Made by Flavius Schmidt
for OshrEQ, August 2024.
home.in.tum.de/scfl

Git Cheat Sheet

Basic Workflow Detached HEADs and Relative Refs Branching and Merging

1. git add <filel> <file2> ... Or git add . Detached HEAD: HEAD points to a commit; experimental changes can be made. * git branch -a shows all existing branches (current: *).

stages changes made to specific files or everything in current directory. « discard changes: return to some existing branch (e.g. git checkout main). git branch <branchname> creates a new branch (but doesn’t switch to it).
2. git commit -m "<msg>" « keep changes: create a new branch (e.g. git checkout -b alternate). git branch -d <branchname> deletes a branch.

locally records the changes made to the files added in the previous step. git branch -m <branchname> renames the current branch.
3. git push « git checkout <branchname> switches to a branch.

uploads the commited changes to the remote repository (online). @ git checkout -b <branchname> creates a new branch and switches to it.

Tip: Use git status to repeatedly check the changes you made. @ @ @ git checkout <commit> switches to a commit (— detached HEAD!).
git checkout - returns to where you were previously.
@ HEAD

Relative Ref: Address a commit relative to another commit, a branch or HEAD. o

Merging merges the contents of two branches into a single branch (usually main).

Initial Setup

Installation: Follow the instructions on git-scm.com/download.

User Configuration:

+ git config --global user.name "<username>" * ~ moves one commit up (e.g. HEAD"). Can be stacked (e.g. HEAD"").
If a commit has multiple parents, “n checks out the n-th parent.

* ~n moves n commits up (e.g. HEAD~ 3, default: 1).

Tip: The operators can be chained (e.g. HEAD~"~2~"2).

sets the username of your contributions (usually "<firstname> <lastname>").
¢ git config --global user.email "<email>"

sets the email address of your contributions.
* git config --global core.editor "<editor> --wait"

* git merge <branchname> merges the current branch with <branchname>.

sets the default code editor for certain manual inputs (e.g. code) Snapshotting Merge Conflicts

¢ git config --global color.ui auto

¢ git add <filel> <file2> ... orgit add . Merge Conflicts occur when git cannot automatically merge two branches.

sets automatic command line coloring for git. <<<<<<< HEAD

adds (stages) one or more files or the current directory to the next commit.

Tip: There’s many more options available to configure, such as aliases. Tip: You can use globs (i.a. wildcards) to add a set of related files.

Everything above the middle conflict divider represents the conflicting

¢ git reset [<filel> <file2> ...] contents inside the file in the current branch.

Downloading (Cloning) a Remote Repository: git clone <url>

To clone via SSH (preferred), you need to add a valid SSH key to your GitHub account. unstages specific files if provided, otherwise unstages all modified files. ===

¢ git commit -m "<msg>"

Everything below the middle conflict divider represents the conflicting

commits staged changes, i.e. creates a new "snapshot”. Write something useful! contents inside the file in the branch to be merged.
Terminology

Tip: git commit -am "<msg>" is the same as git add ., git commit -m "<msg>"

>>>>>>> branch-to_merge

» Workspace / Working Tree: A local copy of the codebase. * git status

Any changes made here must be staged manually with git add
1
+ Staging Area: Intermediate zone. Files here can either be commited or removed.
Used i.a. to review changes before committing.
1
» (Local) Repository: Workspace containing necessary version control files.
This includes branches, the commit history, tracked files etc.
1
» Remote / Upstream Repository: A repository stored online instead of locally.
The local and remote versions should be in-sync when cloned.

shows status of files modified since last commit.
* git diff [<commit>] [--staged] [<filel> <file2> ...]
shows unstaged / staged changes (if provided, between file(s) and / or commit).

To resolve a merge conflict, remove all conflict dividers (<<<...HEAD, ===..., >>>...

branch_to_merge) and only keep the changes you wish to be made.

Temporary Stashing

Undo

&0
e)—(—()

+ Commit: A save point / check point storing the current state of your codebase.
Commit Hash: Unique commit ID, primarily used to address it.

« Branch: An alternate timeline version of your codebase (default: main).

« HEAD: A pointer to the current commit / branch of your working directory.

¢ git revert <commit>
reverts the repository to a certain commit, creating a new one.
¢ git commit --amend -m "<msg>"
changes the message of the previous commit.
¢ git checkout -- <filel> <file2>...
undoes local changes to the specified files since the last commit (unrecoverable!).

The Stash is a place to hide modifications while working on something else.
* git stash temporarily stashes uncommited changes away.

« git stash pop retrieves (reapplies) the last changes stashed away.

* git stash list lists everything inside of the stash.

* git stash clear clears the stash.

Remote Repositories

Inspection and Comparison

git log shows the commit history (incl. commit hashes) of the current branch.

¢ -<limit> limits the number of commits (newest — oldest).

* --oneline condenses each commit and commit hash.

* --author="<pattern>" only shows commits made by author matching <pattern>.
* --grep="<pattern>" only shows commits with messages containing <pattern>.

e -- <filel> <file2>... only shows commits made on the specified files.

Tip: git log --oneline --graph --decorate shows a nice visual representation.

¢ git clone <url>

clones a repository from an URL (can be HTTPS or SSH).
¢ git pull

fetches changes from the remote branch and merges them.
* git push

pushes (uploads) local changes to the remote branch.

Closing Remarks

Git-Specific Files

+ .git: Directory, contains all necessary information for the repo’s version control.
Do not manually change files in here unless you know what you are doing.

+ .gitignore: File, specifies intentionally omitted files that won’t be added to the repo.

Tip: Use an automatic online .gitignore generator to create a preset.
» ~/.gitconfig: File, contains your global git configuration.
Tip: You can also find samples online for configuration files.

git diff can be used to view differences between files, commits or branches.

* <commitl>..<commit2> shows the difference between two commits.

* <branchil>..<branch2> shows the difference between two branches.

Tip: + represents "file a”, - represents "file b”. They're almost always the same file.

+ Use the official git reference for all available info: git-scm.com/docs.

« If you're interested in mastering git, check out the book: git-scm.com/book/en/v2
« When in doubt, follow the hints and error messages provided by git.

 Your favorite search engine and StackOverflow are your best friends.

git reflog shows a list of all operations performed on the local repository.
In other words, it's a list of commits that HEAD has pointed to (i.e. an undo history).

