(dataset))]) (for BIC:
 [...])
 - **backward elimination**: start with the largest model and build down to the optimal model
 - in R: stepAIC(lm(y~., data=dataset), direction = "backward"[, k = log(nrow(dataset))])
 - stepwise regression: oscillate between forward selection and backward elimination
 - in R: use either previous function, but with direction = "both"

```
INIT
 M = intercept-only model
 P = all covariates
REPEAT
 IF P empty STOP
 ELSE
    calculate AIC for sizeof(P) models, each model containing one covariate
in P is added to M
   IF all AICs > AIC(M) STOP
    ELSE
     update M with covariate whose addition had minimum AIC
      remove covariate from P
backward elimination
INIT
 M = model with all covariates
 P = all covariates
REPEAT
 IF P empty STOP
  ELSE
   calculate AIC for sizeof(P) models, each model without each of the
covariates in P
   IF all AICs > AIC(M) STOP
   ELSE
      update M by deleting covariate that led to minimum AIC
      remove covariate from P
stepwise regression
INIT
 M = intercept-only model OR full model
  e = small threshold
REPEAT UNTIL STOP
  do a forward step on M
  do a backward step on M
# For both steps, the differences in AIC need to be
# greater than e for the selection to go forward, otherwise
# the changes can keep undoing each other.
```

Nonlinear Regression

- linear model (recap): $y=\mu+\epsilon$ where $\mu=eta_0+eta_1x_1+...+eta_kx_k$
 - **key**: linearity of the parameters β_i
 - \circ the regressor variables x_i can be any known nonlinear function of the regressors...
- intrinsically nonlinear model: a nonlinear model that cannot be transformed into a linear model
 - **counterexample**: $y = \alpha x_1^\beta x_2^\gamma \epsilon$ can be transformed into $\ln(y) = \ln(\alpha) + \beta \ln(x_1) + \gamma \ln(x_2) + \ln(\epsilon)$
 - require *iterative* algorithms and convergence (vs. linear models, which are *analytic*)
- linear trend model: $\mu_t = lpha + \gamma t$
 - γ : growth rate, unbounded
 - $\circ \,\, lpha$: starting value at t=0
- nonlinear regression model: $y_i = \mu_i + \epsilon_i = \mu(oldsymbol{x}_i,oldsymbol{eta}) + \epsilon_i$
 - $\circ \ \epsilon_i \sim N(0,\sigma^2)$ iid. for i=1,...,n
 - $\boldsymbol{x}_i = (x_{i1},...,x_{im})'$: vector of m covariates for the i-th case (typically m = 1, where the covariate is time)
 - β : vector of p parameters to be estimated along with σ^2 (usually a different num. of parameters than covariates)
 - $\mu(\boldsymbol{x}_i, \boldsymbol{\beta})$: nonlinear model component

$$\circ~~S(oldsymbol{\hat{eta}}) = \sum_{i=1}^n (y_i - \mu(oldsymbol{x}_i,oldsymbol{eta}))^2$$

- estimates:
 - $\hat{\boldsymbol{\beta}}$: no closed form!
 - use iterative function to minimize $S(\hat{oldsymbol{eta}})$

•
$$\hat{\sigma}^2 = s^2 = rac{S(\hat{oldsymbol{eta}})}{n-p} = rac{\sum_{i=1}^n (y_i - \mu(oldsymbol{x}_i,oldsymbol{eta}))^2}{n-p}$$

 $\circ \ Var(oldsymbol{\hat{eta}}) pprox s^2 (X'X)^{-1}$

- $s.e.(\hat{\beta}_i) = \sqrt{v_{ii}}$ (the square roots of the diagonal elements in the covariance matrix provide estimates of the standard errors)
- off-diagonal elements provide estimates of the covariances among the estimates
- $\circ ~~ 100(1-lpha)\%$ C.I. for eta_j : $\hateta_j\pm t_{n-p,1-lpha/2}s.e.(\hateta_j)$

$$\circ \ H_0:eta_j=0$$
 vs. $H_a:eta_j
eq 0:t=rac{eta_j}{s.e.(\hateta_j)}\sim t_{n-p}$

- for constants: $H_0: eta_j = c$ vs. $H_a: eta_j
 eq c$: $t = rac{\hat{eta}_j c}{s.e.(\hat{eta}_j)} \sim t_{n-p}$
- o restricted models or goodness-of-fit tests can be performed similarly as for linear models
- in R: fitnls = nls(y~(formula using a, b), start=list(a=...,b=...))

- <u>Newton-Raphson method</u>: a root-finding algorithm which produces successively better approximations to the zeroes of a real-valued function
 - $\circ~~$ goal: find $oldsymbol{eta}$ that minimizes $f(oldsymbol{eta})$, here $S(oldsymbol{eta})$ or $-\log L(oldsymbol{eta})$
 - $Df(\beta) = (\frac{\partial f}{\partial \beta_1}, ..., \frac{\partial f}{\partial \beta_p})'$: the *p*-vector containing the first derivatives of f w.r.t. β_i
 - $D^2 f(\beta)$: the $p \times p$ matrix of second derivatives with the ij-th element $\frac{\partial^2 f}{\partial \beta_i \partial \beta_f}$ (Hessian matrix)
 - $\circ~$ general: initialize $oldsymbol{eta}_{old}=$ starting value, then repeat until convergence:

$$egin{aligned} & oldsymbol{eta}_{new} pprox oldsymbol{eta}_{old} - (D^2 f(oldsymbol{eta}_{old}))^{-1} D f(oldsymbol{eta}_{old}) \end{aligned}$$

- 2. $oldsymbol{eta}_{old} = oldsymbol{eta}_{new}$
- problem: unstable due to inversion
- \circ **scoring**: initialize $oldsymbol{eta}_{old}=$ starting value, then repeat until convergence:

1.
$$\boldsymbol{\beta}_{new} \approx \boldsymbol{\beta}_{old} + (I(\boldsymbol{\beta}_{old}))^{-1} D \log L(\boldsymbol{\beta}_{old})$$

2.
$$\boldsymbol{\beta}_{old} = \boldsymbol{\beta}_{neu}$$

- information matrix: $I(\boldsymbol{\beta}) = E(-D^2 \log L(\boldsymbol{\beta}))$
- problematic: local minima that "trap" iterative algorithms, parameters of highly varying magnitudes (e.g. one parameter in range 0-1, another in the thousands), badly specified models with non-identifiable parameters (similar to multicollinearity)

Time Series Models

- first-order autoregressive model (AR1): $y_t = \mu(X_t, eta) + \epsilon_t$
 - $\circ\;$ autocorrelations of observations 1 step apart: ϕ
 - all correlations among observations one step apart ϕ are the same
 - $\phi = Corr(\epsilon_1, \epsilon_2) = ... = Corr(\epsilon_{n-1}, \epsilon_n)$
 - $|\phi| < 1$ (correlations between -1 and +1)
 - $\circ~$ autocorrelations of observations k steps apart: ϕ^k
 - $\phi^k = Corr(\epsilon_1, \epsilon_{k+1}) = \dots = Corr(\epsilon_{n-k}, \epsilon_n)$
 - properties of autocorrelations:
 - they depend only on the time lag between the observations (so the time indices don't matter; just the time distance)
 - they decrease exponentially with the time lag (because $-1 < \phi < 1$)
 - the farther apart the observations, the weaker the autocorrelation
 - if ϕ is close to 1, the decay is slow
 - $\circ~$ autocorrelation functions (lag k correlation): $ho_k=\phi^k=Corr(\epsilon_{t-k},\epsilon_t)$
 - $\rho_0 = 1$

- $\rho_k = \rho_{-k}$
- $\circ~$ correlated error at time t: $\epsilon_t=\phi\epsilon_{t-1}+a_t$ where $a_t\sim N(0,\sigma_a^2)$
 - white noise (random shocks): a_t
 - a_t is the "usual" regression model error; mean 0, all uncorrelated

•
$$Corr(a_{t-k}, a_t) = 0$$
 for all $k \neq 0$

- expanded: $\epsilon_t = a_t + \phi a_{t-1} + \phi^2 a_{t-2} + ...$
- $E(\epsilon_t) = 0$
- $Var(\epsilon_t)
 ightarrow rac{\sigma_a^2}{1-\phi^2}$
- **stationary model**: fixed level 0; realizations scatter around the fixed level and sample paths don't leave this level for long periods
- in R: library(nlme); fitgls=gls(y~x,correlation=corARMA(p=1,q=0)) (change p=2) for AR2)
- random walk model: $y_t = \mu(X_t, \beta) + \epsilon_t$
 - $\circ \phi = 1$
 - $\epsilon_t = \epsilon_{t-1} + a_t = a_t + a_{t-1} + a_{t-2} + \dots$
 - cumulative sum of all random shocks up to time t
 - o nonstationary model: no fixed level; paths can deviate for long periods from the starting point
 - $\circ~$ first-order difference: $w_t = \epsilon_t \epsilon_{t-1} = a_t$
 - well-behaved, stationary, uncorrelated
- effects of ignoring autocorrelation: what happens when we fit a standard linear model even if the errors are correlated?
 - **stationary errors**: variance of $\hat{\beta}$ will be **overestimated** compared to the true variance (**inefficiency**)
 - t ratios too small ightarrow null hypothesis **less likely** to be rejected when it **should** be
 - **non-stationary errors**: variance of $\hat{\beta}$ will be **underestimated** compared to the true variance
 - t ratios too large ightarrow null hypothesis **likely** to be rejected when it **shouldn't** be
- forecasting (prediciton): given data up to time period n, predict response at time period n + r (r step-ahead forecast)
 - $\circ \,\, r$ step-ahead forecast: $y_n(r) = \hat{y}_{n+r}$
 - n: forecast origin
 - r: forecast horizon
 - **assumption**: future values of the covariate x_t are known (e.g. own future investments)
 - 1 step forecast (AR1, one covariate): assume x_{n+1} known...

- observation: $y_{n+1}=\phi y_n+(1-\phi)eta_0+(x_{n+1}-\phi x_n)eta_1+a_{n+1}$
- prediction: $\hat{y}_{n+1} = \hat{\phi} y_n + (1-\hat{\phi}) \hat{eta}_0 + (x_{n+1}-\hat{\phi} x_n) \hat{eta}_1$
 - 95% CI: $\hat{y}_{n+1} \pm 1.96 se(\hat{y}_{n+1})$
- $\circ~~$ general step forecast (AR1, one covariate): $\hat{y}_{n+r}=\hat{\phi}\hat{y}_{n+r-1}+(1-\hat{\phi})\hat{eta}_0+(x_{n+r}-\hat{\phi}x_{n+r-1})\hat{eta}_1$ for $r\geq 2$
 - 95% CI: $\hat{y}_{n+r} \pm 1.96 se(\hat{y}_{n+r})$

Logistic Regression

- logistic regression: regression where the response variable is binary (general: categorical)
 - $\circ y_i$: outcome of case i, i=1,2,...,n
 - $y_i \sim Ber(\pi)$, independent
 - $P(y_i = 1) = \pi$ (success)

•
$$\ln\left(\frac{\pi(x_i)}{1-\pi(x_i)}\right) = x'_i\beta = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}$$

• $\pi(x_i) = \frac{e^{x'_i\beta}}{1-x_i\beta}$

•
$$1 - \pi(x_i) = rac{1}{1 + e^{x_i' eta}}$$

- β_0 : inflection point
- β_1 : steepness of sigmoid-like function
- risk of y for factor x: $\pi(x) = P(y = 1 | x) = rac{e^{x'eta}}{1 + e^{x'eta}}$
- odds of y for a fixed x: $Odds(x) = \frac{\pi(x)}{1 \pi(x)} = \frac{P(y=1|x)}{1 P(y=1|x)} = \exp(x'\beta)$
 - how much higher is the probability of the occurrence y compared to the nonoccurrence of y?
 - odds of $n:1\implies$ occurrence is n times more likely than nonoccurrence

• odds ratio:
$$OR = \frac{Odds(x=1)}{Odds(x=0)} = \frac{\frac{P(y=1|x=1)}{P(y=0|x=1)}}{\frac{P(y=1|x=0)}{P(y=0|x=0)}}$$

• $\beta = \ln\left(\frac{\pi(x+1)}{1-\pi(x+1)}\right) - \ln\left(\frac{\pi(x)}{1-\pi(x)}\right) = \ln(OR)$ vector of log odds ratios

- $\exp(\beta) = OR$
- what is the multiplicative factor by which the odds of occurrence increase / decrease for a change from x to x + 1?
 - e.g. $\beta = -0.2 o \exp(\beta) = 0.82 \implies$ a change from x to x+1 decreases the odds of occurrence by 18%
- for k units: βk with ratio measured as $\exp(\beta k)$
- $P(y_i=0)=1-\pi$ (failure)

•
$$E(y_i) = \pi$$

 $\circ\;$ one covariate model: $\exp(x'eta)=eta_0+eta_1 x$

•
$$\ln\left(rac{P(y=1|x)}{1-P(y=1|x)}
ight)=eta_0+eta_1x$$

- $Odds(x) = rac{P(y=1|x)}{1-P(y=1|x)} = \exp(eta_0 + eta_1 x)$
 - $Odds(x=0)=\exp(eta_0+eta_1\cdot 0)=\exp(eta_0)$
 - $Odds(x = 1) = \exp(\beta_0 + \beta_1 \cdot 1) = \exp(\beta_0 + \beta_1)$
- $OR = rac{Odds(x=1)}{Odds(x=0)} = \exp(eta_1)$
- $\beta_1 = \ln(OR)$
 - $H_0: eta_1 = 0$ (no assoc. between x and y)
- $\beta_0 = \ln(Odds(x=0))$
- **MLE** $\hat{\beta}$: Newton-Raphson...
- Cls and tests:
 - $100(1-\alpha)\%$ Cl for $\ln(OR)$: $\hat{\beta}_j \pm z_{1-\alpha/2}se(\hat{\beta}_j)$
 - = 100(1-lpha)% Cl for OR: $\exp(\hat{eta}_j\pm z_{1-lpha/2}se(\hat{eta}_j))$
 - Wald test: $H_0: eta_j = 0$ vs. $H_A: eta_j
 eq 0: rac{\hateta_j}{se(\hateta_j)} \sim N(0,1)$
- case: an individual observation
- constellation: grouped information at distinct levels of the explanatory variables
 - n_k ; number of cases at the k-th constellation
 - y_k : number of successes at the k-th constellation
 - prob. of success for k-th constellation: $\pi(x_k, \beta) = \frac{\exp(x_k\beta)}{1+\exp(x_k\beta)}$
- likelihood ratio tests (LRT): used to compare the maximum likelihood under the current model (the "full" model), with the maximum likelihood obtained under alternative competing models ("restricted" models)
 - $H_{restrict}$: linear predictor $x'_{res}\beta_{res}$ vs. H_{full} : linear predictor $x'\beta$
 - x_{res} subset of x
 - LRT statistic: $2 \cdot \ln \left(\frac{L(full)}{L(restrict)} \right) = 2 \cdot \ln \left(\frac{L(\hat{\beta})}{L(\hat{\beta}_{res})} \right) \sim \chi_a^2$
 - equiv.: $2 \cdot (\ln(L(full)) \ln(L(restrict)))$
 - $a = \dim(\beta) \dim(\beta_{res})$
 - reject $H_{restrict}$ if statistic greater than corresponding chi-square value
 - large value ⇒ the success probability depends on one or more of the regressors (i.e. full model better)
 - small value ⇒ none of the regressors in the model influence the success probability
- **deviance**: twice the log-likelihood ratio between the saturated model and the parameterized (full) model; m constellations

 saturated model: each constellation of the explanatory variables is allowed its own distinct success probability

•
$$\hat{\pi}_k = rac{y_k}{n_k}$$

- $D = 2 rac{\ln(L(saturated)))}{\ln(L(full))} = 2 \cdot \ln\left(rac{L(\hat{\pi}_1, \dots, \hat{\pi}_m)}{L(\hat{\beta})}
 ight) \sim \chi_a^2$
 - $a = m \dim(\beta)$
 - LRT = D(restricted) D(full)
- **p-value**: 1 pchisq(D, a)
- in R: freqs <- cbind(yes, no); fit <- glm(freqs~x[+...], family="binomial")

Poisson Regression

- <u>generalized linear model (GLM)</u>: generalizes linear regression by allowing the linear model to be related to the response variable via a link function
 - **response variables** $y_1, ..., y_n$: share the same distribution from the *exponential* family (Normal, Poisson, Binomial...)
 - $\circ~$ parameters eta and explanatory variables $x_1,...x_p$
 - **monotone link function** g: relates a transform of the mean μ_i linearly to the explanatory variables
 - $g(\mu_i) = \beta_0 + \beta_1 x_{i1} + ... + \beta_p x_{ip}$
 - standard linear regression: $g(\mu) = \mu$ (identity function)
 - logistic regression: $g(\mu) = \ln\left(rac{\mu}{1-\mu}
 ight)$ (logit)
 - Poisson regression: $g(\mu) = \ln(\mu)$
- Poisson regression model: response represents count data (e.g. number of daily equipment failures, weekly traffic fatalities...)
 - $\circ \ P(Y=y) = rac{\mu^y}{y!} e^{-\mu}, \ \ y=0,1,2,...$

$$\circ \ E(y) = Var(y) = \mu > 0$$

- $\circ \hspace{0.1 cm} g(\mu) = \ln(\mu) = eta_0 + eta_1 x_1 + ... + eta_p x_p$
 - $\mu = \exp(eta_0 + eta_1 x_1 + ... + eta_p x_p)$
- interpretation of coefficients: changing x_i by one unit to $x_i + 1$ while keeping all other regressors fixed affects the mean of the response by $100(\exp(\beta_i) 1)\%$

• example:
$$rac{\exp(eta_0+eta_1(x_1+1)+...+eta_px_p)}{\exp(eta_0+eta_1x_1+...+eta_px_p)}=\exp(eta_1)$$

- $\circ~$ 95% CI: $\hat{eta} \pm 1.96 se(\hat{eta})$
 - for the mean ratio $\exp(eta)$: $\exp(\hat{eta}\pm 1.96se(\hat{eta}))$
- everything else identical to logistic regression

- **linear mixed effects models**: some subset of regression parameters vary randomly from one individual to another
 - individuals are assumed to have their own subject-specific mean response trajectories over time
 - simple mixed effects model: $Y_{ij} = \beta + b_i + e_{ij}$ (observation = population mean + individual deviation + measurement error)
 - β : population mean (*fixed effects*, constant)
 - b_i : individual deviation from the population mean (*random effects*) (*i*-th individual)
 - $b_i \sim N(0,d)$
 - **positive**: individual responds **higher** than population average (higher on *y*-axis)
 - **negative**: individual responds **lower** than population average (lower on *y*-axis)
 - e_{ij} : within-individual deviations (measurement error) (*i*-th individual, *j*-th observation)

•
$$e_{ij} \sim N(0,\sigma^2)$$

- $E(Y_{ij}) = \beta$
- $Var(Y_{ij}) = d + \sigma^2$
- $Cov(Y_{ij},Y_{km})=0$ for i
 eq k
- $Cov(Y_{ij}, Y_{ij}) = Var(Y_{ij}) = d + \sigma^2$
- $Cov(Y_{ij}, Y_{ik}) = d$
- $Cor(Y_{ij},Y_{km})=0$ for i
 eq k
- $Cor(Y_{ij}, Y_{ij}) = 1$
- $Cor(Y_{ij}, Y_{ik}) = \frac{d}{d+\sigma^2}$
- in R: matrix format, n rows for n individuals and m columns for m time points per individual
 - has to be transformed into longitudinal format for use with Ime
- \circ general linear mixed effects model: $Y_i = X_ieta + Z_ib_i + e_i, \;\; b_i \sim N_q(0,D), \;\; e_i \sim N_{n_i}(0,R_i)$, where $R_i = \sigma^2 I_{n_i}$
 - $Y_i \in \mathbb{R}^{n_i}$: outcomes (for i-th individual, as for nearly everything here...)
 - $X_i \in \mathbb{R}^{n_i imes p}$: design matrix for *fixed effects*
 - $Z_i \in \mathbb{R}^{n_i imes q}$: design matrix for *random effects* (columns are usually subset of columns of X_i)
 - $eta \in \mathbb{R}^p$: fixed effects
 - any component of β can be allowed to vary randomly by including the corresponding column of X_i in Z_i
 - $b_i \in \mathbb{R}^q$: random effects

- independent of covariates X_i
- $e_i \in \mathbb{R}^{n_i}$: within-individual errors
- conditional mean: $E(Y_i \mid b_i) = X_i \beta + Z_i b_i$
- marginal mean: $E(Y_i) = X_i \beta$
- conditional variance: $Var(Y_i \mid b_i) = R_i$
- marginal variance: $Var(Y_i) = Z_i D Z'_i + R_i$
- $\sigma_{REML}^2 = rac{1}{n-1}\sum_{i=1}^n (x_i \overline{x})^2$ (unbiased, restricted maximum likelihood)
- $\sigma_{ML}^2 = rac{1}{n}\sum_{i=1}^n (x_i \overline{x})^2$ (biased)
- \hat{b}_i : best linear unbiased predictor (BLUP)
 - "shrinks" the *i*-th individual's predicted response profile towards the population-averaged mean response profile
 - large R_i compared to $D \implies$ more shrinkage to mean
 - small R_i compared to $D \implies$ closer to observed value
 - large $n_i \implies$ less shrinkage

Statistical Learning (Machine Learning)

- **supervised learning**: an outcome (which guides the learning process) predicted based on a set of *features*
 - unsupervised learning: no outcome; only features observed (not relevant here)
 - **outcome (outputs, responses, dependent variables)**: the thing to predict; can be *quantitative* (ordered, e.g. stock price) or *qualitative* (unordered here, categorical, factors, e.g species of Iris)
 - predicting quantitative outcomes \rightarrow *regression*
 - predicting qualitative outcomes ightarrow classification
 - features (inputs, predictors, independent variables): the data to make predcitions for the outcome
 - training set: data set containing both features and outcomes to build the model

Prediction Methods

- least squares model (linear model): high stability but low accuracy (high bias, low variance)
 - $\circ~~$ goal: predict Y by f(X)=X'eta
 - β_0 : intercept (bias)
 - $X \in \mathbb{R}^p$: random input vector (first element 1 for intercept)
 - $Y \in \mathbb{R}$: random outcome (to predict)
 - p(X, Y): joint distribution
 - f(X): function for predicting Y based on X

- $f'(X) = eta \in \mathbb{R}^p$: vector that points in the steepest uphill direction
- $(x_1,y_1),...,(x_n,y_n)$: training data
- **method**: pick eta to minimize residual sum of squares $RSS(eta) = \sum_{i=1}^n (y_i x_i'eta)^2$
 - matrix notation: $RSS(\beta) = (y X\beta)'(y X\beta)$
- \circ LSE: $\hat{eta} = (X'X)^{-1}X'y$
 - fitted value: $\hat{y}_i = x_i' \hat{eta}$
- \circ theoretical: $eta = (E(X'X))^{-1}E(X'Y)$
- \circ should only be used when Y is continuous and Normal distributed
- k-nearest neighbor model: low stability but high accuracy (low bias, high variance)
 - $\circ~$ use observations in training set closest in input space to x to form \hat{Y}
 - formally: $f(x) = rac{1}{k} \sum_{x_i \in N_k(x)} y_i$
 - $N_k(x)$: **neighborhood** of x defined by the k closest points x_i in the training sample
 - find k observations with x_i closest to new x in input space, and average their responses

Statistical Decision Theory

- loss function L(Y, f(X)): penalizes errors in prediction
 - \circ expected prediction error: $EPE(f) = E_{x,y}(L(Y,f(X)))$
- expected (squared) prediction error: criterion for choosing f based on the squared error loss function (L2)
 - \circ L2 Loss: $L_2 = L(Y, f(X)) = (Y f(X))^2$ (most popular)
 - $\circ \ EPE(f) = E_{x,y}(Y f(X))^2 = \iint (y f(x))^2 p(x,y) dx dy = \int (\int (Y f(x))^2 p(y|x) dy) p(x) dx = E_x(E_{y|x}((Y f(X))^2|X))$
 - $\circ~$ optimal Bayes classifier: minimize $E_{y|x}((Y-f(X))^2\mid X)$ for all X
 - $f_{bayes}(X) = E_{y|x}(Y|X)$
- nearest neighbor: $f(x) = Ave(y_i \mid x_i \in N_k(x))$
 - $\circ ext{ as } n,k o \infty, rac{k}{n} o 0$: $f(x) o E(Y \mid X=x)$
- L1 Loss: E|Y f(X)| (abs. value)
 - $\circ \ f(x) = \text{median}(Y \mid X = x)$

Categorical Data

- estimate \hat{G} : contains values in the set of possible classes ${\cal G}$ where $|{\cal G}|=K$
- loss function: $L \in \mathbb{R}^{K imes K}$
 - zero on he diagonal
 - nonnegative elsewhere

- = L(k,l): price paid for classifying an observation belonging to class \mathcal{G}_k as \mathcal{G}_l
- zero-one loss function: all misclassifications are charged one unit

•
$$L(k,l) = \begin{cases} 0 & k = l \\ 1 & k \neq l \end{cases}$$

 $\circ \ EPE = E(L(G, \hat{G}(X))) = E_x(E_{g|x}(L(G, \hat{G}(X)) \mid X))$

• $E_{g|x}(L(G, \hat{G}(X)) \mid X) = \sum_{k=1}^{K} L(\mathcal{G}_k, f(X))p(\mathcal{G}_k \mid X)$ • $\sum_{k=1}^{K} p(\mathcal{G}_k \mid X) = 1$

•
$$f(X) = rgmin_{g \in G} \sum_{k=1}^{K} L(\mathcal{G}_k, g) p(\mathcal{G}_k \mid X)$$

- zero-one loss:
$$f(X) = rg \max_{g \in G} p(g \mid X)$$

•
$$f(X) = f_{bayes}(X)$$

•
$$EPE(f_{bayes}) = E_{x,y}(L(Y, f_{bayes}(X)))$$

Summary by Flavius Schmidt, ge83pux, 2025. https://home.cit.tum.de/~scfl/ Images from <u>Wikimedia</u>.