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Introduction

Markov chain: a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state
attained in the previous event

discrete-time Markov chain: the chain moves state at discrete time steps (used in this course)

defining property: a stochastic process  on a countable (finite or countably infinite) state space  is called a Markov chain if for every
 and for every  such that , it holds that

equivalent (homogeneous): 

equivalent (hom., expanded): 

homogeneity: the transition probabilities are independent of the time 

formally: the Markov chain  is homogeneous if for every  and every , if  and 
, then 

stochastic process: a sequence  of random variables ( : time), all defined on the same probability space , all taking values in the
same (finite or countably infinite) space 

in other words: a sequence , with  meaning "(discrete) time" here

notation:  means that at time , the process is in the state 

conditional probability: 

independence: two events  independent (of each other) if and only if 

also:  and  (observed by using above conditional probability definition)

stochastic matrix: matrix where the sum of each row is 1

formally:  stochastic, if  for all 

doubly stochastic matrix: columns also sum to 1

formally:  double stochastic, if  stochastic and  for all 

note¹: if a stochastic matrix is symmetric, it is also doubly stochastic

note²: for a double stochastic matrix, the stationary distribution is the uniform distribution

transition matrix: a square matrix used to describe the transitions of a homogeneous Markov chain

formally:  stochastic and  for all  and  with 

Existence, Markov Property

initial distribution: the distribution of 

formally: , 

existence theorem: let  be a distribution on , let  be a stochastic matrix; then there exists a homogeneous Markov chain
 with initial distribution  and transition matrix 

lemma: let  be a stochastic process on , let  be a stochastic matrix; then  is a homogeneous Markov chain
with transition matrix  if and only if for all  and for all  such that , it holds that
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random-mapping representation: every homogeneous Markov chain can be realized as 

formally: let  iid taking values in  and let  be a countable state space; let  be a measurable function and let 
 be a random variable independent of ; set , then  is a homogeneous Markov chain on 

with transition matrix 

expanded:  and so on...

on : let  be a countable state space and let  be a stochastic matrix; let  iid uniform distributed on ; let 
 be a measurable function; set , then  is a homogeneous Markov chain on

 with transition matrix  and 

corollary: if  is countable and  is a stochastic matrix, there exists a homogeneous Markov chain with transition matrix 

Markov property: no matter what happened before time , once we know , the process restarts at  with the same law as the original chain
started from , dropping all history before 

in other words: the future only depends on the present

formally: let  be a Markov chain with transition matrix ; fix  and  such that ; then, under 
, the sequence  is a Markov chain with transition matrix  and starting distribution  (Dirac measure),

independent of  (?)

for any past event  before or at  and any future event  after , 

Finite Dimensional Distributions

what defines a Markov chain?: let  be a countable state space, let  be a stochastic matrix, let  be a distribution on , let
 be a stochastic process on ; then the following are equivalent (iff-s):

1.  is a Markov chain with transition matrix  and initial distribution 

2. 

3. 

uniqueness in distribution:  and  uniquely define the distribution of a Markov chain

formally: let  be a distribution on  and  be a stochastic matrix on ; then two Markov chains  and , both
with  and , have the same distribution

Markov chain distribution at time : let  be a Markov chain with initial distribution  and transition matrix ; then for all , the
distribution of  is 

equivalent: 

 row vectors (probability distribution of the chain at time ),  n-th power of  (n-step transition probability matrix)

corollary: let  be a Markov chain with transition matrix ; then for all  such that , it holds that
 (see Markov property)

Communication and Period

reachability: a state  is reachable from  if there exists  such that 

write: 

formally: 

tip: fix , then  always; if the RHS is , then you've proven 

 always holds

communication: two states  and  communicate if  and 

write: 

formally: 

 is an equivalence relation; the equivalence classes are called communication classes 

irreducibility: a Markov chain is called irreducible if it only has one communication class, otherwise it is reducible

in other words: a Markov chain is irreducible if every state communicates with every other state
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P (⋅ ∣ X ​ =m k) ( ​ :=X
~

n X ​) ​n+m n∈N ​0 Π δ ​k

X ​, ..., X ​0 m

δ ​(i) =k ​ ​{
1
0

if k = i

if k = i
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formally: 

equivalent: 

closed set: a (non-empty?) set  is closed if you cannot leave the set

formally:  closed 

equivalent: 

notes:

 are closed

if  are closed, then  are also closed

every communication class is closed

if the Markov chain is irreducible, then the only closed sets are  and 

the Markov chain is irreducible iff  has no zero entries

periodicity: a state  has period  if  is the greatest common divisor of the number of transitions by which  can be reached, starting from 

formally: let , define , the period of  is defined as 

: the state  is aperiodic

all states aperiodic  the Markov chain is aperiodic

formally: 

: the state  is periodic

at least one state periodic  the Markov chain is periodic

formally: 

conventionally: 

periodicity under : 

 multiple of  period collapses to 1 (  becomes aperiodic under )

lemma: if , then 

if the Markov chain is irreducible, all states have the same period  "period of the Markov chain"

formally: 

theorem: let  be an irreducible Markov chain with period ; then for all , there exist  and 
 such that for all 

choose  if 

special case (corollary): let  be an irreducible, aperiodic Markov chain on a finite state space ; then there exists  such
that for all  and all :  (i.e. you can get from  to  in every sufficiently large number of steps)

lemma: let  such that  and if , then ; then there exists  such that  for all 

partitioning: let  be an irreducible Markov chain with period ; then there exists exactly one partitioning  of  such that for all
 and : , where 

in other words: choose a state , group all states by "distance mod " from 

it's possible to rearrange the states to get a block matrix: 

 is also a block matrix,  is a block diagonal matrix (i.e. diagonals are square matrices)

Stationary Distributions

stationary distribution: a probability distribution that, once reached, remains unchanged over time as the chain evolves

formally: a probability measure  is called stationary for a Markov chain with transition matrix  if for all : 

matrix form: 

theorem: if the initial distribution  of a Markov chain  is stationary. then for all  and : 

in other words: 

∀i, j ∈ E : i → j

∀i, j ∈ E ∃n ∈ N, i = i ​, i ​, ..., i ​, i ​ =0 1 n−1 n j : Π(i ​, i ​)...Π(i ​, i ​) >0 1 n−1 n 0
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C ⊆ E ⟺ ∀i ∈ C : ​ Π(i, j) =∑j∈C 1

∀i ∈ C, j ∈/ C : Π(i, j) = 0

E, ∅
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E ∅

​ Π∑n=0
∞ n

i k k i i

i ∈ E T (i) := {n ≥ 1 : Π (i, i) >n 0} i d ​ :=i gcd(T (i))

d ​ =i 1 i

⟹
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d ​ >i 1 i

⟹

∃i ∈ E : gcd(T (i)) > 1
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​gcd(d(i),n)
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→
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m = 0 i = j
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A ⊆ N gcd(A) = 1 a, b ∈ A a + b ∈ A n ​ ∈0 N n ∈ A n ≥ n ​0
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i ​0 d i ​0
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⋮
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0
0

⋮
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Π ​0
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⋮
0
0
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0
Π ​1

⋮
0
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…
…
…

⋱
…
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0
0

⋮
0
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0
0

⋮
Π ​d−2
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Πn Πnd

α Π i ∈ E α(i) = ​ α(j)Π(j, i)
j∈E

∑

αΠ = α

μ (X ​) ​n n∈N ​0 n ∈ N ​0 A ⊆ E P ​(X ​ ∈μ n A) = μ(A)

μΠ =n μ =n μ



then,  for all 

finding stationary distributions: solve  (  solutions)

if a Markov chain has 2 stationary distributions, then it has infinitely many

formally: if  are stationary, then so is every 

if  (or countably infinite, positive recurrent):

exactly one closed communicating class  exactly one stationary distribution

two or more closed communicating classes  infinitely many stationary distributions

reverse transitions (time-reversed chain): let  be a Markov chain with transition matrix  and stationary distribution  such that 

 for all ; define , then for all :  are the backwards (reverse)

transition probabilities

reversibility: let  be a Markov chain with transition matrix ; a distribution  on  is called reversible if  for all

the Markov chain is called reversible if it has a reversible distribution

theorem: every reversible distribution is stationary

note: if  reversible and  for all , then  (so if we start from
, the forwards and backwards transition probabilities are the same)

Kolmogorov's criterion: an irreducible, positive recurrent, aperiodic Markov chain with transition matrix  is reversible iff 
 for all 

Strong Markov Property

-algebra: given a set , a collection  of subsets  is called a -algebra if:
1. contains the universe:  (and, by 2., the empty set )

2. closed under complementation: if , then 

3. closed under countable unions: if  for all , then 

filtration: a growing sequence of information where past information does not get lost over time (accumulates)

formally: let  be a probability space; a sequence  for  is called a filtration if  for all 

natural filtration: all the information generated by the chain up to time  (i.e. the exact states of the chain, whether certain states are in subsets of
the state space, complements, functions of the past etc., but not model parameters themselves)

formally: let  be a Markov chain on ; define  as the smallest -algebra containing all events of type
 for  and ; then  is the natural filtration of 

stopping time: the event of stopping at time  only depends on what happened up to that time

formally: a random variable  is called a stopping time with respect to the natural filtration  if for all :
 (i.e. can you rewrite it in a way that depends on  only up to ?)

stopped Markov chain: let  be a Markov chain, let  be a stopping time w.r.t. the natural filtration ; define 

for ; the stopped Markov chain is  with 

strong Markov property: generalization of the Markov property to random stopping times; the Markov property still holds even if you restart the
process at a random stopping time 

formally: let  be a Markov chain with transition matrix , let  be a stopping time w.r.t. the natural filtration ; fix  such
that ; then, under , the sequence  is a Markov chain with transition matrix 
and starting distribution  (Dirac measure), independent of 

if , choose  arbitrarily

Recurrence & Transience

recurrence and transience: a state  is called...

...recurrent, if 

in other words: starting from  and from wherever you can go, there is always a way (path) of returning to  (finite)

positive recurrent: recurrent and 

null recurrent: recurrent and 

theorem: a state  is recurrent if and only if 

...transient, if 

P ​(X ​ =α n i) = α(i) N ∈ N ​, i ∈0 E

αΠ = α, ​ α(i) =∑i∈E 1 0/1/∞

α, β μ ∈ {λα + (1 − λ)β : λ ∈ (0, 1)}

∣E∣ < ∞

⟺

⟺

(X ​) ​n n∈N ​0 Π α α(i) >

0 i ∈ E Π (i, j) := ​

′

α(i)
α(j)Π(j, i)

i, j ∈ E, n ∈ N ​0 Π (i, j) =′ P ​(X ​ =α n j ∣ X ​ =n+1 i)

(X ​) ​n n∈N ​0 Π α E α(i)Π(i, j) = α(j)Π(j, i)
i, j ∈ E

(X ​)n n∈N ​0 α(i) > 0 i P ​(X ​ =α n j ∣ X ​ =n+1 i) = Π(i, j) = P ​(X ​ =α n+1 j ∣ X ​ =n i)
α

Π π ​π ​...π ​ =i ​i ​1 2 i ​i ​2 3 i ​i ​n 1

π ​π ​...π ​i ​i ​1 n i ​i ​n n−1 i ​i ​2 1 i ​, ..., i ​ ∈1 n E

σ X A A ⊆ P (X) σ

X ∈ A ∅ ∈ A

A ∈ A X\A = A ∈c A

A ​ ∈n A n ∈ N ​ A ​ ∈⋃n=1
∞

n A

(Ω,F , P ) F ​ ⊆n F n ∈ N ​0 F ​ ⊆n F ​n+1 n ∈ N ​0

n

(X ​) ​n n∈N ​0 E F ​ :=n σ(X ​, ..., X ​)0 n σ

X ​(A)t
−1 A ⊆ E t ∈ {0, ..., n} (F) ​n∈N ​0 (X ​) ​n n∈N ​0

n

τ : Ω → N ​ ∪0 {∞} (F) ​n∈N ​0 n ∈ N ​0

{τ = n} ∈ F ​n X ​i n

(X ​) ​n n∈N ​0 τ (F) ​n∈N ​0 a ∧ b = min(a, b)

a, b ∈ R (X ​) ​n∧τ n∈N ​0 X ​ =n∧τ ​ ​{
X ​n

X ​τ

if n ≤ τ

if n ≥ τ

τ

(X ​) ​n n∈N ​0 Π τ (F) ​n∈N ​0 k ∈ E

P (τ < ∞, X ​ =τ k) > 0 :=P
~

P (⋅ ∣ X ​ =τ k) ( ​ :=X
~

n X ​) ​n+τ n∈N ​0 Π
δ ​k (X ​) ​n∧τ n∈N ​0

τ = ∞ ( ​)X
~

n

i ∈ E

P ​(T ​ <i i ∞) =
!

1

i i

E ​[T ​] <i i ∞

E ​[T ​] =i i ∞

i ∈ E ​ Π (i, i) =∑n=0
∞ n ∞

P ​(T ​ <i i ∞) < 1



in other words: starting from , there is at least one path such that, if you take it, you will never be able to return to  (finite)

 transient,  finite  

reminders:

 (first return time)

if a Markov chain returns to state  with probability  (recurrent state), it visits  infinitely many times

formally: 

 (number of visits to  starting at time 1)

if a Markov chain returns to state  with probability  (transient state), it visits  finitely many times

formally: 

communication class theorem: if , then either both are recurrent or both are transient

appendix: an irreducible Markov chain is called recurrent if all states are recurrent and transient if all states are transient

(*) different notation:

hitting time: the first time the chain enters a set 

formally: 

hitting probability vector: 

for each starting state : 

 (smallest non-negative solution!)

 if  is unreachable from  (absorbing state, state outside of closed set)

mean hitting time vector: 

for each starting state : 

 (smallest non-negative solution!)

 if  is unreachable from  (i.e. )

invariant distribution: a function  is called an invariant distribution for a Markov chain  with transition matrix  if:
1. 

2.  (i.e.  is not the null function)

3. 

matrix form: 

if, additionally, , then this is the stationary (invariant) distribution

Markov chain recurrent  it has an invariant measure

Markov chain recurrent + irreducible  it has a unique invariant measure (up to multiplication by a constant)

existence theorem + construction: let  be an irreducible, recurrent Markov chain with transition matrix  and state space ; then,
 has an invariant measure which can be constructed as follows:

1. pick an element  (any element, call it "0")

2. let  (first return time to )

3. write  (expected number of visits to  between two visits to )

i i

i E ⟹ α(i) = 0

P ​(⋅) =i P (⋅ ∣ X ​ =0 i)

E ​[⋅] =i E[⋅ ∣ X ​ =0 i]

T ​ :=i inf{n ≥ 1 : X ​ =n i}

P ​(T ​ <i i ∞) = P (ever return to i ∣ X ​ =0 i)

P ​(T ​ <i i ∞) = ​ P ​(T ​ =∑n=1
∞

i i n)

P ​(T ​ = n) = P ​(X ​ = i, ..., X ​ = i, X ​ = i) = ​ P ​(X ​ = i ​)P ​(X ​ = i ​ ∣ X ​ = i ​)...P ​(X ​ = i ∣ X ​ = i ​)i i i 1  n−1  n

i ​,...,i ​=i1 n−1

∑ i 1 1 i 2 2 1 1 i n n−1 n−1

E ​[T ​] =i i expected number of steps to go back to i from i

E ​[T ​] =i i ​ P ​(T ​ ≥∑
n=0
∞

i i n)

P ​(T ​ ≥i i n) = ​ P ​(T ​ =∑
k=n

∞
i i k)

i 1 i

E ​[N ​] =i i ∞ ⟺ P ​(T ​ <i i ∞) = 1 ⟺ P ​(N ​ =i i ∞) = 1

N ​ =i ​ 1 ​∑n=1
∞

{X ​=i}n
i

i < 1 i

E ​[N ​] <i i ∞ ⟺ P ​(T ​ <i i ∞) < 1 ⟺ P ​(N ​ <i i ∞) = 1

i ↔ j

f ​ :=ij P ​(T ​ <i j ∞)

f ​ :=ii P ​(T ​ <i i ∞) = ​ f ​∑
n=1
∞

ii

f ​ =ii
(n)

P ​(T ​ =i i n)

A ⊆ E

H :=A inf{n ≥ 0 : X ​ ∈n A}

h =A (h ​) ​i
A

i∈E

i h ​ =i
A P ​(H ​ <i A ∞) = P (chain ever visits A ∣ X ​ =0 i)

​ ​{
h = 1i

A

h = ​ Π(i, j)h ​i
A ∑j∈E j

A

if i ∈ A

if i ∈ A/

h ​ =i
A 0 A i

k =A (k ​) ​i
A

i∈E

i k ​ =i
A E ​[H ​] =i A expected number of steps to hit A from i

​ ​{
k ​ = 0i

A

k ​ = 1 + ​ Π(i, j)k ​i
A ∑

j∈A/ j
A

if i ∈ A

if i ∈ A/

k ​ =i
A ∞ A i P ​(H <i

A ∞) = 0

α : E → R (X ​) ​n n∈N ​0 Π
∀i ∈ E : α(i) ∈ [0, ∞)

∃i ∈ E : α(i) > 0 α

α(i) = ​ α(j)Π(j, i)∑
j∈E

αΠ = α (= αΠ )n

​ α(i) =∑
i∈E

1

⟹

⟹

(X ​) ​n n∈N ​0 Π E

(X ​) ​n n∈N ​0

0 ∈ E

T ​ :=0 inf{n ≥ 1 : X ​ =n 0} 0

α(i) = E ​[ ​ 1 ​1 ​] =0 ∑n=1
∞

{X ​=i}n {n≤T ​}0 E ​[ ​ 1 ​]0 ∑n=1
T ​0

{X ​=i}n
i 0



then,  is invariant

any invariant measure of an irreducible Markov chain is (strictly) positive everywhere

formally:  irreducible 

uniqueness up to a constant: let  be an irreducible, recurrent Markov chain with transition matrix , let  be invariant measures for
; then  (unique invariant measure up to multiplication by a constant)

theorem: let  be an irreducible, recurrent Markov chain; then for all : 

theorem:  (irreducible and) positive recurrent

corollary: an irreducible Markov chain is positive recurrent if and only if it has a stationary distribution

then, this stationary distribution is unique with  for all 

theorem: let  be an irreducible, positive recurrent Markov chain; then  for all 

theorem: every irreducible Markov chain with a finite state space is positive recurrent

formally:  irreducible,    is positive recurrent

reversed transition matrix: let  be a Markov chain with transition matrix , let  be an invariant measure for ; define the -

reversed transition matrix as 

 is a stochastic matrix

if  is recurrent, then so is a Markov chain with transition matrix 

let  be a Markov chain with initial distribution , conditioned on ; then,  is a Markov chain with transition
matrix , initial distribution , conditioned on 

in other words:  is the time reversal of the Markov chain , where we start at  and return to  at time 

corollary: assume  is recurrent, let  have transition matrix , then  is also recurrent, and if you run both with initial
distribution  from time 0 to time , then  has the same distribution as 

let  be a Markov chain with initial distribution  and transition matrix ; let  be a Markov chain with initial distribution  and
transition matrix ; if , then  has the same distribution as 

Convergence

total variation metric: notion of convergence; the "distance" between  and  in total variation

formally: let  be distributions on  (countable), then the total variation distance is defined as  (i.e. half of the L1

norm)

convergence theorem: let  be an irreducible, aperiodic, positive recurrent Markov chain with invariant distribution ; then

recipe: if the Markov chain is not irreducible, split Markov chain into equivalence classes and look at "restricted" transition matrices

α(i) = ​ P ​(X ​ =∑n=1
∞

0 n i, n ≤ T ​)0

α

α(0) = 1

​ α(i) =∑i∈E E ​[T ​]0 0

(X ​) ​n n∈N ​0 ⟹ ∀i ∈ E : α(i) > 0

(X ​) ​n n∈N ​0 Π α, β

(X ​) ​n n∈N ​0 ∃C > 0 : α = Cβ

(X ​) ​n n∈N ​0 i, j ∈ E P ​(T ​ <i j ∞) = 1

​ α(i) <∑i∈E ∞ ⟺ (X ​) ​n n∈N ​0

α(i) > 0 i ∈ E

(X ​) ​n n∈N ​0 α(i) = ​

E ​[T ​]i i

1 i ∈ E

(X ​) ​n n∈N ​0 ∣E∣ < ∞ ⟹ (X ​) ​n n∈N ​0

(X ​) ​n n∈N ​0 Π α (X ​) ​n n∈N ​0 α

Π (i, j) = ​Π(j, i)α

α(i)
α(j)

Πα

(X ​) ​n n∈N ​0 Πα

(X ​) ​n n=0
N δ ​0 X ​ =N 0 (Y ​ :=n X ​) ​N−n n=0

N

Πα δ ​0 Y ​ =N 0

(Y ​) ​n n=0
N (X ​) ​n n=0

N 0 0 N

(X ​)n (Z ​)n Πα (Z ​)n

δ ​0 T ​0 (Z ​) ​n n=0
T ​0 (X ​) ​T ​−n0 n=0

T ​0

(X ​) ​n n∈N ​0 δ ​0 Π (Y ​) ​n n∈N ​0 δ ​0

Πα P (T ​ <0 ∞) = 1 (Y ​, ..., Y ​)0 T ​0 (X ​, ..., X ​)T ​0 0

α β

α, β E d ​ = ​ ​ ∣α(i) − β(i)∣T V 2
1

i∈E

∑

(X ​) ​n n∈N ​0 α

​ P ​(X ​ = j) = ​ Π (i, j) = α(j)
n→∞
lim i n

n→∞
lim n


