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Recap: Basic Statistics

e mean (expected value): the mean of the possible values a random variable can take

o notation: E(X) =
= finitely many outcomes: E(X) = z1p; + ... + Z,p,
= countably infinitely many outcomes: E(X) = >, z;p;
= random variables with density: E(X) = [* zf(z)dz
o properties:
» E(c)=c
» E(aX +b) =aE(z)+b
» Elay Xy + ... + a, X)) = a1 E(Xy) + ... + a, E(X,)


https://en.wikipedia.org/wiki/Expected_value

. E(Xl e -Xn) = E(Xl) +... - E(X,) for independent (uncorrelated) X;
= Eg = Jrg(

standard deviation: a measure of the amount of variation of the values of a variable about its mean
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o definition: o = /Var(X)

standard error: the standard deviation of its sampling distribution or an estimate of that standard

deviation

o definition: se = %= for n observations
Jn

variance: a measure of how far a set of numbers is spread out from their average value
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o notation: Var(X) = o2
o definition: Var(X) = E(X?) — E(X)?
o properties:
= Var(c) =0
Var(X +a) = Var(X)
Var(aX) = a?Var(X)
(
Var(X;

aX +bY) = a*Var(X) + b*Var(Y) + 2ab Cov(X,Y)
+ ...+ X,) =Var(X;) + ... + Var(X,,) for independent (uncorrelated) X;

Var


https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Standard_error
https://en.wikipedia.org/wiki/Variance

e covariance: a measure of the joint variability of two random variables

Y!'\

> X
cov(X,Y)<0

Y/

-

“,P"

cov(X,Y)=0
YA

>X
cov(X,Y)>0
o definition: Cov(X,Y) = E(XY) — E(X)E(Y)
o positively correlated variables: Cov(X,Y) > 0
o negatively correlated variables: Cov(X,Y) < 0
o uncorrelated variables: Cov(X,Y) = 0 (but not the other way around!)

= independent variables: Cov(X,Y) =0
o properties:

» Cov(X,X) = Var(X)
Cov( Y)= C’ov(Y X)

ov(X )

v(aX bY) =ab Cov(X,Y)

Cov(X +a,Y +b) =Cov(X,Y)

Cov(aX +bY,cW +dV) = acCov(X,W) + adCov(X,V) 4+ bcCov(Y , W) +
bdCov(Y,V)

e correlation: any statistical relationship, whether causal or not, between two random variables

Cov(X,Y)
\/ Var(X)Var(Y

o definition: Corr(X,Y) =


https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Correlation

Introduction

e regression: creates a functional relationship between a response (dependent) variable and a set
of explanatory (predictor) variables (covariates)

o regression model: which explanatory variables have an effect on the response?

o deterministic relationship: a certain input will always lead to the same result
e parameter: an unknown constant, most likely to be estimated by collecting and using data

e empirical model: any kind of model based on empirical observations rather than on
mathematically describable (theory-based) relationships of the system modelled

¢ controlled experiment: one where the experimenter can set the values of the explanatory
variable(s)

« line definition (linear model): y = By + Sz (+¢€)
o By, B1: constants (parameters)
= intercept 5y: y whenxz = 0
= slope (3;: change in y if x is increased by 1 unit
o €: random disturbance (error)
= By + Bix: deterministic
= ¢: random, models variability in measurements around the regression line
o linearin By and [3;
o for each experiment: y; = By + B1x; + €;
= input and result: (z;, y;)
= By, B1 remain constant
= x;,€; vary per experiment: = 1,2,...,n
= mean E(¢;) =0
= variance Var(g;) = o2
= ¢;, €; independent random variables for % v 7

» 1, deterministic (i.e. the input data is clearly and certainly defined; it can also be noisy,
in which case x; is not deterministic)

= — y; random variable; y;, y; independent for 2 v J

= mean E(y;) = E(By + Biz; + &) = Bo + Bz + E(e&;) = Bo + Bix;
——

0

= variance Var(y;) = o2

= unexplained variability o

o general:y = u+¢€



= deterministic component y = 5y + 11 + ... + ﬁpazp
= explanatory variables x4, ..., x,, (assume fixed, measured without error)

= 8;,1=1,2,...,p: change in  when changing x; by one unit while keeping all other
explanatory variables the same

2
» BE(y)=w Var(y) =0
o linearity: the derivatives of u with respect to the parameters (3; do not depend on the variables

e notation: x;; for the i-th unit (i.e. row in a table) and the j-th explanatory variable (i.e. column in a
table) (R: [table[i, 3]

¢ dependent variable: depends on an independent variable

Simple Linear Regression

e simple linear regression model: y = 11 + €

Quarterly change in GDP  (A%)

-1.0 - 05 0.0 0.5 1.0 15 20

Quanerly change in the unemployment rate  [A%)

mean E(y) = p = fo + Pz

one predictor (regressor) variable x

[¢]

[¢]

o one response variable y

(¢]

random error €

[¢]

for n pairs of observations (zi, yi): ¥i = fo + fizi + €, i =1,...,n

x; not random (can be selected by experimenter)

= ¢; ~ N(0,0%)

= y; ~ N(ui, 0%), where p; = By + piz;
= E(e) =0

= BE(yi) = pi = Bo + Bz
= Var(e) = o?

= Var(y;) = o?

Cov(e;, €5) = 0fori == j
= any two observations y;, y; are independent for 1 v ]

o goal: estimate 3y, 81, o from available data (z;, ¥;)


https://en.wikipedia.org/wiki/Simple_linear_regression

= zero slope — absence of linear association
« unbiased parameter estimate: F(0) =

o biased parameter estimate: F(0) =+ 0

o least squares estimation (LSE): a mathematical procedure for finding the best-fitting curve to a
given set of points by minimizing the sum of the squares of the offsets ("the residuals") of the points

from the curve

o goal: minimize 37 (y; — §;)° where §; = By + B1z; (fitted value)

+ LsE fy — Sl lucs

" Szy = Zz’=1($i —Z)(yi — Y)
= a0 = Y (xi — F)(zi — F)

= (1) reorderlng using >, (z; — %) = 0:

— Say
S

—2)yi
b= S
" Sy, = Zi:l z;(x; — T)

= short: s =
= residuale; = y; — ¥;
= degree of freedom: number of independent observations (71) minus the number of

estimated parameters (here 2, 3y and ;)

— 1 n
= samplemeanT = -~ > " T

—_ 1
= resultmeany = -~ Z?:l Yi

"y = Bo +31$
- BE(B) =5
= E(B) = Bo


https://en.wikipedia.org/wiki/Least_squares

Q

E(s?) = o?

Var () = &
Var(B) = o> (L + Z)
Se(Bl) = \/Z—

e maximum likelihood estimation (MLE): a method of estimating the parameters of an assumed

probability distribution by maximizing a likelihood function
o 6% =131 (yi — 9ii)* (biased!)

e null hypothesis testing: a method of statistical inference used to decide whether the data

sufficiently supports a particular hypothesis

o t-test: a statistical test used to test whether the difference between the response of two groups
is statistically significant or not (here: two-sided)
m H()IIBI :OVS.HAiﬁl 70(§or>)

B
se(Bl) tn-2

s T =
= ¢ usually 0.05

= quantile approach: reject H if \T! >tn-21-a/2

= probability approach: reject Hy if p-value is less than «

= p-value: the probability of obtaining test results at least as extreme as the result
actually observed, under the assumption that the null hypothesis is correct

= R: 2 * pt(abs(tval), df, lower.tail = FALSE)
= the lower the p-value, the more far-fetched the null hypothesis is

¢ confidence interval: an interval which is expected to typically contain the parameter being

estimated
o 100(1 — a)% confidence interval for 8;: 3; + tn21-a/2 ° se(B1)
= general: Estimate + (t value)(standard error of estimate)
« prediction of a new point: y, = Bo + B + €, where € ~ N(0,0?%)

e analysis of variance (ANOVA): a collection of statistical models and their associated estimation
procedures used to analyze the differences between groups

o SST =SSR + SSE

Source d.f. SS (Sum of Squares) MS (Mean Square) F
Regression 1 SSR =" (9 — y)* MSR = SSR -

Residual (Errory n—2  SSE=3%" (yi—¥:)®> MSE =

Total n—1 SST = Z?:l (yi — 9)?


https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
https://en.wikipedia.org/wiki/Statistical_hypothesis_test
https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/Confidence_interval

o F-test: any statistical test used to compare the variances of two samples or the ratio of variances
between multiple samples

o Hy: B1=0vs. Hy: 1 #0

o T~t, = T*~ F,

o quantile approach: reject Hy if F' > F} ;21 o (af (1 - alpha, 1, n - 2))
o probability approach: reject Hy if P(f > F') < awhere f ~ F},_»

o coefficient of determination: the proportion of the variation in the dependent variable that is

predictable from the independent variable(s)

'S 'S

. f
X X
:
2 _SSR _ 1 __ SSE
o R =557 = SST

= interpretation: 100 R2% of the variation in i can be explained by
o 0<R’<1

= the better the linear regression (right) fits the data in comparison to the simple average (left),
the closer the value of R? is to 1

e Pearson correlation: a correlation coefficient that measures linear (!) correlation between two

variables z, y
o= sign(Bl)\/R2
o inR..
= cov(x,y) returns ﬁ Z?:;L(mi —Z)(y; — )

= |var (x) returns nlj 2?21(% — 5)2

Cov(z,
= cor(x,y) returns ﬁw_%

®m sd(x) returns sqrt (var (x))
o diagnostics: y ~ N (B + Biz,0?)
o independence: told by investigator
o linearity: plot y against
o constant variance: plot y — { against ¢

o normal distribution: plot y — ¢ against normal quantiles


https://en.wikipedia.org/wiki/F-test
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Recap: Matrix Algebra

e matrix: a rectangular array of numbers
o formally: A € p x g (matrix A with p rows and g columns)
= A = (a;;), where a;; is the entry in row ¢ and column j
o square matrix: same number of rows and columns (p = q)
» det(AB) = det(A)det(B) (also written as |AB| = | A|| B|)
o identity matrix I: square matrix with ones in the diagonal and zeros everywhere else

o zero matrix O: matrix of all zeros

o diagonal (square) matrix: all entries outside the diagonal are zero

¢ (column) vector: a matrix consisting of a single column

o formally: z € p X 1
npr = (x’L)
o elements: z4,..., T,

o unit vector 1: vector with all elements equal to one

o zero vector 0: vector with all elements equal to zero
Operations and Special Types

e matrix / vector addition: element-wise, same dimensions

 matrix / vector multiplication: for A € p X q, B € q X t, go through each row in the first matrix
and multiply and add the elements with the elements of each column in the second matrix; that's
one complete row in the result matrix

o formally: C = AB = (c¢ij) € p X t with ¢;j = D> 7| Qirby;
o (AB)C = A(BC)
o (A+ B)C = AC + BC
o A(B+C)=AB+ AC

e matrix transposition: interchange rows and columns
o formally: A’ = (aj;) with A € ¢ x p
o symmetric matrix: A = A’

(A+B) =A"+ B’

Ay =A

(cA) = cA’

o (AB) =B'A'forAecmxn,Benxp

o

(¢]

[¢]

¢ (inner) vector product: multiply element-wise, then add all together — scalar


https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Row_and_column_vectors

o formally: 'y = > 7  zy;
o orthogonal vectors: inner product 0
o euclidian norm (length): ||z|| = vVa&'x

¢ set of linearly dependent vectors: there exist scalars c;, not all simultaneously zero, such that
c1®y + ... +cpx = 0

o (!) at least one vector can be written as a linear combination of the remaining ones (for example,
a column in a matrix is the summation of two other columns)

o linearly independent: otherwise
e matrix rank: largest number of linearly independent columns (or rows)
o nonsingular matrix: square matrix with rank equal to row / column number
= formally: A € m x m, rank(4A) =m
o matrixinverse: AA 1 = A1A=1
o ABB'A 1 =1
o (A7) = ()
o (M)l = %A’l
o for nonsingular matrices: (AB) ! = B~14!
« orthogonal (square) matrix: AA' = A’A =1
o Al=A"1
o the rows (columns) are mutually orthogonal
o the length of the rows (columns) is one
o det(A) = £1
e trace of a (square) matrix: the sum of its diagonal elements
o formally: tr(A4) = > a;
o tr(A) = tr(4))
o tr(A+ B) =tr(A) + tr(B)

o tr(CDE) = tr(ECD) = tr(DEQC) for conformable matrices C, D, E (matrices s.t.
products are defined)

o tr(c) =c
o bonus: E(tr(-)) = tr(E(-))
» idempotent (square) matrix: AA = A
o det(A)=0o0or1
o rank(A) = tr(A)

Simple Regression (Matrix)



» simple regression (matrix approach): y = X3 + €

o y,e€are (n x 1) random vectors

o X isa (n x 2) matrix (first col. ones, second column z;
LSEB = (X'X) 1 X'y
fitted value vector §j — X

[¢]

[¢]

(¢]

residual vectore =y — 9§ =y — X,[:]

LSE s2 = -Loe’e

[¢]

e random vector: vector y of random variables

o mean (expected value) E(y) = (E(y1), .., E(y,))" = p (non-random vector)

» E(yi) = p
E(yu) E(yln)

= for a random matrix: E(Y) = L (non-random matrix)

o properties: a scalar constant, b vector of constants, y random vector, A matrix of constants...
» E(ay +b) =aE(y)+0b

E(Ay) = A E(y)

E(y'A)=E(y)A

Var(Ay) = A Var(y)A'

if ¢ is normal distributed, so is Ay

« covariance matrix 3: diagonal elements Var(y; ), off-diagonal elements Cov(y;, y;)

o formally: Var(Y) =X =
E((yi —p)(y1 —m)) - E((y1 — 1) (¥n — p0))
: : =E((y — u)(y — 1))
E((yn = o)1 — 1)) - E((Yn = pn) (Un — in))
o 3 symmetric, because Cov(y;,y;) = Cov(y;, y;)

o ¥ diagonal if observations (y;) are independent, because C'ov(y;, yj) =0,1 va ]

Multiple Regression

o general linear model: y = By + B1x1 + ... + B,T, + €
o response variable y
o several independent (predictor, explanatory) variables x;
o m cases, p predictor values: y; = By + S1Zi1 + ... + BpTip + € = p; +€;
= 1;;: value of the j-th predictor variable of the i-th case

= Y1, e, Yp iid., normal distributed, y; ~ N (u;, 0%)



= (1; non-random (deterministic)
L E(EZ) =0

= E(y;) = pi = Bo + Bazin + ... + Bpip

= Var(e) = o?

= Var(y;) = o?

e vectorform:y = X3 + €

[
oy= |1 [y~ NXB,o) E(y) =XB Var(y) = 0’1
Yn
1z ... zy
o X = fixed, non-random, full rank
1z ...z
Bo
o f=|":
Bp
€1
o €= ,€~ N(0,02I), E(e) =0, Var(e) = o*I
en

« LSE:B = (X'X) X'y
o fitted values § = XB = Hy
s H=X(X'X)'X'"enxn
» H is the orthogonal projection of y onto the linear space spanned by column vectors of
X
» H symmetric (H' = H)
» H idempotent (HH = H)
= E(y) = XB
= Var(y) = o*H
o residualse=y—9= (I —H)y

= (I — H) projects y onto the perpendicular space to the linear space spanned by the
column vectors of X

(I — H) symmetric (I — H)' = (I — H))

(I — H) idempotent (I — H)(I — H) = (I — H))
rearranged: y =9y +e=Hy+ (I — H)y
E(e)=0

Var(e) = o*(I — H)



= Var(,@l) 021)”, where v;; is the corresponding diag. el. in (X X)

e MLE: s> = S5E_ — n—k—l S (ys — 95)? (for k predictors not including the intercept!)

n—k—1
Source d.f. SS (Sum of Squares) MS (Mean Square) F
Regression k SSR =37 (9 —)° MSR = SSTR %—%
Residual n—k— SSE = Zﬁzl(yi - MSE = % -
(Error) 1 ¥;)? s
Total n—1 SST =377 1 (yi — 7)°

alternative ANOVA calculations:

o SST = y'y — ny®

o SSE =y'y— B'X'XP

o SSR = SST — SSE = B'X'XB — ny?
multiple R?: "usefulness" of regression...

2__ SSR _ 1 __ SSE - - o
o R = Sor — Sor (variation due to regression over total variation)

o adding a variable to a model increases the regression sum of squares, and hence R?

= if adding a variable only marginally increases R?, it might cast doubt on its inclusion in the
model

Ftest: Hy : 81 = ... = By = Ovs. Hy : atleastone 3; =# 0
o alternative: H,csppict : E(y) = Bo vs. Hyuy : E(y) = Bo + Br1 + ... + By
o F'= MSE ~ F}, n—r—1 (bottom of R output)
= quantile approach: reject Hy if ' > F , 1114
= probability approach: reject Hy if P(Fyandom > F') < a where Frongom ~ Frpn—k-1

t-test: Ho : 8 =0vs. Hq : 3; # 0

ot:_BL

se(B;)
» reject Hyif2- P(T > |t|) < aowhere T ~ t,, 1 1
= 100(1 — )% confidence interval for (3;: Bj t bty k1,1-a/2 se(Bj)

~ tn—k—l

linear combination of coefficients: for when we want to estimate a result with given predictors

o example (book): estimating avg. formaldehyde concentration in homes with UFFI (x; = 1) and
airtightness 5 (2 = 2)



L] 6 = BO+51 +5ﬂ2 = a',Bwitha' e (1,1,5)
) A 31.37
= estimate: 0 = a’B = (1,1,5) | 9.31 | = 54.96
2.85

¢ additional sum of squares principle (linear hypthoseses): testing simultaneous statements
about several parameters

o example:

» fullmodel: y = By + B1x1 + Boxs + B3x3 + €

= restrictions: each restriction is one equation equaling O

= 1 =2p; (or f1 — 26, = 0)
[ ] /63 pr— O
= matrix form: matrix A € a X (k + 1) has one row for each restriction and one column per
parameter (+ full rank)

Bo
01 -2 0\ |[B]| _ (O
0 0 0 1 Ba| \O
Bs
= hypothesis: H, : AB = 0 vs. H : atleast one of these 3; =0
= alternative: Hcrict : 4 = Bo + Bixy + By + B3x3 vs. Hfull p = Bo +
p1x1 + Baza + Baxs + Paxs + Bszs + Bse
= restricted model: y = By + B2(2x1 + x2) + €
o additional sum of squares: SS Erestricc — SSE fun

= (1) for u = Bo: SS Erestrict = SST

(SSErestTictf‘S’SEfull)/a

o test statistic: F' = SS B[ (n—F—1)

~ F, k1 forarowsin A, k parameters, n

observations

= reject H if p-value < «
Specification

e one-sample problem: y; = 5 + €;

° Y1, ..., Yy Observations taken under uniform conditions from a stable model with mean level 3,

o E(y;) = Bo

o E(y) = XpB
=y = (y1,--Un)
« X =(1,..,1)

= B =0



Bo=7

[¢]

n Y
0 62 = 2 — Sw _— XiWi—y)

SSE = SST

o inR: 1Im(y~1)

(¢]

e two-sample problem: y;

|

B1 + €
B2 + €

o Y1, ...-Ym taken under one set of conditions (standard process), mean (3;

i=1,2,...,m

t=m+1,...,n

© Ymils---, Yn taken under another set of conditions (new process), mean [y

o alternative: Y, — 51(131'1 + ﬁzwn + €

= E(y;) = Brxa + Bazio

= ;1, T;2 indicator variables

1 1=1,2,....m
u (L’,Ll: .
0 1=m+1,...,n

0 :=1,2,....m
u :1}22:
1 1=m+1,..,n

(?{1\

sE| I | =
Ym+1

)

L

o/

B1 +

o

0

B2

Y

» matrix form E(y) = XS

1

s X = 0
(B
ﬂ‘(@

o inR: Im(y~x1+x2-1)

oo

0
1

o 1)

)

o hypothesis: 81 = [

e polynomial models:

o linear: y; = By + Bix; + ¢€;



s X =
1 =z,
B Im(y~x)
o quadratic: y; = By + f1z; + foz? + €
1 z; 22
s X =
1 z, 22

m Im(y~x+I(x"2))

o k-th degree: y; = By + Bix; + ... + Brxk + €
1 .. =zt
" X - . . .
1 .. z*
» (Im(y~poly(x, degree=k, raw=T))

o systems of straight lines: yields of a chemical process which changes linearly with temperature...

o Y1, ..., Ym: yields of a chemical process at temperatures ¢4, ..., t,, in the absence of a catalyst
(z; = 0)

O Ymal, .-y Yom: Yields of a chemical process at the same temperatures ¢4, ..., t,, in the
presence of a catalyst (x; = 1)

o case a (main effects): the catalyst has an effect; the effect is the same at all temperatures
i Bo + Bit; i=1,2,....m
n ’i pr— .
Bo+ Biticm + P2 i=m+1,....2m
= alternative (indicator variable): E(y;) = By + Bit; + Box;
0 :=1,2,....m
n w’l = .
1 1=m+1,...,2m
= ti—l—m = tZ,Z = 1, 2, ceey M

» matrix form: E(y) = XS
/ Y1 \

Ym
Ym+1

\ v |




L
" X=11 4 1
i 1
Bo
= 8= |5
B

= hypothesis: 35 = 0
o case b (interaction): the catalyst has an effect; the effect changes with temperature
= ;= Bo+ Biti + Bazx; + Bstix; 1 =1,2,...,2m
= catalystabsent (v; = 0): u; = By + Bty i =1,2,....m
= catalyst present (z; = 1): u; = By + Biticm + B2 + Bsticyy t=m+1,...,2m
= i =PBo+ B+ (Br+ Bs)tim
= matrix form: E(y) = X8

(o)

Ym
Ym+1

—_ =
H. .
—

—_

~

p—

\1 tn 1 tn)
Bo
B
B2
3

= hypothesis: 35 = 3 = 0 (no rejection — catalyst has no effect)

= B =

= catalyst depends on temperature? 33 = (

e one-way classification (k-sample problem): comparison of several "treatments"; generalization of
the two-sample problem

o k catalysts, n; observations with the ¢-th catalyst (z = 1, ..., k)

= N = Ny + ... + Ng total observations



o 1;;: j-th observation from the i-th catalyst group (2 = 1,...,k; j =1,...,n;)
= E(yi;) = Bi
o matrix form: E(y) = XB = fix1 + ... + Brxk

= 2;: regressor vectors indicating the group membership of the observations

1 y;; from group 4
L =
g 0 otherwise

= example (3 groups):
[ yn \
Yiny
Y21
y2n2

Y31

\ 4o

/100\

0O 1 0
X = (2131,332,5133) -

0O 1 0

0 0 1

B
= B =5
Bs
o LSE: BZ =y,
o hypothesis: 81 = By = ... = 3},
o alternative (reference group): relate group means to the mean of a reference group (here, the
first group)
u 57, - ,81 —I—CSZ, ’L — 2,3,]{2

b1 1=1
= E(y;) = .
ﬁ1+5l ’L—2,...,k

» matrix form: E(y) = X3 where X = (1, @2, ..., i) and 8 = (b1, b2, ..., o)’

= example (3 groups):



1 1 0
= X:(l,wz,mg):

1 1 0

1 0 1

B
» B= |6
d2

= LSE: ,8 = (yl, ?2 - ?1, ceey yk - yl)/

e multicollinearity: in the presence of one variable, the other is not important enough to have it
included; the two variables express the same information, so there is no point to include both (p.
157/ 171)

o typically shown by the fact that, in a model which includes both covariates, neither is significant
on its own (t-test)

 orthogonality: special properties for X matrices with orthogonal columns (dot product of any two
columns 0)...

o non-changing estimates: 3; remains the same, regardless of how many variables there are in
the model

o additivity of SSRs: SSR(x1, ..., zx) = SSR(z1) + ... + SSR(xy,), for a differing number
of variables in a model

o orthogonal — independence: the components of B are independent (covariances between

B; zero)

Model Diagnostics

e possible reasons for a model being inadequate:

o inadequate functional form: missing needed variables and nonlinear components

o incorrect error specification: non-constant Var(ei), non-normal distribution, non-independent
errors

o unusual observations: outliers playing a big part
e residual analysis: using the residual to assess the adequacy of a model
o residuall e =y — ¥
= §=Hy

= i-th case in dataset: ¢; = y; — U;


https://en.wikipedia.org/wiki/Regression_validation
https://en.wikipedia.org/wiki/Statistical_model_validation#Residual_diagnostics
https://en.wikipedia.org/wiki/Errors_and_residuals

= estimates the random component €
+ E(e) = (I - H)E(y)
= correctly specified model: F(e) = 0
» Fle)=([[—-H)E(lyy=I-H)XB=..=XB-Xp=0
= incorrectly specified model: E(e) = 0
= "true” model: E(y) = X8 + uy
= u: regressor vector not in L(X)
= 7y:a parameter
" Ee)=(I-H)E(y) = -H)(XB+uy) =7 -H)uz0
o e and ¥ should be uncorrelated

n fitted values should not carry any information on the residuals

= in other words: a graph of the residuals against the fitted values should show no patterns
o properties: for y = X 3 + €, where h;; are elements of H...
= Var(e;) = o constant
= Var(e;) = o*(1 — hj;) not constant
= Cov(e;,€5) =0, @ juncorrelated
= Cov(e;,e;) = —02hyj, i =# j not uncorrelated
o standardized residuals: residuals standardized to have approx. mean zero and variance one

= definition: e = <

s recall: 62 = s2 =

o studentized residuals: the dimensionless ratio resulting from the division of a residual by an

estimate of its standard deviation

= |dl| > 2 or 3 would make us question whether the model is adequate for that case 2

= a histogram or a dot plot of the studentized residuals helps us assess whether one or more
of the residuals are unusually large

o serial correlation (autocorrelation): if a regression model is fit to time series data (e.g. monthly,

yearly...), it is likely that errors are serially correlated (as opposed to the errors €; being independent
for time indices t)

o positively autocorrelated: a positive error last time unit implies a similar positive error this time
unit

o detection: calculate lag k sample autocorrelation r;, of the residuals (rg = 1)
= measures the association within the same series (residuals) k steps apart
= sample correlation between e; and its k-th lag, e;_,

= lag k autocorrelation always between —1 and +1


https://en.wikipedia.org/wiki/Studentized_residual
https://en.wikipedia.org/wiki/Autocorrelation#Regression_analysis

= graphically: plot e; against e;_j; and look for associations (positive: upwards, negative:
downwards)

" inR: acf(fit$residuals, las=1)
o autocorrelation function (of the residuals): graph of autocorrelations 7, as a function of the
lag k
= two horizontal bands at :i:%1 are added to the graph

= sample autocorrelations that are outside these limits are indications of autocorrelation

= jf (almost) all autocorrelations are within these limits, one can make the assumption of
independent errors

o Durbin-Watson test: examines lag 1 autocorrelation 71 in more detail; complicated to compute
» DW = 2: independent errors
» DW > 2or DW < 2: correlated errors
e outlier: an observation that differs from the majority of the cases in the data set

o one must distinguish among outliers in the y (response) dimension (a) vs. outliers in the =
(covariate) dimension (b) vs. outliers in both dimensions (c)

o x dimension: outliers that have unusual values on one or more of the covariates
o 1y dimension: outliers are linked to the regression model

= random component too large?

= response or covariates recorded incorrectly?

= missing covariate?
o detection: graphically, studentized residual, leverage

¢ influence: an individual case has a major influence on a statistical procedure if the effects of the
analysis are significantly altered when the case is omitted

¢ leverage: a measure of how far away the independent variable values of an observation are from
those of the other observations

o definition: h;; for i-th independent observation, ¢ = 1, .., n (entry in hat matrix H)
o properties:

= h;; is a function of the covariates () but not the response

h;; is higher for x farther away from the centroid ©

7 k+l
h = n

rule of thumb: a case for which the leverage exceeds twice the average is considered a
high-leverage case

= formally: h;; > 2h = %%1

¢ influence: study how the deletion of a case affects the parameter estimates


https://en.wikipedia.org/wiki/Leverage_(statistics)

o after deleting the i-th case: y = X 8 + € for the remaining n — 1 cases

o ﬂ(i): the estimate of B without the i-th case
o ,3: the estimate of 3 for all cases

o influence of the j-th case: 3 — B

o Cook's D statistic: estimate of the influence of a data point when performing a least-squares

regression analysis

= D; > 0.5 should be examined

= D; > 1 great concern

Lack of Fit

¢ lack of fit test: can be performed if there are repeated observations at some of the constellations of
the explanatory variables

o formally: for n observations, only k different values of x were observed
= there were n; values of y measured at covariate value z;, 7 =1,...,k

" T1 Y11y Ying

Lk 2 Ykly ooy Ykny
o one-way classification model: y;; = f1l(z; = z1) + ... + Bl (i = xk) + €5
= S0, in essence, each individual result for a certain constellation x; is just 3; + €ij
» E(eij) =0
= Var(eij) = o?

o matrix form:y = X3 + €

k
= y € n X 1:vector of responses, n = > . n;

= X € n X k: design matrix with ones and zeros representing the k groups

= B € k x 1: vector of unknown means ;

° (/81) 1516) = (gla 7?1@)
=Y = i1 Yij (avg. of group )
o restricted (parametric) model: y;; = Bo + Bix; + €;; estimate via least squares

o PESS: PESS = SSEfull = Zle Z;L;l(yzy - gz)z

= d.f. number of observations minus number of groups (n — k)

o LFSS: LFSS = ¥ ni(7: — Bo — i) > 0
= d.f. number of groups k - number of parameters (lin: 2 params.)
= SSE,estrictc = PESS + LFSS


https://en.wikipedia.org/wiki/Cook%27s_distance

= SSErestTict Z SSEfull

o test (Iinear): Hrestrict LM = /80 + /31'771' VS. Hfull = MK; = Bl ( - xl) + ...+
Bl (z; = 1)

_ LFSS/(k—2)
» = PESS/(n—k) ~ Fk—2,n—k

= reject Hy = lack of fit, reject restricted model

o test (general): Hrestmct Hi = ﬁO + Blmi + /821712 + ... vs. Hfull = K = 61 ( - xl) +
ot Brl(z = z1)

_ LFSS/(k—dim(8))
" = PESS/(n—Fk) ~ Fl_dim(8)n—k

e variance-stabilizing transformations: find a simple function g to apply to values x in a data set to

create new values y = g(z) such that the variability of the values y is not related to their mean
value

o assume y = U + € where p is a fixed mean

= Var(y) = (h(r))%0? has a non-constant variance that depends on the mean

= h known

o goal: find g(x) such that Var(g(z)) is constant and does not depend on p

o Var(g(y)) = (¢'(1))*(h(w))*o?
» goal: find g such that g’'(u) = ﬁ such that finally Var(g(y)) ~ o2

= example: h(p) = p = ¢'(p) = - = g(p) =In(p)

o Box-Cox transformations: find ) s.t. the transformed response yi(’\) minimizes SSE())
(done in a table, compare various As to their SSE(\)s)

= )\ = 0: log transform using limit [ Im(log(...)~., data=...)
" )\ = %:square root transform (1m (sqrt (...)~., data=...)
= A\ = 1l:notransform Im(...~., data=...)

= \ = 2:square transform Im((...)*(...)~., data=...)

® inR: library (MASS); boxcox (fit)
Model Selection

e goal: given observational data, find the best model which incorporates the concepts of model fit
and model simplicity

o increasing the number of predictors increases variability in the predictions

2
= Var(y§) = 0°’H = average variance 2 Y7 | Var(§) = JU:L—H) for k covariates and
sample size n

o multicollinearity: different methods of analysis may end up with final models that look very
different, but describe the data equally well


https://en.wikipedia.org/wiki/Variance-stabilizing_transformation

e model selection: given observations on a repsonse y and q potential explanatory variables
V1, ..., Vg, Selecta model y = By + B1x1 + ... + By, + € where..

° 1, ..., Tp is a subset of the original regressors vy, ..., V4
o no important variable is left out of the model

o no unimportant variable is included in the model
« all possible regressions: fit 2¢ models if ¢ variables are involved
o Ri =1- % for k variables and k + 1 regression coefficients

= increase in k means decrease in SS Ey, approachingOwhenk =n — 1

= increase in R’ means decrease in s>

» SST does not depend on the covariates; just on y (see definition)
= therefore, R? approaches 1 as k increases, so we don't use R2, since we'd just choose the

model with the most variables

o R?,.: adjusted R?

= remedies the problem of R? continually increasing by dividing the degrees of freedom

2

= ideal model and choice of k: highest R; ;.

= equivalent: smallest s2

o AIC': Akaike's Information Criterion

= prefer models with smaller AIC

o BIC': Bayesian Information Criterion

= |arger penalty for more variables

¢ automatic model selection methods: forward selection, backward elimination, stepwise
regression (needed in R: library (MASS) )

o forward selection: start with the smallest model, build up to the optimal model

= in R: stepAIC(lm(y~1, data=dataset), direction = "forward", scope =
list (upper = lm(y~., data=dataset))[, k = log(nrow(dataset))]) (for BIC:

[...1)
o backward elimination: start with the largest model and build down to the optimal model

= in R: stepAIC(lm(y~., data=dataset), direction = "backward"[, k =

log(nrow (dataset)) 1)

o stepwise regression: oscillate between forward selection and backward elimination

= in R: use either previous function, but with [direction = "both"

forward selection


https://en.wikipedia.org/wiki/Model_selection
https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Bayesian_information_criterion

INIT
M = intercept-only model

P = all covariates

REPEAT
IF P empty STOP
ELSE
calculate AIC for sizeof (P) models, each model containing one covariate
in P is added to M
IF all AICs > AIC(M) STOP
ELSE
update M with covariate whose addition had minimum AIC

remove covariate from P

backward elimination

INIT
M = model with all covariates
P = all covariates

REPEAT

IF P empty STOP
ELSE
calculate AIC for sizeof (P) models, each model without each of the
covariates in P
IF all AICs > AIC(M) STOP
ELSE
update M by deleting covariate that led to minimum AIC

remove covariate from P

stepwise regression

INIT
M = intercept-only model OR full model
e = small threshold

REPEAT UNTIL STOP
do a forward step on M

do a backward step on M

For both steps, the differences in AIC need to be
greater than e for the selection to go forward, otherwise

the changes can keep undoing each other.



Nonlinear Regression

[e]

o

[e]

o

[e]

[e]

o

[e]

linear model (recap): y = u + € where u = By + f1x1 + ... + Brxy

key: linearity of the parameters [3;

the regressor variables x; can be any known nonlinear function of the regressors...

intrinsically nonlinear model: a nonlinear model that cannot be transformed into a linear model

counterexample: ¥ = a’ z] e can be transformed into In(y) = In(a) + 8 1n(z;) +
v1In(zs) + In(e)

require iterative algorithms and convergence (vs. linear models, which are analytic)

linear trend model: y; = o + ¢

y: growth rate, unbounded

a: starting value att = 0

nonlinear regression model: y; = u; + ¢; = p(x;, B) + €;

€ ~ N(0,0?)iid. fori = 1,...,n

@; = (21, ..., Ty ) : vector of m covariates for the i-th case (typically m = 1, where the
covariate is time)

B: vector of p parameters to be estimated along with o? (usually a different num. of parameters
than covariates)

w(z;, B): nonlinear model component
S(B) =21y — p(zi, B))?
estimates:
= ,B: no closed form!
= use iterative function to minimize S(/3)

. 52— g2 — 5B " (yi—p(xi,B))’

n—p n—p
Var(B) ~ s2(X'X)?
= s.e.(Bi) = 4/ V;; (the square roots of the diagonal elements in the covariance matrix
provide estimates of the standard errors)

» off-diagonal elements provide estimates of the covariances among the estimates
100(1 — Oé)% C.l for ,Bji B]’ + tn_p’l_a/Qs.e.(ﬂAj)

HO:/BjZOVS-Ha:/Bj?O:t:s'_&ﬂ(-BLj)Ntnp

fe
s.e.(,éj) tn—p

= for constants: Hy : B3; = cvs. H, : 3; #ct=

restricted models or goodness-of-fit tests can be performed similarly as for linear models

inR: fitnls = nls(y~(formula using a, b),start=list(a=...,b=...))



¢ Newton-Raphson method: a root-finding algorithm which produces successively better

approximations to the zeroes of a real-valued function
o goal: find B that minimizes f(/3), here S(B) or —log L(B)
» Df(B) = (g—ﬂfl, v %)': the p-vector containing the first derivatives of f w.r.t. 53;
P

2
. sz(,B): the p X p matrix of second derivatives with the 2j-th element aﬁa-afﬁf (Hessian

matrix)

o general: initialize B,,; = starting value, then repeat until convergence:

1. IBnew ~ :Bold o (D2f(:80ld))_1Df(ﬂold)
2. ﬂold - IBnew

= problem: unstable due to inversion

o scoring: initialize 3,;; = starting value, then repeat until convergence:

1. IBnew ~ IBOld + (I(ﬂold))ilD logL(ﬁold)
2. ﬂold = IBnew
= information matrix: I(8) = E(—D?log L(B))

o problematic: local minima that "trap" iterative algorithms, parameters of highly varying
magnitudes (e.g. one parameter in range 0-1, another in the thousands), badly specified models
with non-identifiable parameters (similar to multicollinearity)

Time Series Models

e first-order autoregressive model (AR1): y; = ,u(Xt, 5) + €

o autocorrelations of observations 1 step apart: ¢
= all correlations among observations one step apart ¢ are the same
» ¢ = Corr(e,e3) = ... = Corr(e, 1, €,)

» |¢| < 1 (correlations between —1 and +1)

o autocorrelations of observations k steps apart: ¢k
» ¢F = Corr(e1,€xi1) = ... = Corr(en—, €n)

o properties of autocorrelations:

= they depend only on the time lag between the observations (so the time indices don't matter;
just the time distance)

= they decrease exponentially with the time lag (because —1 < ¢ < 1)

» the farther apart the observations, the weaker the autocorrelation

» if ¢ is close to 1, the decay is slow
o autocorrelation functions (lag k correlation): p;, = ¢* = Corr(e;_y, )

= po=1


https://en.wikipedia.org/wiki/Newton%27s_method

" Pk = Pk
o correlated error at time t: ¢, = ¢¢;_1 + a; where a; ~ N(0,02)
= white noise (random shocks): a;
= @, is the "usual" regression model error; mean 0, all uncorrelated
= Corr(a;—g,a;) = Oforallk =0
= expanded: €; = a; + ¢as 1 + p*ar 2 + ...
» E(et) =0
o2
» Var(e) — s

o stationary model: fixed level O; realizations scatter around the fixed level and sample paths
don't leave this level for long periods

o inR: | library(nlme); fitgls=gls (y~x,correlation=corARMA (p=1,q=0)) (change p=2 for
AR2)

 random walk model: y; = u(Xy, B) +
o ¢ =1
© € = €1 T A =0+ Q1+ a2+ ...

= cumulative sum of all random shocks up to time ¢

[¢]

nonstationary model: no fixed level; paths can deviate for long periods from the starting point

o

first-order difference: w; = €; — €¢;_1 = a,
= well-behaved, stationary, uncorrelated

o effects of ignoring autocorrelation: what happens when we fit a standard linear model even if the
errors are correlated?

o stationary errors: variance of ,3 will be overestimated compared to the true variance
(inefficiency)

= { ratios too small — null hypothesis less likely to be rejected when it should be
o non-stationary errors: variance ofB will be underestimated compared to the true variance
= { ratios too large — null hypothesis likely to be rejected when it shouldn't be

o forecasting (prediciton): given data up to time period n, predict response at time period n + r (r
step-ahead forecast)

o r step-ahead forecast: ¥, (1) = Uy,

= 1 forecast origin

s 7: forecast horizon

o assumption: future values of the covariate x; are known (e.g. own future investments)

o 1 step forecast (AR1, one covariate): assume x,, 1 known...



« observation: g1 = ¢y + (1 — ¢)fo + (Zas1 — da)B1 + dnis

¢)BO + (xn—&-l - éxn)/gl
= 95% CI: ¢, 1 + 1.96s€(gp11)

= prediction: 9,1 = ¢y, + (1

~

o general step forecast (AR1, one covariate): 9, = ¢Gnir_1 + (1-— $)Bo + (Tpir —
¢xn+r—l)ﬂl forr > 2

= 95% Cl: 4, = 1.96s€(Jy1r)

Logistic Regression

¢ logistic regression: regression where the response variable is binary (general: categorical)
o 1;: outcomeofcase?, 21=1,2,...n
= y; ~ Ber(w), independent

» P(y; = 1) = 7 (success)
" In (11%)‘) = zi8 = Bo + frzi + ... + Bpip

a:,-ﬁ
= mle) =
n 1 — 7T(:BZ) = m

Bo: inflection point

[1: steepness of sigmoid-like function

= risk of y for factor x: w(z) = P(y = 1|x) = 1565,/3
= odds of y for a fixed z: Odds(z) = 17_T§f2)m) = 15(334(2319?%) = exp(z'B)

= how much higher is the probability of the occurrence y compared to the
nonoccurrence of y?

= oddsofn : 1 == occurence is n times more likely than nonoccurence

Odds(z=1) Pt
.. S\ T= __ P(y=0lz=1
= odds ratio: OR = Odds(2=0) — p((zzlz_:oi

P(y=0[z=0)

= 3=1In (%) —In <1ﬁ5f(2£)) = In(OR) vector of log odds ratios
« exp(8) = OR

= what is the multiplicative factor by which the odds of occurrence increase /
decrease for a change from x to  + 1?

» eg.f=—-0.2 - exp(B) = 0.82 = achange fromz tox + 1
decreases the odds of occurence by 18%

» for k units: Sk with ratio measured as exp(Sk)
» P(y; =0) =1 — 7 (failure)
" E(yi)=m


https://en.wikipedia.org/wiki/Logistic_regression

o one covariate model: exp(z'() = By + Bz
« In (_lfg(;lfzc)) — By + Bz
Odds(z) = % = exp(fo + fiz)

= Odds(z = 0) = exp(Bo + B1 - 0) = exp(Bo)
» Odds(z =1) =exp(By + B1 - 1) = exp(Bo + f1)

* OR = Gri=y) = exp(B1)
« A1 = In(OR)

= Hj : B1 = 0 (no assoc. between x and v)

Bo = In(Odds(z = 0))

o MLE B: Newton-Raphson...
o Cls and tests:
= 100(1 — @)% Cl for In(OR): Bj + zl,a/gse(Bj)
= 100(1 — )% Cl for OR: exp(B; + zl,a/gse(ﬁj))

] WaIdtest:HO:ﬁj=Ovs.HA:,8j7tO: %NN(O,].)

o case: an individual observation

o constellation: grouped information at distinct levels of the explanatory variables

= ny; number of cases at the k-th constellation

= 15 number of successes at the k-th constellation

exp(z3)

= prob. of success for k-th constellation: 7(zx, 8) = 55

o likelihood ratio tests (LRT): used to compare the maximum likelihood under the current model
(the “full” model), with the maximum likelihood obtained under alternative competing models
("restricted" models)

= H,estrict - linear predictor )., Bres vs. Hyy - linear predictor '3

" I,.s Subset of

= LRT statistic: 2 - In (%) =2-In (%) ~ XZ

» equiv.: 2 - (In(L(full)) — In(L(restrict)))
a = dim(8) — dim(B,es)

reject H,..:ric¢ if Statistic greater than corresponding chi-square value

large value — the success probability depends on one or more of the regressors
(i.e. full model better)

small value — none of the regressors in the model influence the success probability

o deviance: twice the log-likelihood ratio between the saturated model and the parameterized
(full) model; m constellations



= saturated model: each constellation of the explanatory variables is allowed its own distinct

success probability
u ’ﬁ'k = y—k

Nk
. __ oln(L(saturated)) __ o L(#1,oftm) \ 12
D =2=Fquy  =2'In ( L(B) ) Xa

» g =m — dim(5)
» LRT = D(restricted) — D(full)
= p-value: 1 - pchisq(D, a)

e iNnR: fregs <- cbind(yes, no); fit <- glm(fregs~x[+...], family="binomial")
Poisson Regression

e generalized linear model (GLM): generalizes linear regression by allowing the linear model to be

related to the response variable via a link function

o response variables vy, ...y,,: share the same distribution from the exponential family (Normal,
Poisson, Binomial...)

o parameters (3 and explanatory variables 1, Ty

o monotone link function g: relates a transform of the mean p; linearly to the explanatory
variables

= g(wi) = Bo + Piza + ... + ﬂpwip

= standard linear regression: g(,u) = u (identity function)
= logistic regression: g(u) = In (ﬁ) (logit)

= Poisson regression: g(u) = In(u)

e Poisson regression model: response represents count data (e.g. number of daily equipment
failures, weekly traffic fatalities...)

o P(Y =y) = Z—?e‘“, y=20,1,2,...

o E(y) =Var(y) =pn>0

o g(p) =In(k) = Bo + Brz1 + ... + Bpzp
= p=exp(Bo+ Biz1 + ... + Bpxp)

o interpretation of coefficients: changing x; by one unit to x; + 1 while keeping all other
regressors fixed affects the mean of the response by 100(exp(5;) — 1)%

= example: exp(BotBi(m 1)+ +5z,) _ exp(51)

exp(Bo+Biz1+...+Bpp)

o 95% Cl: 3 + 1.96se(f)
= for the mean ratio exp(3): exp(8 + 1.96se(f))

o everything else identical to logistic regression


https://en.wikipedia.org/wiki/Generalized_linear_model

Linear Mixed Effects Models

¢ linear mixed effects models: some subset of regression parameters vary randomly from one
individual to another

o individuals are assumed to have their own subject-specific mean response trajectories over time

o simple mixed effects model: Yij =pB+b + e;; (observation = population mean + individual
deviation + measurement error)

= (3: population mean (fixed effects, constant)

b;: individual deviation from the population mean (random effects) (i-th individual)
= positive: individual responds higher than population average (higher on y-axis)

= negative: individual responds lower than population average (lower on y-axis)

= ¢;;: within-individual deviations (measurement error) (z-th individual, j-th observation)
= e;; ~ N(0,0?)

= E(Yij) =8

= Var(Yi;) = d + o?

= Cov(Yij, Yim) = 0fori # k

= Cov(Y;5,Y:5) = Var(Yi;) = d + o

= Cov(Yy,Yir) =d

. T(Y'U,Ykm)—Oforz#k

" 7'(Ym i) =

or(Yij, Yir) =

= in R: matrix format, n rows for n individuals and m columns for  time points per individual

_d_
d+o?

= has to be transformed into longitudinal format for use with ' 1me

o general linear mixed effects model: Y; = X;8 + Z;b; + e;, b; ~ Ny(0,D), e; ~
Ny, (0, R;), where R; = o 2T,

= Y; € R": outcomes (for ¢-th individual, as for nearly everything here...)

X; € R™*P: design matrix for fixed effects

Z; € R™*?: design matrix for random effects (columns are usually subset of columns of X;
)
B € RP: fixed effects

= any component of 3 can be allowed to vary randomly by including the corresponding
column of X in Z;

b; € R?: random effects



= independent of covariates X;
= ¢; € R™: within-individual errors
= conditional mean: E(Y; | b;) = X;8 + Z;b;
» marginal mean: E(Y;) = X,
= conditional variance: Var(Y; | b;) = R;
= marginal variance: Var(Y;) = Z,DZ, + R;
» kg = 7 Do (zi — T)? (unbiased, restricted maximum likelihood)
= 03 = 237" (2, — T)? (biased)

~

= b;: best linear unbiased predictor (BLUP)

= "shrinks" the ¢-th individual's predicted response profile towards the population-averaged
mean response profile

= large R; compared to D == more shrinkage to mean
= small R; compared to D —- closer to observed value

= large n; — less shrinkage

Statistical Learning (Machine Learning)

e supervised learning: an outcome (which guides the learning process) predicted based on a set of
features

o unsupervised learning: no outcome; only features observed (not relevant here)

o outcome (outputs, responses, dependent variables): the thing to predict; can be quantitative
(ordered, e.g. stock price) or qualitative (unordered here, categorical, factors, e.g species of Iris)

= predicting quantitative outcomes — regression

= predicting qualitative outcomes — classification

o features (inputs, predictors, independent variables): the data to make predcitions for the
outcome

o training set: data set containing both features and outcomes to build the model
Prediction Methods

* |east squares model (linear model): high stability but Jow accuracy (high bias, low variance)
o goal: predict Y by f(X) = X'

= [o: intercept (bias)

X € RP: random input vector (first element 1 for intercept)

Y € R: random outcome (to predict)

p(X,Y): joint distribution

f(X): function for predicting Y based on X



= f’(X) = B € RP: vector that points in the steepest uphill direction

» (Z1,Y1)5 -+, (Tn, Yp): training data
n

method: pick 3 to minimize residual sum of squares RSS(8) = >.7 , (v; — =;5)?
= matrix notation: RSS(8) = (y — XB8)'(y — XB)
LSE: 8 = (X'X) X'y

[e]

[¢]

= fitted value: §; = 3
theoretical: 3 = (E(X'X)) 1E(X'Y)

should only be used when Y is continuous and Normal distributed

o

[¢]

e k-nearest neighbor model: /ow stability but high accuracy (low bias, high variance)
o use observations in training set closest in input space to x to form Y
) _ 1
= formally: f(z) = z ineNk(m) Yi
= Nk(a:): neighborhood of x defined by the k closest points x; in the training sample

= find k observations with x; closest to new x in input space, and average their responses
Statistical Decision Theory

e loss function L(Y, f(X)): penalizes errors in prediction
o expected prediction error: EPE(f) = E, ,(L(Y, f(X)))

 expected (squared) prediction error: criterion for choosing f based on the squared error loss
function (L2)

o L2Loss: Ly = L(Y, f(X)) = (Y — f(X))? (most popular)

o BPE(f) = B, (Y — f(X))? = [[(y — £(2)p(e,y)dady = [([(V -
f(@))’p(ylx)dy)p(z)de = By (B, (Y — £(X))?|X))

(Y — f(X))?| X) forall X

o optimal Bayes classifier: minimize Ey‘x
= Jfoayes(X) = By, (Y[X)
« nearest neighbor: f(x) = Ave(y; | x; € Ni(z))
o asn,k— 00,5 —0:f(z) > E(Y | X =2)
e L1Loss: E|Y — f(X)| (abs. value)
o f(x) = median(Y | X = z)
Categorical Data

o estimate é’: contains values in the set of possible classes G where \g] =K
o loss function: L € RE*K

o zero on he diagonal

o nonnegative elsewhere



= L(k,1): price paid for classifying an observation belonging to class G, as G

o zero-one loss function: all misclassifications are charged one unit

. L(k,1) = {(1) :;ﬁ
o EPE = E(L(G,G(X))) = E.(Ey,(L(G,G(X)) | X))
= Ey.(L(G,G(X)) | X) = Y4y L(Gr, £(X)p(Gk | X)
- Y p(G | X) =1

= f(X) = argming ¢ >, L(Gr, 9)p(Gx | X)
= zero-one loss: f(X) = argmax ., p(g | X)

" f(X) = fbayes(X)
s EPE(frayes) = By (LY, frayes(X)))

Summary by Flavius Schmidt, ge83pux, 2025.
https://home.cit.tum.de/~scfl/
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