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Introduction

¢ Markov chain: a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state
attained in the previous event

o discrete-time Markov chain: the chain moves state at discrete time steps (used in this course)

o defining property: a stochastic process (Xt)teNg on a countable (finite or countably infinite) state space E is called a Markov chain if for every
n € N and for every 4, j, %9, ..., i,_1 € E such that P(Xy = g, ..., X,, = ¢) > 0, it holds that
P(Xn+1 =J | Xo =10;ey X = 2) = P(Xn+1 =7 | X, = )

= equivalent (homogeneous): P(Xy = ig, ..., X;, = i) = P(Xo = %0y ey X1 = 1) (i1, %,)
= equivalent (hom., expanded): P(X = i, ..., X;, = i) = p(20) (%0, %1).. . TL(2p—1, %)
= P(X, =1, = Zio,..A,infleE" P(X,, =1p,....,. Xog = 1)

o homogeneity: the transition probabilities are independent of the time t

= formally: the Markov chain (X¢)sen, is homogeneous if for every i, j € E and every n,m € N, if P(X,—1 = 4) > 0 and P(Xn—1 =
i) > 0,then P(Xp = j | Xp1 = 1) = P(Xon = 5 | X1 = i)

o stochastic process: a sequence (Xt)teNU of random variables (Z: time), all defined on the same probability space (Q, F, P), all taking values in the

same (finite or countably infinite) space E/

o in other words: a sequence { X (t) : t € T'}, with ¢ meaning "(discrete) time" here

o notation: X; = 7 means that at time %, the process is in the state 7
« conditional probability: P(A|B) = %%2
« independence: two events A, B independent (of each other) if and only if P(A, B) = P(A)P(B)

o also: P(A|B) = P(A) and P(B|A) = P(B) (observed by using above conditional probability definition)
o stochastic matrix: matrix where the sum of each row is 1

o formally: IT € [0, 1]%*F stochastic, if > jep (i, j) = Lforalli € E

o doubly stochastic matrix: columns also sum to 1

» formally: IT € [0, 1]*F double stochastic, if I stochastic and Y, II(4, j) = 1forall j € E
= note: if a stochastic matrix is symmetric, it is also doubly stochastic
= note?: for a double stochastic matrix, the stationary distribution is the uniform distribution

¢ transition matrix: a square matrix used to describe the transitions of a homogeneous Markov chain

o formally: IT € [0, 1]%*¥ stochastic and I1(i, j) = P(X,.1 = j | X,, = i) foralli,j € E andn € Ny with P(X,, =4) >0

Existence, Markov Property

« initial distribution: the distribution of X,
o formally: u: E — R, u(i) := P(Xy =1)
= Vi:p(i) >0
" Dieppl(i) =1
o existence theorem: let i be a distribution on E, let II € [0, 1}E *E be a stochastic matrix; then there exists a homogeneous Markov chain
(Xt)ten, with initial distribution p and transition matrix IT

o lemma: let (X}):en, be a stochastic process on E, let I € [0, l]EXE be a stochastic matrix; then (X})sen, is a homogeneous Markov chain
with transition matrix IT if and only if for all n. € N and for all 4, j, %o, ..., in—1 € E such that P(Xo = o, ..., Xn = ©) > 0, it holds that
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P(Xn+l =7 | Xo =gy ey Xn = l) = H(Z)J)
» random-mapping representation: every homogeneous Markov chain can be realized as X, 1 = f(Xn, Zn+1)

o formally: let Z,,,n € N iid taking values in F' and let E be a countable state space; let f : E X F' — E be a measurable function and let Xj :
Q — E be arandom variable independent of Z,,; set X,,.1 = f(X,, Zp+1) Vn € Ny, then (X,,)nen, is @ homogeneous Markov chain on E
with transition matrix I1(z, j) = P(f(i,Z1) = j) Vi,j € E

» expanded: X; = f(Xy, Z1); X = f(X1,22) = f(f(Xo, Z1), Z2) and so on...

o on [0, 1]: let E be a countable state space and let IT € [0, 1] be a stochastic matrix; let Z,,n € N iid uniform distributed on [0, 1]; let f :
E x [0,1] — E be a measurable function; set Xo = 0, Xnt1 = f(Xn, Zn+1) Vn € Ny, then (X5 )nen, is a homogeneous Markov chain on
E with transition matrix IT and P(Xo = i) = 1

}ExE

= corollary: if E is countable and IT € [0, 1 is a stochastic matrix, there exists a homogeneous Markov chain with transition matrix 11

¢ Markov property: no matter what happened before time m, once we know X,,, = k, the process restarts at k with the same law as the original chain
started from k, dropping all history before m

o in other words: the future only depends on the present

o formally: let (X, )nen, be a Markov chain with transition matrix IT; fix . € N and k € E such that P(X,,, = k) > 0; then, under P :=

P(- | Xm = k), the sequence (Xy, := Xpntm)nen, is a Markov chain with transition matrix IT and starting distribution &), (Dirac measure),
independent of Xy, ..., X (?)

. 1 ifk=1
 Gi(i) = . :
0 ifk=1

= for any past event A before or at X, and any future event B after X,,, P(ANB | X,, =k)=P(A| X,, =k)P(B| X,, = k)

Finite Dimensional Distributions

« what defines a Markov chain?: let F be a countable state space, let TT € [0, 1]Z*F be a stochastic matrix, let i be a distribution on E, let
(Xn)neNO be a stochastic process on E; then the following are equivalent (iff-s):
1. (Xn)nENU is a Markov chain with transition matrix II and initial distribution n

2.VYn € No,io, vyin € E: P(X() = 10, ...,Xi = Zn) = /,L(io)ﬂ(io,il)...H(’infl,in)
3.Yn € Ny, Ao, ..., A, CE : P(X() € Ao,..., Xn € An) = ZigeA(] ,u,(i()) ZileAl H(’io,il)... ZineAn H(in,hin)
o uniqueness in distribution: 1 and I uniquely define the distribution of a Markov chain

= formally: let 4 be a distribution on E and IT € [0, 1] be a stochastic matrix on E; then two Markov chains (X, )nen, and (¥;,)neny,. both
with ¢ and II, have the same distribution

o Markov chain distribution at time n: let (Xn)nENO be a Markov chain with initial distribution ¢ and transition matrix IT; then for all n € Ny, the
distribution of X, is u" = pIl"

o equivalent u"(i) = P(Xy = 1) = (uII")(i) = 3 p ()" (1)
= 1™ row vectors (probability distribution of the chain at time n), II" n-th power of 11 (n-step transition probability matrix)
[ ] /_LO = l’l’
n II0=17T

o corollary: let (X,,),en, be a Markov chain with transition matrix IL; then for all m,n € Ny, 4, j € E such that P(X,,, = ¢) > 0, it holds that
P(Xpin =17 | X =1) =1I"(3, §) (see Markov property)

o P(X,=3)=10"(6,5) = ;e W(iyin).. T(i 1, )
Communication and Period

« reachability: a state j is reachable from 1 if there exists n € Ny such that II" (4, j) > 0
o write:7 — j
o formally:i — j <= In €Ny :II"(i,5) >0 < > > 1I"(i,5) >0
w tip: fiX i1, ..., i1 € B, then I1"(4, §) > T1(4,41)...I1(¢,,_1, j) always; if the RHS is > 0, then you've proven II" (%, j) > 0
o I°(3,i) =1 == i — 4 always holds
e communication: two states ¢ and j communicate ift — j and 7 — %
o write: ¢ <+ j
o formally: i <> j <= Jn,m € Ny : II"(¢,5) > 0,1I™(j,¢) > 0
o <> is an equivalence relation; the equivalence classes are called communication classes E/ / L4
o irreducibility: a Markov chain is called irreducible if it only has one communication class, otherwise it is reducible

o in other words: a Markov chain is irreducible if every state communicates with every other state



o formally:Vi,j e E:i—j

» Vi,j € E3n €Nyt =1dg,01, e,y 1,5, = J : L(ig,1)...10(%,1,,) >0
o equivalent: Vi,j € E,i # j In = n(i,j) € N: 1I"(i,5) > 0

e closed set: a (non-empty?) set C C FE is closed if you cannot leave the set

o formally: C' C Eclosed <= Vi€ C: ), oII(i,j) = 1
o equivalent: Vi € C,j ¢ C : II(3,5) = 0
o notes:

» E, () are closed

= if A, B are closed, then AU B, AN B are also closed

= every communication class is closed

= if the Markov chain is irreducible, then the only closed sets are E and ()

= the Markov chain is irreducible iff > II" has no zero entries

« periodicity: a state ¢ has period k if k is the greatest common divisor of the number of transitions by which ¢ can be reached, starting from ¢

o formally: leti € E, define T'(¢) := {n > 1:II"(4,¢) > 0}, the period of ¢ is defined as d; := ged(T'(7))

= d; = 1: the state 7 is aperiodic

= all states aperiodic = the Markov chain is aperiodic
= formally: Vi € E : ged(T(7)) =1
= d; > 1: the state 7 is periodic
= at least one state periodic = the Markov chain is periodic
= formally: 3i € E : ged(T'(7)) > 1

o conventionally: gcd(0) = oo
o periodicity under I1": %

= 1, multiple of d(z) — period collapses to 1 (¢ becomes aperiodic under IT")

o

lemma: if i < j, then d; = d;
= jf the Markov chain is irreducible, all states have the same period — "period of the Markov chain”

= formally:Vi,j € E:i— j = Vi,j€ E:d; =d;

o

theorem: let (X, ),en, be an irreducible Markov chain with period d; then for all ¢, j € E, there existm = m(%, j) € Ny and ng = ng(2,5) €
Ny such that for all . > ng : I+ (5, 5) > 0
= choosem = 0ifi =7
= special case (corollary): let (Xn)neN0 be an irreducible, aperiodic Markov chain on a finite state space F; then there exists ng € Ny such
thatfor all 4, j € E and alln > mq: II"(¢, j) > 0 (i.e. you can get from i to j in every sufficiently large number of steps)
= lemma: let A C N such that ged(A4) = 1 andifa,b € A, thena + b € A; then there exists ng € N suchthatn € Aforalln > ng
¢ partitioning: let (Xn)neNU be an irreducible Markov chain with period d; then there exists exactly one partitioning Cy, ..., Cy_1 of E such that for all
k={0,..,d—1}andi € Cy: > ., II(i,5) = 1, where Cy = Cy

o in other words: choose a state 7, group all states by "distance mod d" from %

C() Cl CQ e Cd,Q Cd—l
Co 0 I, o0 ... 0 0
Cy 0 0o I, ... 0 0
o it's possible to rearrange the states to get a block matrix: II =
Cy_s 0 0 0o ... 0 II; -
Cy1 |z, O 0 ... 0 0

» II"is also a block matrix, II"® is a block diagonal matrix (i.e. diagonals are square matrices)

Stationary Distributions

« stationary distribution: a probability distribution that, once reached, remains unchanged over time as the chain evolves

o formally: a probability measure « is called stationary for a Markov chain with transition matrix IL if for all ¢ € E: a(2) = Z a()I(7,1)
jeE

o matrix form: oIl = o

o theorem: if the initial distribution 1 of a Markov chain (X,),cn, is stationary. then for all n € Ny and A C E: P,(X,, € A) = pu(A)

= in other words: plII" = p™ = p



= then, Py (X, = %) = a(i)foral N € Ny, € E
o finding stationary distributions: solve oIl = o, Y, (i) = 1 (0/1/00 solutions)
= if a Markov chain has 2 stationary distributions, then it has infinitely many
= formally: if o, 3 are stationary, then sois every p € {Aa+ (1 = A)B: A € (0,1)}
= if | E| < oo (or countably infinite, positive recurrent):
= exactly one closed communicating class <= exactly one stationary distribution
= two or more closed communicating classes <= infinitely many stationary distributions
* reverse transitions (time-reversed chain): let (X, )ncn, be a Markov chain with transition matrix IT and stationary distribution e such that c(¢) >
Oforalli € E; define IT' (4, §) := %, thenforalli,j € E,n € No: II'(i,j) = Pa(Xn = j | Xny1 = 1) are the backwards (reverse)
transition probabilities
« reversibility: let (X, )nen, be a Markov chain with transition matrix IT; a distribution o on E s called reversible if o(2)IL(2, 5) = c(5)II(4, %) for all
i,j€E
o the Markov chain is called reversible if it has a reversible distribution

o theorem: every reversible distribution is stationary

o note: if (X,)nen, reversible and a(2) > 0 for all 4, then P, (X, = j | Xp11 = 1) = II(¢, §) = Po(Xps1 = j | X, = 1) (so if we start from
a, the forwards and backwards transition probabilities are the same)

o Kolmogorov's criterion: an irreducible, positive recurrent, aperiodic Markov chain with transition matrix IT is reversible iff Tivig Mg -+ Tipi; —

Tivin Tipin_1 -+ Tigiy forall 21, ...,2, € E

Strong Markov Property

o o-algebra: given a set X, a collection A of subsets A C P(X) is called a o-algebra if:
1. contains the universe: X € A (and, by 2., the empty set ) € A)

2. closed under complementation: if A € A, then X\A = A€ A
3. closed under countable unions: if 4,, € Aforalln € N, then Uf;l A, e A
« filtration: a growing sequence of information where past information does not get lost over time (accumulates)
o formally: let (2, F, P) be a probability space; a sequence F,, C F for n € Ny is called a filtration if F,, C JF, 1 foralln € Ny

o natural filtration: all the information generated by the chain up to time n (i.e. the exact states of the chain, whether certain states are in subsets of
the state space, complements, functions of the past etc., but not model parameters themselves)

= formally: let (Xn)neN0 be a Markov chain on E; define F,, := a(XO, ey Xn) as the smallest o-algebra containing all events of type
X; Y (A)for AC Eandt € {0, ...,n}; then (F),cn, is the natural filtration of (X, )nen,

¢ stopping time: the event of stopping at time 7 only depends on what happened up to that time

o formally: a random variable 7 : Q@ — Ny U {oo} is called a stopping time with respect to the natural filtration (F ), if for all n € Ny:
{T = n} € F, (i.e. can you rewrite it in a way that depends on X; only up to n?)

o stopped Markov chain: let (X, ),cn, be a Markov chain, let 7 be a stopping time w.r.t. the natural filtration (F),en,; define a A b = min(a, b)
X, ifn<r

for a, b € R; the stopped Markov chain is (Xnar )nen, With Xpar = )
X, ifn>71

« strong Markov property: generalization of the Markov property to random stopping times; the Markov property still holds even if you restart the
process at a random stopping time 7

o formally: let (X,,)nen, be a Markov chain with transition matrix II, let 7 be a stopping time w.r.t. the natural filtration (F),en,; fix & € E such
that P(1 < o0, X, = k) > 0; then, under P := P(- | X, = k), the sequence (X,, := X, )nen, is a Markov chain with transition matrix IT
and starting distribution &;, (Dirac measure), independent of (XnAT)neNU

= if 7 = 00, choose (X,) arbitrarily

Recurrence & Transience

o recurrence and transience: a state 7 € F is called...
o ..recurrent, if P;(T; < 00) 1
= in other words: starting from ¢ and from wherever you can go, there is always a way (path) of returning to ¢ (finite)
= positive recurrent: recurrent and E;[T;] < oo
= null recurrent: recurrent and E;[T;] = oo
» theorem: astate i € E is recurrent if and only if > TI"(4,4) = oo

o ..transient, if P;(T; < o0) < 1



= in other words: starting from 2, there is at least one path such that, if you take it, you will never be able to return to ¢ (finite)
= jtransient, E fintt = «a(i) =0
o reminders:
* P() = P(-| Xo =)
Ei[] = B[ | Xo = ]
T; := inf{n > 1: X,, = i} (first return time)
= P,(T; < 00) = P(everreturnto ¢ | Xo = )
= B(Ti < o0) =35 B(T;i = n)
« P(Ti=n)=P(X1 #i,, Xn 1 #0,Xp =)= » P(Xi=i)B(Xo =12 | X1 =01)..i(Xn=1| Xp 1 =1in1)

il,...,i”,ﬁti

» FE;[T;] = expected number of steps to go back to i from ¢
» Ei[Ti] =30, B(T; > n)
» P(Ti 2 n) =32, (T = k)
o if a Markov chain returns to state 7 with probability 1 (recurrent state), it visits 7 infinitely many times
» formally: E;[N;] =00 <= PBi(T; <o) =1 <= P(N; =) =1
= N, = 220:1 1{x,=i) (number of visits to % starting at time 1)
o if a Markov chain returns to state ¢ with probability < 1 (transient state), it visits % finitely many times
s formally: E;[N;] < 00 < P(T; < o0) <1 <= Pj(N; <o0)=1
o communication class theorem: if 7 <> j, then either both are recurrent or both are transient
= appendix: an irreducible Markov chain is called recurrent if all states are recurrent and transient if all states are transient
* (*) different notation:
° fij == P(T; < )
o fi = P(T; < 00) = Zzo:l fii
° i(in) = PB(Ti =n)
« hitting time: the first time the chain enters aset A C FE
o formally: H4 :=inf{n >0: X, € A}
o hitting probability vector: h4 = (hf‘)igE
= for each starting state i: /' = P;(H, < 0o) = P(chain ever visits A | X = )
{h;“ =1 ificA
hit =g (G, j)h) ifig A

= hf = 0 if A is unreachable from ¢ (absorbing state, state outside of closed set)

(smallest non-negative solution!)

o mean hitting time vector: k4 = (kf);cp
= for each starting state i: k* = E;[H 4] = expected number of steps to hit A from i
kA=0 ifieA

{k;l =1+ 2j¢AH(i,j)k§1 ifi g A

= k! = coif Ais unreachable from i (i.e. P;(H* < c0) = 0)

(smallest non-negative solution!)

e invariant distribution: a function o : E' — R is called an invariant distribution for a Markov chain (Xn)neN0 with transition matrix 11 if:
1.Vie E: ai) € [0,0)
2.3i € E: a(i) > 0 (.e. ais not the null function)
3.a(i) = ZjeE a()IL(4,4)
= matrix form: oIl = o (= olI")
o if, additionally, ), a() = 1, then this is the stationary (invariant) distribution
o Markov chain recurrent —> it has an invariant measure
o Markov chain recurrent + irreducible — it has a unique invariant measure (up to multiplication by a constant)

o existence theorem + construction: let (Xn)neN0 be an irreducible, recurrent Markov chain with transition matrix IT and state space E; then,
(Xn)neN0 has an invariant measure which can be constructed as follows:
1. pick an element 0 € E (any element, call it "0")

2. let Ty := inf{n > 1: X,, = 0} (first return time to 0)

3.wite a(i) = Eo[> 071 Lix,—i} Lin<n}] = Eo [ZZD:I 1¢x,—i}] (expected number of visits to 7 between two visits to 0)



= a(i) =30 By(X, =i,n < Ty)
= then, avis invariant

= a(0)=1

= Yienali) = Eo[To]

o any invariant measure of an irreducible Markov chain is (strictly) positive everywhere

= formally: (X,)nen, ireducible = Vi € E : ai) > 0

o uniqueness up to a constant: let (Xn)neND be an irreducible, recurrent Markov chain with transition matrix I, let o, 8 be invariant measures for

(Xn)neny; then 3C > 0 : a = CP (unique invariant measure up to multiplication by a constant)
o theorem: let (X, )nen, be an irreducible, recurrent Markov chain; then for all i, j € E: Pi(Tj < o0) =1
o theorem: Y, p (i) < 00 <= (Xn)nen, (ireducible and) positive recurrent
= corollary: an irreducible Markov chain is positive recurrent if and only if it has a stationary distribution
= then, this stationary distribution is unique with «(¢) > O forall i € E
o theorem: let (X, )nen, be an irreducible, positive recurrent Markov chain; then a(7) = ﬁ forallz € B
o theorem: every irreducible Markov chain with a finite state space is positive recurrent

= formally: (X,,),cn, irreducible,

E| < 00 = (X,)nen, is positive recurrent
¢ reversed transition matrix: let (Xn)neNo be a Markov chain with transition matrix II, let a be an invariant measure for (Xn)neNU; define the -

reversed transition matrix as IT% (¢, j) = Ml'I(j, i)

o (i)
o II%is a stochastic matrix
o if (X, )nen, is recurrent, then so is a Markov chain with transition matrix II*

o let (X,,)Y_, be a Markov chain with initial distribution &y, conditioned on X = 0; then, (¥, := Xy _n)Y_, is a Markov chain with transition
matrix 1, initial distribution &g, conditioned on Yy = 0

= in other words: (Y;,)Y_ is the time reversal of the Markov chain (X,,)2_, where we start at 0 and return to 0 at time N’

= corollary: assume (X, ) is recurrent, let (Z,,) have transition matrix II%, then (Z,,) is also recurrent, and if you run both with initial
distribution ¢ from time 0 to time Tg, then (ZH)Z‘]:0 has the same distribution as (XTO_H)Z”:0

o let (Xn)ngNO be a Markov chain with initial distribution d¢ and transition matrix IT; let (Yn)neND be a Markov chain with initial distribution d¢ and
transition matrix I1%; if P(Ty < oco) = 1, then (Yo, ..., Y7, ) has the same distribution as (X1, ..., X0)

Convergence

o total variation metric: notion of convergence; the "distance" between « and 3 in total variation

1
o formally: let o, B be distributions on E (countable), then the total variation distance is defined as dry = 3 Z |a(i) — B(2)] (i.e. half of the L1
i€l
norm)

e convergence theorem: let (Xn)neN[, be an irreducible, aperiodic, positive recurrent Markov chain with invariant distribution c; then
n—o0 n—o0

o recipe: if the Markov chain is not irreducible, split Markov chain into equivalence classes and look at "restricted" transition matrices



