PERSONAL - Markov Chains

- Introduction
- Existence, Markov Property
- Finite Dimensional Distributions
- · Communication and Period
- Stationary Distributions
- Strong Markov Property
- Recurrence & Transience
- Convergence

Introduction

- Markov chain: a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state
 attained in the previous event
 - o discrete-time Markov chain: the chain moves state at discrete time steps (used in this course)
 - \circ defining property: a stochastic process $(X_t)_{t\in\mathbb{N}_0}$ on a countable (finite or countably infinite) state space E is called a Markov chain if for every $n\in\mathbb{N}$ and for every $i,j,i_0,...,i_{n-1}\in E$ such that $P(X_0=i_0,...,X_n=i)>0$, it holds that $P(X_{n+1}=j\mid X_0=i_0,...,X_n=i)=P(X_{n+1}=j\mid X_n=i)$
 - ullet equivalent (homogeneous): $P(X_0=i_0,...,X_n=i_n)=P(X_0=i_0,...,X_{n-1}=i_{n-1})\Pi(i_{n-1},i_n)$
 - ullet equivalent (hom., expanded): $P(X_0=i_0,...,X_n=i_n)=\mu(i_0)\Pi(i_0,i_1)...\Pi(i_{n-1},i_n)$
 - $lacksquare P(X_n=i_n)=\sum_{i_0,...,i_{n-1}\in E^n}P(X_n=i_n,...,X_0=i_0)$
 - \circ homogeneity: the transition probabilities are independent of the time t
 - formally: the Markov chain $(X_t)_{t\in\mathbb{N}_0}$ is homogeneous if for every $i,j\in E$ and every $n,m\in\mathbb{N}$, if $P(X_{n-1}=i)>0$ and $P(X_{m-1}=i)>0$, then $P(X_n=j\mid X_{m-1}=i)=P(X_m=j\mid X_{m-1}=i)$
- stochastic process: a sequence $(X_t)_{t \in \mathbb{N}_0}$ of random variables (t: time), all defined on the same probability space (Ω, \mathcal{F}, P) , all taking values in the same (finite or countably infinite) space E
 - \circ in other words: a sequence $\{X(t): t \in T\}$, with t meaning "(discrete) time" here
 - \circ **notation**: $X_t=i$ means that at time t, the process is in the state i
- conditional probability: $P(A|B) = \frac{P(A,B)}{P(B)}$
- independence: two events A, B independent (of each other) if and only if P(A, B) = P(A)P(B)
 - \circ also: P(A|B) = P(A) and P(B|A) = P(B) (observed by using above conditional probability definition)
- stochastic matrix: matrix where the sum of each row is 1
 - \circ formally: $\Pi \in [0,1]^{E imes E}$ stochastic, if $\sum_{i \in E} \Pi(i,j) = 1$ for all $i \in E$
 - o doubly stochastic matrix: columns also sum to 1
 - lacksquare formally: $\Pi\in[0,1]^{E imes E}$ double stochastic, if Π stochastic and $\sum_{i\in E}\Pi(i,j)=1$ for all $j\in E$
 - note1: if a stochastic matrix is symmetric, it is also doubly stochastic
 - note²: for a double stochastic matrix, the stationary distribution is the uniform distribution
- transition matrix: a square matrix used to describe the transitions of a homogeneous Markov chain
 - ullet formally: $\Pi \in [0,1]^{E imes E}$ stochastic and $\Pi(i,j) = P(X_{n+1} = j \mid X_n = i)$ for all $i,j \in E$ and $n \in \mathbb{N}_0$ with $P(X_n = i) > 0$

Existence, Markov Property

- ullet initial distribution: the distribution of X_0
 - \circ formally: $\mu:E o\mathbb{R}$, $\mu(i):=P(X_0=i)$
 - $\forall i: \mu(i) > 0$
 - $\blacksquare \sum_{i \in E} \mu(i) = 1$
 - existence theorem: let μ be a distribution on E, let $\Pi \in [0,1]^{E \times E}$ be a stochastic matrix; then there exists a homogeneous Markov chain $(X_t)_{t \in \mathbb{N}_0}$ with initial distribution μ and transition matrix Π
 - **lemma**: let $(X_t)_{t\in\mathbb{N}_0}$ be a *stochastic process* on E, let $\Pi\in[0,1]^{E\times E}$ be a *stochastic matrix*; then $(X_t)_{t\in\mathbb{N}_0}$ is a homogeneous Markov chain with transition matrix Π if and only if for all $n\in\mathbb{N}$ and for all $i,j,i_0,...,i_{n-1}\in E$ such that $P(X_0=i_0,...,X_n=i)>0$, it holds that

$$P(X_{n+1} = j \mid X_0 = i_0, ..., X_n = i) = \Pi(i, j)$$

- random-mapping representation: every homogeneous Markov chain can be realized as $X_{n+1}=f(X_n,Z_{n+1})$
 - formally: let $Z_n, n \in N$ iid taking values in F and let E be a countable state space; let $f: E \times F \to E$ be a measurable function and let $X_0: \Omega \to E$ be a random variable independent of Z_n ; set $X_{n+1} = f(X_n, Z_{n+1}) \ \forall n \in \mathbb{N}_0$, then $(X_n)_{n \in \mathbb{N}_0}$ is a homogeneous Markov chain on E with transition matrix $\Pi(i,j) = P(f(i,Z_1) = j) \ \forall i,j \in E$
 - ullet expanded: $X_1=f(X_0,Z_1); \ \ X_2=f(X_1,Z_2)=f(f(X_0,Z_1),Z_2)$ and so on...
 - $oldsymbol{\circ}$ on [0,1]: let E be a countable state space and let $\Pi\in[0,1]^{E imes E}$ be a stochastic matrix; let $Z_n,n\in N$ iid uniform distributed on [0,1]; let $f:E imes [0,1]\to E$ be a measurable function; set $X_0=i_0,\ X_{n+1}=f(X_n,Z_{n+1})\ \forall n\in\mathbb{N}_0$, then $(X_n)_{n\in\mathbb{N}_0}$ is a homogeneous Markov chain on E with transition matrix Π and $P(X_0=i_0)=1$
 - corollary: if E is countable and $\Pi \in [0,1]^{E \times E}$ is a stochastic matrix, there exists a homogeneous Markov chain with transition matrix Π
- Markov property: no matter what happened before time m, once we know $X_m = k$, the process *restarts* at k with the same law as the *original chain* started from k, dropping all history before m
 - o in other words: the future only depends on the present
 - formally: let $(X_n)_{n\in\mathbb{N}_0}$ be a Markov chain with transition matrix Π ; fix $m\in\mathbb{N}$ and $k\in E$ such that $P(X_m=k)>0$; then, under $\tilde{P}:=P(\cdot\mid X_m=k)$, the sequence $(\tilde{X}_n:=X_{n+m})_{n\in\mathbb{N}_0}$ is a Markov chain with transition matrix Π and starting distribution δ_k (Dirac measure), independent of $X_0,...,X_m$ (?)

$$\bullet \ \delta_k(i) = \begin{cases} 1 & \text{if } k = i \\ 0 & \text{if } k \neq i \end{cases}$$

lacksquare for any past event A before or at X_m and any future event B after X_m , $P(A \cap B \mid X_m = k) = P(A \mid X_m = k)P(B \mid X_m = k)$

Finite Dimensional Distributions

- what defines a Markov chain?: let E be a countable state space, let $\Pi \in [0,1]^{E \times E}$ be a stochastic matrix, let μ be a distribution on E, let $(X_n)_{n \in \mathbb{N}_0}$ be a stochastic process on E; then the following are equivalent (iff-s):
 - 1. $(X_n)_{n\in\mathbb{N}_0}$ is a Markov chain with transition matrix Π and initial distribution μ
 - 2. $\forall n \in \mathbb{N}_0, i_0, ..., i_n \in E: P(X_0 = i_0, ..., X_i = i_n) = \mu(i_0)\Pi(i_0, i_1)...\Pi(i_{n-1}, i_n)$
 - 3. $\forall n \in \mathbb{N}_0, A_0, ..., A_n \subseteq E: P(X_0 \in A_0, ..., X_n \in A_n) = \sum_{i_0 \in A_0} \mu(i_0) \sum_{i_1 \in A_1} \Pi(i_0, i_1) ... \sum_{i_n \in A_n} \Pi(i_{n-1}, i_n)$
 - $\circ~$ uniqueness in distribution: μ and Π uniquely define the distribution of a Markov chain
 - formally: let μ be a distribution on E and $\Pi \in [0,1]^{E \times E}$ be a stochastic matrix on E; then two Markov chains $(X_n)_{n \in \mathbb{N}_0}$ and $(Y_n)_{n \in \mathbb{N}_0}$, both with μ and Π , have the same distribution
- Markov chain distribution at time n: let $(X_n)_{n\in\mathbb{N}_0}$ be a Markov chain with initial distribution μ and transition matrix Π ; then for all $n\in\mathbb{N}_0$, the distribution of X_n is $\mu^n=\mu\Pi^n$
 - \circ equivalent: $\mu^n(i) = P(X_n = i) = (\mu \Pi^n)(i) = \sum_{j \in E} \mu(j) \Pi^n(j,i)$
 - μ^n row vectors (probability distribution of the chain at time n), Π^n n-th power of Π (n-step transition probability matrix)
 - $\mu^0 = \mu^0$
 - $\Pi^0 = I$
 - \circ **corollary**: let $(X_n)_{n\in\mathbb{N}_0}$ be a Markov chain with transition matrix Π ; then for all $m,n\in\mathbb{N}_0,i,j\in E$ such that $P(X_m=i)>0$, it holds that $P(X_{m+n}=j\mid X_m=i)=\Pi^n(i,j)$ (see Markov property)
 - $\circ \ P_i(X_n=j) = \Pi^n(i,j) = \sum_{i_1,...,i_{n-1} \in E^{n-1}} \Pi(i,i_1)...\Pi(i_{n-1},j)$

Communication and Period

- reachability: a state j is reachable from i if there exists $n \in \mathbb{N}_0$ such that $\Pi^n(i,j) > 0$
 - \circ write: i o j
 - \circ formally: $i \to j \iff \exists n \in \mathbb{N}_0 : \Pi^n(i,j) > 0 \iff \sum_{n=0}^{\infty} \Pi^n(i,j) > 0$
 - $ext{tip}$: fix $i_1,...,i_{n-1}\in E$, then $\Pi^n(i,j)\geq \Pi(i,i_1)...\Pi(i_{n-1},j)$ always; if the RHS is >0, then you've proven $\Pi^n(i,j)>0$
 - $\circ \ \Pi^0(i,i)=1 \implies i \rightarrow i$ always holds
- ullet communication: two states i and j communicate if i o j and j o i
 - $\circ \ \ \text{write} : i \leftrightarrow j$
 - \circ formally: $i\leftrightarrow j\iff \exists n,m\in\mathbb{N}_0:\Pi^n(i,j)>0,\Pi^m(j,i)>0$
 - $\circ \leftrightarrow$ is an equivalence relation; the equivalence classes are called *communication classes* E/\leftrightarrow
- irreducibility: a Markov chain is called irreducible if it only has one communication class, otherwise it is reducible
 - o in other words: a Markov chain is irreducible if every state communicates with every other state

- \circ formally: $\forall i,j \in E: i \rightarrow j$
 - $\quad \blacksquare \ \, \forall i,j \in E \ \exists n \in \mathbb{N}, i = i_0, i_1, ..., i_{n-1}, i_n = j : \Pi(i_0,i_1)...\Pi(i_{n-1},i_n) > 0$
- \circ equivalent: $orall i,j\in E, i
 eq j \; \exists n=n(i,j)\in \mathbb{N}: \Pi^n(i,j)>0$
- closed set: a (non-empty?) set $C \subseteq E$ is closed if you cannot leave the set
 - \circ formally: $C \subseteq E$ closed $\iff orall i \in C: \sum_{j \in C} \Pi(i,j) = 1$
 - \circ equivalent: $orall i \in C, j
 otin C: \Pi(i,j) = 0$
 - o notes:
 - ullet E,\emptyset are closed
 - ullet if A,B are closed, then $A\cup B,A\cap B$ are also closed
 - every communication class is closed
 - $\,\blacksquare\,$ if the Markov chain is irreducible, then the only closed sets are E and \emptyset
 - the Markov chain is irreducible iff $\sum_{n=0}^{\infty} \Pi^n$ has no zero entries
- periodicity: a state i has period k if k is the *greatest common divisor* of the number of transitions by which i can be reached, starting from i
 - \circ formally: let $i\in E$, define $T(i):=\{n\geq 1:\Pi^n(i,i)>0\}$, the period of i is defined as $d_i:=\gcd(T(i))$
 - ullet $d_i=1$: the state i is aperiodic
 - - formally: $\forall i \in E : \gcd(T(i)) = 1$
 - $d_i > 1$: the state i is periodic
 - lacktriangledown at least one state periodic \Longrightarrow the Markov chain is periodic
 - formally: $\exists i \in E : \gcd(T(i)) > 1$
 - \circ conventionally: $gcd(\emptyset) = \infty$
 - \circ periodicity under Π^n : $\frac{d(i)}{\gcd(d(i),n)}$
 - lacksquare n multiple of $d(i) \implies$ period collapses to 1 (i becomes aperiodic under Π^n)
 - \circ **lemma**: if $i \leftrightarrow j$, then $d_i = d_j$
 - ullet if the Markov chain is irreducible, all states have the same period o "period of the Markov chain"
 - formally: $\forall i,j \in E: i
 ightarrow j \implies orall i,j \in E: d_i = d_j$
 - theorem: let $(X_n)_{n\in\mathbb{N}_0}$ be an *irreducible* Markov chain with period d; then for all $i,j\in E$, there exist $m=m(i,j)\in\mathbb{N}_0$ and $n_0=n_0(i,j)\in\mathbb{N}_0$ such that for all $n\geq n_0:\Pi^{m+nd}(i,j)>0$
 - choose m=0 if i=j
 - special case (corollary): let $(X_n)_{n\in\mathbb{N}_0}$ be an *irreducible*, aperiodic Markov chain on a *finite* state space E; then there exists $n_0\in\mathbb{N}_0$ such that for all $i,j\in E$ and all $n\geq n_0$: $\Pi^n(i,j)>0$ (i.e. you can get from i to j in every sufficiently large number of steps)
 - lacksquare lemma: let $A\subseteq\mathbb{N}$ such that $\gcd(A)=1$ and if $a,b\in A$, then $a+b\in A$; then there exists $n_0\in\mathbb{N}$ such that $n\in A$ for all $n\geq n_0$
- partitioning: let $(X_n)_{n\in\mathbb{N}_0}$ be an *irreducible* Markov chain with period d; then there exists exactly one partitioning $C_0,...,C_{d-1}$ of E such that for all $k=\{0,...,d-1\}$ and $i\in C_k$: $\sum_{j\in C_{k+1}}\Pi(i,j)=1$, where $C_d=C_0$
 - \circ in other words: choose a state i_0 , group all states by "distance mod d" from i_0
 - $\circ \text{ it's possible to rearrange the states to get a block matrix: } \Pi = \begin{bmatrix} C_0 & C_1 & C_2 & \dots & C_{d-2} & C_{d-1} \\ \hline C_0 & 0 & \Pi_0 & 0 & \dots & 0 & 0 \\ \hline C_1 & 0 & 0 & \Pi_1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \hline C_{d-2} & 0 & 0 & 0 & \dots & 0 & \Pi_{d-2} \\ \hline C_{d-1} & \Pi_{d-1} & 0 & 0 & \dots & 0 & 0 \end{bmatrix}$
 - \blacksquare Π^n is also a block matrix, Π^{nd} is a block diagonal matrix (i.e. diagonals are square matrices)

Stationary Distributions

- stationary distribution: a probability distribution that, once reached, remains unchanged over time as the chain evolves
 - \circ formally: a probability measure lpha is called stationary for a Markov chain with transition matrix Π if for all $i \in E$: $lpha(i) = \sum_{j \in E} lpha(j) \Pi(j,i)$
 - $\circ \ \ \text{matrix form: } \alpha\Pi=\alpha$
 - \circ theorem: if the initial distribution μ of a Markov chain $(X_n)_{n\in\mathbb{N}_0}$ is stationary. then for all $n\in\mathbb{N}_0$ and $A\subseteq E$: $P_\mu(X_n\in A)=\mu(A)$
 - ullet in other words: $\mu\Pi^n=\mu^n=\mu$

- ullet then, $P_lpha(X_n=i)=lpha(i)$ for all $N\in\mathbb{N}_0, i\in E$
- $\circ~$ finding stationary distributions: solve $lpha\Pi=lpha,\sum_{i\in E}lpha(i)=1$ (0/1/ ∞ solutions)
 - if a Markov chain has 2 stationary distributions, then it has infinitely many
 - formally: if α, β are stationary, then so is every $\mu \in \{\lambda \alpha + (1 \lambda)\beta : \lambda \in (0, 1)\}$
 - if $|E| < \infty$ (or countably infinite, positive recurrent):

 - two or more closed communicating classes infinitely many stationary distributions
- reverse transitions (time-reversed chain): let $(X_n)_{n\in\mathbb{N}_0}$ be a Markov chain with transition matrix Π and stationary distribution α such that $\alpha(i)>0$ for all $i\in E$; define $\Pi'(i,j):=\frac{\alpha(j)\Pi(j,i)}{\alpha(i)}$, then for all $i,j\in E,n\in\mathbb{N}_0$: $\Pi'(i,j)=P_\alpha(X_n=j\mid X_{n+1}=i)$ are the backwards (reverse) transition probabilities
- reversibility: let $(X_n)_{n\in\mathbb{N}_0}$ be a Markov chain with transition matrix Π ; a distribution α on E is called *reversible* if $\alpha(i)\Pi(i,j)=\alpha(j)\Pi(j,i)$ for all $i,j\in E$
 - o the Markov chain is called reversible if it has a reversible distribution
 - o theorem: every reversible distribution is stationary
 - note: if $(X_n)_{n\in\mathbb{N}_0}$ reversible and $\alpha(i)>0$ for all i, then $P_{\alpha}(X_n=j\mid X_{n+1}=i)=\Pi(i,j)=P_{\alpha}(X_{n+1}=j\mid X_n=i)$ (so if we start from α , the forwards and backwards transition probabilities are the same)
 - Kolmogorov's criterion: an irreducible, positive recurrent, aperiodic Markov chain with transition matrix Π is reversible iff $\pi_{i_1i_2}\pi_{i_2i_3}...\pi_{i_ni_1}=\pi_{i_1i_n}\pi_{i_ni_{n-1}}...\pi_{i_2i_1}$ for all $i_1,...,i_n\in E$

Strong Markov Property

- σ -algebra: given a set X, a collection $\mathcal A$ of subsets $A\subseteq P(X)$ is called a σ -algebra if:
 - 1. **contains the universe**: $X \in \mathcal{A}$ (and, by 2., the empty set $\emptyset \in \mathcal{A}$)
 - 2. closed under complementation: if $A \in \mathcal{A}$, then $X \backslash A = A^c \in \mathcal{A}$
 - 3. closed under countable unions: if $A_n\in\mathcal{A}$ for all $n\in\mathbb{N}$, then $\bigcup_{n=1}^\infty A_n\in\mathcal{A}$
- filtration: a growing sequence of information where past information does not get lost over time (accumulates)
 - \circ formally: let (Ω, \mathcal{F}, P) be a probability space; a sequence $\mathcal{F}_n \subseteq \mathcal{F}$ for $n \in \mathbb{N}_0$ is called a *filtration* if $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$ for all $n \in \mathbb{N}_0$
 - **natural filtration**: *all the information* generated by the chain up to time n (i.e. the exact states of the chain, whether certain states are in subsets of the state space, complements, functions of the past etc., but not model parameters themselves)
 - formally: let $(X_n)_{n\in\mathbb{N}_0}$ be a Markov chain on E; define $\mathcal{F}_n:=\sigma(X_0,...,X_n)$ as the smallest σ -algebra containing all events of type $X_t^{-1}(A)$ for $A\subseteq E$ and $t\in\{0,...,n\}$; then $(\mathcal{F})_{n\in\mathbb{N}_0}$ is the natural filtration of $(X_n)_{n\in\mathbb{N}_0}$
- ullet stopping time: the event of stopping at time n only depends on what happened up to that time
 - formally: a random variable $\tau:\Omega\to\mathbb{N}_0\cup\{\infty\}$ is called a *stopping time* with respect to the natural filtration $(\mathcal{F})_{n\in\mathbb{N}_0}$ if for all $n\in\mathbb{N}_0$: $\{\tau=n\}\in\mathcal{F}_n$ (i.e. can you rewrite it in a way that depends on X_i only up to n?)
 - $\text{ stopped Markov chain: let } (X_n)_{n \in \mathbb{N}_0} \text{ be a Markov chain, let } \tau \text{ be a stopping time w.r.t. the natural filtration } (\mathcal{F})_{n \in \mathbb{N}_0}; \text{ define } a \wedge b = \min(a,b) \\ \text{ for } a,b \in \mathbb{R}; \text{ the stopped Markov chain is } (X_{n \wedge \tau})_{n \in \mathbb{N}_0} \text{ with } X_{n \wedge \tau} = \begin{cases} X_n & \text{if } n \leq \tau \\ X_\tau & \text{if } n \geq \tau \end{cases}$
- strong Markov property: generalization of the Markov property to random stopping times; the Markov property still holds even if you restart the
 process at a random stopping time τ
 - formally: let $(X_n)_{n\in\mathbb{N}_0}$ be a Markov chain with transition matrix Π , let au be a stopping time w.r.t. the natural filtration $(\mathcal{F})_{n\in\mathbb{N}_0}$; fix $k\in E$ such that $P(au<\infty,X_{ au}=k)>0$; then, under $\tilde{P}:=P(\cdot\mid X_{ au}=k)$, the sequence $(\tilde{X}_n:=X_{n+ au})_{n\in\mathbb{N}_0}$ is a Markov chain with transition matrix Π and starting distribution δ_k (Dirac measure), independent of $(X_{n\wedge au})_{n\in\mathbb{N}_0}$
 - ullet if $au=\infty$, choose $(ilde{X}_n)$ arbitrarily

Recurrence & Transience

- recurrence and transience: a state $i \in E$ is called...
 - ...recurrent, if $P_i(T_i < \infty) \stackrel{!}{=} 1$
 - in other words: starting from i and from wherever you can go, there is always a way (path) of returning to i (finite)
 - positive recurrent: recurrent and $E_i[T_i] < \infty$
 - **null recurrent**: recurrent and $E_i[T_i] = \infty$
 - lacksquare theorem: a state $i\in E$ is recurrent if and only if $\sum_{n=0}^{\infty}\Pi^n(i,i)=\infty$
 - $\circ \,\,$...transient, if $P_i(T_i < \infty) < 1$

- in other words: starting from i, there is at least one path such that, if you take it, you will never be able to return to i (finite)
- lacksquare i transient, E finite $\implies lpha(i) = 0$
- o reminders:
 - $P_i(\cdot) = P(\cdot \mid X_0 = i)$
 - $\bullet \ E_i[\cdot] = E[\cdot \mid X_0 = i]$
 - $T_i := \inf\{n \geq 1 : X_n = i\}$ (first return time)
 - $P_i(T_i < \infty) = P(\text{ever return to } i \mid X_0 = i)$
 - $P_i(T_i < \infty) = \sum_{n=1}^{\infty} P_i(T_i = n)$

$$P_i(T_i=n) = P_i(X_1 \neq i,...,X_{n-1} \neq i,X_n=i) = \sum_{i_1,...,i_{n-1} \neq i} P_i(X_1=i_1) P_i(X_2=i_2 \mid X_1=i_1)...P_i(X_n=i \mid X_{n-1}=i_{n-1})$$

- $E_i[T_i] =$ expected number of steps to go back to i from i
 - $E_i[T_i] = \sum_{n=0}^{\infty} P_i(T_i \ge n)$
 - $lacksquare P_i(T_i \geq n) = \sum_{k=n}^{\infty} P_i(T_i = k)$
- \circ if a Markov chain returns to state i with probability 1 (recurrent state), it visits i infinitely many times
 - $lacksquare formally: E_i[N_i] = \infty \iff P_i(T_i < \infty) = 1 \iff P_i(N_i = \infty) = 1$
 - $lacksquare N_i = \sum_{n=1}^\infty 1_{\{X_n=i\}}$ (number of visits to i starting at time 1)
- \circ if a Markov chain returns to state i with probability < 1 (transient state), it visits i finitely many times
 - $lacksquare formally: E_i[N_i] < \infty \iff P_i(T_i < \infty) < 1 \iff P_i(N_i < \infty) = 1$
- \circ communication class theorem: if $i\leftrightarrow j$, then either both are *recurrent* or both are *transient*
 - appendix: an irreducible Markov chain is called recurrent if all states are recurrent and transient if all states are transient
- (*) different notation:
 - $f_{ij} := P_i(T_i < \infty)$
 - $\circ f_{ii} := P_i(T_i < \infty) = \sum_{n=1}^{\infty} f_{ii}$
 - $f_{ii}^{(n)} = P_i(T_i = n)$
- hitting time: the first time the chain enters a set $A\subseteq E$
 - $\circ \ \ \text{formally} \colon H^A := \inf\{n \geq 0 : X_n \in A\}$
 - hitting probability vector: $h^A = (h_i^A)_{i \in E}$
 - ullet for each starting state i: $h_i^A=P_i(H_A<\infty)=P(ext{chain ever visits }A\mid X_0=i)$
 - $\blacksquare \begin{cases} h_i^A = 1 & \text{if } i \in A \\ h_i^A = \sum_{j \in E} \Pi(i,j) h_j^A & \text{if } i \notin A \end{cases} \text{(smallest non-negative solution!)}$
 - $lacksquare h_i^A=0$ if A is unreachable from i (absorbing state, state outside of closed set)
 - \circ mean hitting time vector: $k^A = (k_i^A)_{i \in E}$
 - for each starting state i: $k_i^A = E_i[H_A] = ext{expected number of steps to hit } A ext{ from } i$
 - - $k_i^A = \infty$ if A is unreachable from i (i.e. $P_i(H^A < \infty) = 0$)
- invariant distribution: a function $lpha: E o \mathbb{R}$ is called an invariant distribution for a Markov chain $(X_n)_{n\in\mathbb{N}_0}$ with transition matrix Π if:
 - 1. $\forall i \in E : \alpha(i) \in [0, \infty)$
 - 2. $\exists i \in E: lpha(i) > 0$ (i.e. lpha is not the null function)
 - 3. $lpha(i) = \sum_{j \in E} lpha(j) \Pi(j,i)$
 - matrix form: $\alpha\Pi=\alpha\;(=\alpha\Pi^n)$
 - \circ if, additionally, $\sum_{i \in E} lpha(i) = 1$, then this is the *stationary (invariant) distribution*
 - \circ Markov chain recurrent \implies it has an invariant measure
 - ∘ Markov chain recurrent + irreducible ⇒ it has a unique invariant measure (up to multiplication by a constant)
 - existence theorem + construction: let $(X_n)_{n \in \mathbb{N}_0}$ be an *irreducible, recurrent* Markov chain with transition matrix Π and state space E; then, $(X_n)_{n \in \mathbb{N}_0}$ has an *invariant measure* which can be *constructed* as follows:
 - 1. pick an element $0 \in E$ (any element, call it "0")
 - 2. let $T_0 := \inf\{n \ge 1 : X_n = 0\}$ (first return time to 0)
 - 3. write $\alpha(i) = E_0[\sum_{n=1}^{\infty} 1_{\{X_n=i\}} 1_{\{X_n=i\}}] = E_0[\sum_{n=1}^{T_0} 1_{\{X_n=i\}}]$ (expected number of visits to i between two visits to 0)

- $lacksquare lpha(i) = \sum_{n=1}^{\infty} P_0(X_n = i, n \leq T_0)$
- then, α is invariant
 - $\alpha(0) = 1$
 - $lacksquare \sum_{i \in E} lpha(i) = E_0[T_0]$
- o any invariant measure of an irreducible Markov chain is (strictly) positive everywhere
 - $lacksymbol{f iny formally:} (X_n)_{n\in\mathbb{N}_0} ext{ irreducible } \Longrightarrow \ orall i\in E: lpha(i)>0$
- uniqueness up to a constant: let $(X_n)_{n\in\mathbb{N}_0}$ be an *irreducible, recurrent* Markov chain with transition matrix Π , let α,β be invariant measures for $(X_n)_{n\in\mathbb{N}_0}$; then $\exists C>0: \alpha=C\beta$ (unique invariant measure up to multiplication by a constant)
- \circ theorem: let $(X_n)_{n\in\mathbb{N}_0}$ be an *irreducible*, *recurrent* Markov chain; then for all $i,j\in E$: $P_i(T_j<\infty)=1$
- \circ theorem: $\sum_{i\in E} lpha(i) < \infty \iff (X_n)_{n\in\mathbb{N}_0}$ (irreducible and) positive recurrent
 - corollary: an irreducible Markov chain is positive recurrent if and only if it has a stationary distribution
 - ullet then, this stationary distribution is *unique* with lpha(i)>0 for all $i\in E$
- \circ theorem: let $(X_n)_{n\in\mathbb{N}_0}$ be an *irreducible, positive recurrent* Markov chain; then $lpha(i)=rac{1}{E_i[T_i]}$ for all $i\in E$
- o theorem: every irreducible Markov chain with a finite state space is positive recurrent
 - ullet formally: $(X_n)_{n\in\mathbb{N}_0}$ irreducible, $|E|<\infty \implies (X_n)_{n\in\mathbb{N}_0}$ is positive recurrent
- reversed transition matrix: let $(X_n)_{n\in\mathbb{N}_0}$ be a Markov chain with transition matrix Π , let α be an invariant measure for $(X_n)_{n\in\mathbb{N}_0}$; define the α -reversed transition matrix as $\Pi^{\alpha}(i,j) = \frac{\alpha(j)}{\alpha(i)}\Pi(j,i)$
 - $\circ \ \Pi^{\alpha}$ is a stochastic matrix
 - \circ if $(X_n)_{n\in\mathbb{N}_0}$ is recurrent, then so is a Markov chain with transition matrix Π^lpha
 - \circ let $(X_n)_{n=0}^N$ be a Markov chain with initial distribution δ_0 , conditioned on $X_N=0$; then, $(Y_n:=X_{N-n})_{n=0}^N$ is a Markov chain with transition matrix Π^{α} , initial distribution δ_0 , conditioned on $Y_N=0$
 - in other words: $(Y_n)_{n=0}^N$ is the time reversal of the Markov chain $(X_n)_{n=0}^N$, where we start at 0 and return to 0 at time N
 - **corollary**: assume (X_n) is recurrent, let (Z_n) have transition matrix Π^{α} , then (Z_n) is also recurrent, and if you run both with initial distribution δ_0 from time 0 to time T_0 , then $(Z_n)_{n=0}^{T_0}$ has the same distribution as $(X_{T_0-n})_{n=0}^{T_0}$
 - \circ let $(X_n)_{n\in\mathbb{N}_0}$ be a Markov chain with initial distribution δ_0 and transition matrix Π ; let $(Y_n)_{n\in\mathbb{N}_0}$ be a Markov chain with initial distribution δ_0 and transition matrix Π^{α} ; if $P(T_0<\infty)=1$, then $(Y_0,...,Y_{T_0})$ has the same distribution as $(X_{T_0},...,X_0)$

Convergence

- total variation metric: notion of convergence; the "distance" between α and β in total variation
 - \circ formally: let lpha,eta be distributions on E (countable), then the total variation distance is defined as $d_{TV}=rac{1}{2}\sum_{i\in E}|lpha(i)-eta(i)|$ (i.e. half of the L1 norm)
- convergence theorem: let $(X_n)_{n\in\mathbb{N}_0}$ be an irreducible, aperiodic, positive recurrent Markov chain with invariant distribution α ; then $\lim_{n\to\infty}P_i(X_n=j)=\lim_{n\to\infty}\Pi^n(i,j)=\alpha(j)$
 - o recipe: if the Markov chain is not irreducible, split Markov chain into equivalence classes and look at "restricted" transition matrices