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Recap: Basic Statistics

mean (expected value): the mean of the possible values a random variable can take

notation: 

finitely many outcomes: 

countably infinitely many outcomes: 

random variables with density: 

properties:

E(X) = μ

E(X) = x ​p ​ +1 1 ... + x ​p ​n n

E(X) = ​x ​p ​∑i=1
∞

i i

E(X) = ​xf(x)dx∫−∞
∞

E(c) = c

E(aX + b) = aE(x) + b

E(a ​X ​ +1 1 ... + a ​X ​) =n n a ​E(X ​) +1 1 ... + a ​E(X ​)n n

https://en.wikipedia.org/wiki/Expected_value


 for independent (uncorrelated) 

standard deviation: a measure of the amount of variation of the values of a variable about its mean

definition: 

standard error: the standard deviation of its sampling distribution or an estimate of that standard
deviation

definition:  for  observations

variance: a measure of how far a set of numbers is spread out from their average value

notation: 

definition: 

properties:

 for independent (uncorrelated) 

E(X ​ ⋅1 ... ⋅ X ​) =n E(X ​) ⋅1 ... ⋅ E(X ​)n X ​i

E(g(X)) = ​ g(x)f(x)dx∫R

σ = ​Var(X)

se = ​

​n
σ n

Var(X) = σ2

Var(X) = E(X ) −2 E(X)2

Var(c) = 0

Var(X + a) = Var(X)

Var(aX) = a Var(X)2

Var(aX ± bY ) = a Var(X) +2 b Var(Y ) ±2 2ab Cov(X,Y )

Var(X ​ +1 ... + X ​) =n Var(X ​) +1 ... + Var(X ​)n X ​i

https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Standard_error
https://en.wikipedia.org/wiki/Variance


covariance: a measure of the joint variability of two random variables

definition: 

positively correlated variables: 

negatively correlated variables: 

uncorrelated variables:  (but not the other way around!)

independent variables: 

properties:

correlation: any statistical relationship, whether causal or not, between two random variables

definition: 

Cov(X,Y ) = E(XY ) − E(X)E(Y )

Cov(X,Y ) > 0

Cov(X,Y ) < 0

Cov(X,Y ) = 0

Cov(X,Y ) = 0

Cov(X,X) = Var(X)

Cov(X,Y ) = Cov(Y ,X)

Cov(X, c) = 0

Cov(aX, bY ) = ab Cov(X,Y )

Cov(X + a,Y + b) = Cov(X,Y )

Cov(aX + bY , cW + dV ) = acCov(X,W ) + adCov(X,V ) + bcCov(Y ,W ) +
bdCov(Y ,V )

Corr(X,Y ) = ​

​Var(X)Var(Y )

Cov(X,Y )

https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Correlation


Introduction

regression: creates a functional relationship between a response (dependent) variable and a set
of explanatory (predictor) variables (covariates)

regression model: which explanatory variables have an effect on the response?

deterministic relationship: a certain input will always lead to the same result

parameter: an unknown constant, most likely to be estimated by collecting and using data

empirical model: any kind of model based on empirical observations rather than on
mathematically describable (theory-based) relationships of the system modelled

controlled experiment: one where the experimenter can set the values of the explanatory
variable(s)

line definition (linear model):  

: constants (parameters)

intercept :  when 

slope : change in  if  is increased by 1 unit

: random disturbance (error)

: deterministic

: random, models variability in measurements around the regression line

linear in  and 

for each experiment: 

input and result: 

 remain constant

 vary per experiment 

mean 

variance 

 independent random variables for 

 deterministic (i.e. the input data is clearly and certainly defined; it can also be noisy,
in which case  is not deterministic)

 random variable;  independent for 

mean 

variance 

unexplained variability 

general: 

y = β ​ +0 β ​x1 (+ϵ)

β ​,β ​0 1

β ​0 y x = 0

β ​1 y x

ϵ

β ​ +0 β ​x1

ϵ

β ​0 β ​1

y ​ =i β ​ +0 β ​x ​ +1 i ϵ ​i

(x ​, y ​)i i

β ​,β ​0 1

x ​, ϵ ​i i i = 1, 2, ...,n

E(ϵ ​) =i 0

Var(ϵ ​) =i σ2

ϵ ​, ϵ ​i j i = j

x ​i

x ​i

⟹ y ​i y ​, y ​i j i = j

E(y ​) =i E(β ​ +0 β ​x ​ +1 i ϵ ​) =i β ​ +0 β ​x ​ +1 i ​ =

0

​E(ϵ ​)i β ​ +0 β ​x ​1 i

Var(y ​) =i σ2

σ

y = μ + ϵ



deterministic component 

explanatory variables  (assume fixed, measured without error)

: change in  when changing  by one unit while keeping all other
explanatory variables the same

, 

linearity: the derivatives of  with respect to the parameters  do not depend on the variables

notation:  for the -th unit (i.e. row in a table) and the -th explanatory variable (i.e. column in a
table) (R: table[i,j] )

dependent variable: depends on an independent variable

Simple Linear Regression

simple linear regression model: 

mean 

one predictor (regressor) variable 

one response variable 

random error 

for  pairs of observations : 

 not random (can be selected by experimenter)

, where 

 for 

any two observations  are independent for 

goal: estimate  from available data 

μ = β ​ +0 β ​x ​ +1 1 ... + β ​x ​p p

x ​, ...,x ​1 p

β ​, i =i 1, 2, ..., p μ x ​i

E(y) = μ Var(y) = σ2

μ β ​i

x ​ij i j

y = μ + ϵ

E(y) = μ = β ​ +0 β ​x1

x

y

ϵ

n (x ​, y ​)i i y ​ =i β ​ +0 β ​x ​ +1 i ϵ ​, i =i 1, ...,n

x ​i

ϵ ​ ∼i N(0,σ )2

y ​ ∼i N(μ ​,σ )i
2 μ ​ =i β +0 β ​x ​1 i

E(ϵ ​) =i 0

E(y ​) =i μ ​ =i β ​ +0 β ​x ​1 i

Var(ϵ ​) =i σ2

Var(y ​) =i σ2

Cov(ϵ ​, ϵ ​) =i j 0 i = j

y ​, y ​i j i = j

β ​,β ​,σ0 1
2 (x ​, y ​)i i

https://en.wikipedia.org/wiki/Simple_linear_regression


zero slope  absence of linear association

unbiased parameter estimate: 

biased parameter estimate: 

least squares estimation (LSE): a mathematical procedure for finding the best-fitting curve to a
given set of points by minimizing the sum of the squares of the offsets ("the residuals") of the points
from the curve

goal: minimize  where  (fitted value)

LSE 

(!) reordering using :

LSE 

LSE 

short: 

residual 

degree of freedom: number of independent observations ( ) minus the number of
estimated parameters (here 2,  and )

sample mean 

result mean 

⟹

E( ) =θ̂ θ

E( ) =θ̂  θ

​(y ​ −∑i=1
n

i ​ ​)ŷi 2
​ ​ =ŷi ​ ​ +β̂0 ​ ​x ​β̂1 i

​ ​ =β̂1 ​ =
​(x ​− )∑i=1

n
i x 2

​(x ​− )(y ​− ​)∑
i=1
n

i x i y
​

s ​xx

s ​xy

s ​ =xy ​(x ​ −∑i=1
n

i )(y ​ −x i ​)y

s ​ =xx ​(x ​ −∑i=1
n

i )(x −x i )x

​(x ​ −∑i=1
n

i ) =x 0

​ ​
=β̂1 ​

​(x ​− )∑i=1
n

i x 2
​(x ​− )y ​∑i=1

n
i x i

s ​ =xx ​x ​(x ​ −∑
i=1
n

i i )x

​ ​ =β̂0 ​ −y ​ ​β̂1x

s =2
​ ​(y ​ −

n−2
1 ∑

i=1
n

i ​ ​)ŷi 2

s =2
​

n−2
​ e ​∑i=1

n
i
2

e ​ =i y ​ −i ​ ​ŷi

n

β ​0 β ​1

=x ​ x ​

n
1 ∑i=1

n
i

​ =y ​ ​ y ​

n
1 ∑i=1

n
i

​ =y ​ ​ +β̂0 ​ ​β̂1x

E( ​ ​) =β̂1 β ​1

E( ​ ​) =β̂0 β ​0

E( ​) =y β ​ +0 β ​1x

https://en.wikipedia.org/wiki/Least_squares


maximum likelihood estimation (MLE): a method of estimating the parameters of an assumed
probability distribution by maximizing a likelihood function

 (biased!)

null hypothesis testing: a method of statistical inference used to decide whether the data
sufficiently supports a particular hypothesis

-test: a statistical test used to test whether the difference between the response of two groups
is statistically significant or not (here: two-sided)

 vs.  (  or )

 usually 

quantile approach: reject  if 

probability approach: reject  if -value is less than 

-value: the probability of obtaining test results at least as extreme as the result
actually observed, under the assumption that the null hypothesis is correct

R: 2 * pt(abs(tval), df, lower.tail = FALSE)

the lower the -value, the more far-fetched the null hypothesis is

confidence interval: an interval which is expected to typically contain the parameter being
estimated

 confidence interval for : 

general: 

prediction of a new point: , where 

analysis of variance (ANOVA): a collection of statistical models and their associated estimation
procedures used to analyze the differences between groups

Source d.f. SS (Sum of Squares) MS (Mean Square) F

Regression

Residual (Error)

Total

E(s ) =2 σ2

Var( ​ ​) =β̂1 ​

s ​xx

σ2

Var( ​ ​) =β̂0 σ ​ + ​

2 (
n
1

s ​xx

x2 )

se( ​ ​) =β̂1 ​

​s ​xx

s

=σ̂2
​ ​(y ​ −

n
1 ∑i=1

n
i ​ ​)ŷi 2

t

H ​ :0 β ​ =1 0 H ​ :A β ​ =1  0 ≤ >

T = ​
∼

se( ​ ​)β̂1

​ ​β̂1 t ​n−2

α 0.05

H ​0 ∣T ∣ > tn−2,1−α/2

H ​0 p α

p

p

100(1 − α)% β ​1 ​ ​ ±β̂1 t ​ ⋅n−2,1−α/2 se( ​ )β̂1

Estimate ± (t value)(standard error of estimate)

y ​ =p ​ ​ +β̂0 ​ ​x +β̂1 ϵ ϵ ∼ N(0,σ )2

SST = SSR + SSE

1 SSR = ​( ​ ​ −∑i=1
n

ŷi ​)y 2 MSR = SSR
MSE
MSR

n − 2 SSE = ​(y ​ −∑
i=1
n

i ​ ​)ŷi 2 MSE = s2

n − 1 SST = ​(y ​ −∑
i=1
n

i ​)y 2

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
https://en.wikipedia.org/wiki/Statistical_hypothesis_test
https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/Confidence_interval


F-test: any statistical test used to compare the variances of two samples or the ratio of variances
between multiple samples

 vs. 

quantile approach: reject  if  ( qf(1 - alpha, 1, n - 2) )

probability approach: reject  if  where 

coefficient of determination: the proportion of the variation in the dependent variable that is
predictable from the independent variable(s)

interpretation:  of the variation in  can be explained by 

the better the linear regression (right) fits the data in comparison to the simple average (left),
the closer the value of  is to 1

Pearson correlation: a correlation coefficient that measures linear (!) correlation between two
variables 

in R...

cov(x,y)  returns 

var(x)  returns 

cor(x,y)  returns 

sd(x)  returns sqrt(var(x))

diagnostics: 

independence: told by investigator

linearity: plot  against 

constant variance: plot  against 

normal distribution: plot  against normal quantiles

H ​ :0 β ​ =1 0 H ​ :A β ​ =1  0

T ∼ t ​ ⟹v T ∼2 F ​1,v

H ​0 F > F ​1,n−2,1−α

H ​0 P (f > F ) < α f ∼ F ​1,n−2

R =2
​ =

SST
SSR 1 − ​

SST
SSE

100R %2 y x

0 ≤ R ≤2 1

R2

x, y

r = sign( ​ ​) ​β̂1 R2

​ ​(x ​ −
n−1

1 ∑
i=1
n

i )(y ​ −x i ​)y

​ ​(x ​ −
n−1

1 ∑
i=1
n

i )x 2

​

sd(x)sd(y)
Cov(x,y)

y ∼ N(β ​ +0 β ​x,σ )1
2

y x

y − ​ŷ ​ŷ

y − ​ŷ

https://en.wikipedia.org/wiki/F-test
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient


Recap: Matrix Algebra

matrix: a rectangular array of numbers

formally:  (matrix  with  rows and  columns)

, where  is the entry in row  and column 

square matrix: same number of rows and columns ( )

 (also written as )

identity matrix : square matrix with ones in the diagonal and zeros everywhere else

zero matrix : matrix of all zeros

diagonal (square) matrix: all entries outside the diagonal are zero

(column) vector: a matrix consisting of a single column

formally: 

elements: 

unit vector : vector with all elements equal to one

zero vector : vector with all elements equal to zero

Operations and Special Types

matrix / vector addition: element-wise, same dimensions

matrix / vector multiplication: for , go through each row in the first matrix
and multiply and add the elements with the elements of each column in the second matrix; that's
one complete row in the result matrix

formally:  with 

matrix transposition: interchange rows and columns

formally:  with 

symmetric matrix: 

 for 

(inner) vector product: multiply element-wise, then add all together  scalar

A ∈ p × q A p q

A = (a ​)ij a ​ij i j

p = q

det(AB) = det(A)det(B) ∣AB∣ = ∣A∣∣B∣

I

O

x ∈ p × 1

x = (x ​)i

x ​, ...,x1 p

1

0

A ∈ p × q, B ∈ q × t

C = AB = (c ​) ∈ij p × t c ​ =ij ​a ​b ​∑r=1
q

ir rj

(AB)C = A(BC)

(A + B)C = AC + BC

A(B + C) = AB + AC

A =′ (a ​)ji A ∈ q × p

A = A′

(A + B) =′ A +′ B′

(A ) =′ ′ A

(cA) =′ cA′

(AB) =′ B A′ ′ A ∈ m × n,B ∈ n × p

→

https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Row_and_column_vectors


formally: 

orthogonal vectors: inner product 0

euclidian norm (length): 

set of linearly dependent vectors: there exist scalars , not all simultaneously zero, such that

(!) at least one vector can be written as a linear combination of the remaining ones (for example,
a column in a matrix is the summation of two other columns)

linearly independent: otherwise

matrix rank: largest number of linearly independent columns (or rows)

nonsingular matrix: square matrix with rank equal to row / column number

formally: 

matrix inverse: 

for nonsingular matrices: 

orthogonal (square) matrix: 

the rows (columns) are mutually orthogonal

the length of the rows (columns) is one

trace of a (square) matrix: the sum of its diagonal elements

formally: 

 for conformable matrices  (matrices s.t.
products are defined)

bonus: 

idempotent (square) matrix: 

 or 

Simple Regression (Matrix)

x y =′
​x ​y ​∑i=1

p
i i

∣∣x∣∣ = ​x x′

c ​i

c ​x ​ +1 1 ... + c ​x ​ =k k 0

A ∈ m × m, rank(A) = m

AA =−1 A A =−1 I

ABB A =−1 −1 I

(A ) =−1 ′ (A )′ −1

(λA) =−1
​A

λ
1 −1

(AB) =−1 B A−1 −1

AA =′ A A =′ I

A =′ A−1

det(A) = ±1

tr(A) = ​a ​∑i=1
m

ii

tr(A) = tr(A )′

tr(A + B) = tr(A) + tr(B)

tr(CDE) = tr(ECD) = tr(DEC) C,D,E

tr(c) = c

E(tr(⋅)) = tr(E(⋅))

AA = A

det(A) = 0 1

rank(A) = tr(A)



simple regression (matrix approach): 

 are  random vectors

 is a  matrix (first col. ones, second column 

LSE 

fitted value vector 

residual vector 

LSE 

random vector: vector  of random variables

mean (expected value)  (non-random vector)

for a random matrix:  (non-random matrix)

properties:  scalar constant,  vector of constants,  random vector,  matrix of constants...

if  is normal distributed, so is 

covariance matrix : diagonal elements , off-diagonal elements 

formally: 

 symmetric, because 

 diagonal if observations ( ) are independent, because 

Multiple Regression

general linear model: 

response variable 

several independent (predictor, explanatory) variables 

 cases,  predictor values: 

: value of the -th predictor variable of the -th case

 iid., normal distributed, 

y =Xβ+ ϵ

y, ϵ (n × 1)

X (n × 2) x ​i

​= (X X) X yβ̂ ′ −1 ′

​=X ​ŷ β̂

e = y− ​= y−X ​ŷ β̂

s =2
​e e

n−2
1 ′

y

E(y) = (E(y ​), ...,E(y ​)) =1 n
′ μ

E(y ​) =i μ ​i

E(Y ) = ​ ​ ​ ​ ​

E(y ​)11

⋮
E(y ​)n1

…

⋱
…

E(y ​)1n

⋮
E(y ​)nn

a b y A

E(ay+ b) = aE(y) + b

E(Ay) = A E(y)

E(y A) =′ E(y) A′

Var(Ay) = A Var(y)A′

y Ay

Σ Var(y ​)i Cov(y ​, y ​)i j

Var(Y ) = Σ =

​ ​ ​ ​ ​ =

E((y ​ − μ ​)(y ​ − μ ​))1 1 1 1

⋮
E((y ​ − μ ​)(y ​ − μ ​))n n 1 1

…

⋱
…

E((y ​ − μ ​)(y ​ − μ ​))1 1 n n

⋮
E((y ​ − μ ​)(y ​ − μ ​))n n n n

E((y− μ)(y− μ) )′

Σ Cov(y ​, y ​) =i j Cov(y ​, y ​)j i

Σ y ​i Cov(y ​, y ​) =i j 0, i = j

y = β ​ +0 β ​x ​ +1 1 ... + β ​x ​ +p p ϵ

y

xi

n p y ​ =i β ​ +0 β ​x ​ +1 i1 ... + β ​x ​ +p ip ϵ ​ =i μ ​ +i ϵ ​i

x ​ij j i

y ​, ..., y ​1 n y ​ ∼i N(μ ​,σ )i
2



 non-random (deterministic)

vector form: 

, , , 

 fixed, non-random, full rank

, , , 

LSE: 

fitted values 

 is the orthogonal projection of  onto the linear space spanned by column vectors of

 symmetric ( )

 idempotent ( )

residuals 

 projects  onto the perpendicular space to the linear space spanned by the
column vectors of 

 symmetric ( )

 idempotent ( )

rearranged: 

μ ​i

E(ϵ ​) =i 0

E(y ​) =i μ ​ =i β ​ +0 β ​x ​ +1 i1 ... + β ​x ​p ip

Var(ϵ ​) =i σ2

Var(y ​) =i σ2

y = Xβ + ϵ

y = ​ ​ ​

y ​1

⋮
y ​n

y ∼ N(Xβ,σ I)2 E(y) = Xβ Var(y) = σ I2

X = ​ ​ ​ ​ ​

1

⋮
1

x ​11

⋮
xn1

…

⋱
…

x ​1p

⋮
x ​np

β = ​ ​ ​

β ​0

⋮
β ​p

ϵ = ​ ​ ​

ϵ ​1

⋮
ϵ ​n

ϵ ∼ N(0,σ I)2 E(ϵ) = 0 Var(ϵ) = σ I2

​
=β̂ (X X) X y′ −1 ′

​ =ŷ X ​ =β̂ Hy

H = X(X X) X ∈′ −1 ′ n × n

H y

X

H H =′ H

H HH = H

E( ​) =ŷ Xβ

Var( ​) =ŷ σ H2

e = y − ​ =ŷ (I − H)y

(I − H) y

X

(I − H) (I − H) =′ (I − H)

(I − H) (I − H)(I − H) = (I − H)

y = ​ +ŷ e = Hy + (I − H)y

E(e) = 0

Var(e) = σ (I −2 H)



, where  is the corresponding diag. el. in 

MLE:  (for  predictors not including the intercept!)

Source d.f. SS (Sum of Squares) MS (Mean Square) F

Regression

Residual
(Error)

Total

alternative ANOVA calculations:

multiple : "usefulness" of regression...

 (variation due to regression over total variation)

adding a variable to a model increases the regression sum of squares, and hence 

if adding a variable only marginally increases , it might cast doubt on its inclusion in the
model

F-test:  vs.  at least one 

alternative:  vs. 

 (bottom of R output)

quantile approach: reject  if 

probability approach: reject  if  where 

t-test:  vs. 

reject  if  where 

 confidence interval for : 

linear combination of coefficients: for when we want to estimate a result with given predictors

example (book): estimating avg. formaldehyde concentration in homes with UFFI ( ) and
airtightness 5 ( )

E( ​) =β̂ β

E( ​ ​) =β̂i β ​i

Var(
​
) =β̂ σ (X X)2 ′ −1

Var(
​ ​
) =β̂i σ v ​

2
ii v ​ii (X X)′ −1

s =2
​ =

n−k−1
SSE

​ ​(y ​ −
n−k−1

1 ∑i=1
n

i ​ ​)ŷi 2 k

k SSR = ​( ​ ​ −∑i=1
n

ŷi ​)y 2 MSR = ​

k
SSR

​

MSE
MSR

n − k −
1

SSE = ​(y ​ −∑
i=1
n

i

​ ​)ŷi 2
MSE = ​ =

n−k−1
SSE

s2

n − 1 SST = ​(y ​ −∑i=1
n

i ​)y 2

SST = y y −′ n ​y2

SSE = y y −′
​ X X ​β̂′ ′ β̂

SSR = SST − SSE = ​ X X ​ −β̂′ ′ β̂ n ​y2

R2

R =2
​ =

SST
SSR 1 − ​

SST
SSE

R2

R2

H ​ :0 β ​ =1 ... = β ​ =k 0 H ​ :A β ​ =j  0

H ​ :restrict E(y) = β ​0 H ​ :full E(y) = β ​ +0 β x ​ +1 1 ... + β ​x ​k k

F = ​ ∼
MSE
MSR F ​k,n−k−1

H ​0 F > F ​k,n−k−1,1−α

H ​0 P (F ​ >random F ) < α F ​ ∼random F ​k,n−k−1

H ​ :0 β ​ =j 0 H ​ :A β ​ =j  0

t = ​ ∼
se( ​ ​)β̂j

​ ​β̂j t ​n−k−1

H ​0 2 ⋅ P (T > ∣t∣) < α T ∼ t ​n−k−1

100(1 − α)% β ​j ​ ​ ±β̂j t ​ ⋅n−k−1,1−α/2 se( ​ ​)β̂j

x ​ =1 1
x ​ =2 2



 with 

estimate: 

additional sum of squares principle (linear hypthoseses): testing simultaneous statements
about several parameters

example:

full model: 

restrictions: each restriction is one equation equaling 0

 (or )

matrix form: matrix  has one row for each restriction and one column per
parameter (+ full rank)

hypothesis:  vs.  at least one of these 

alternative:  vs. 

restricted model: 

additional sum of squares: 

(!) for : 

test statistic:  for  rows in ,  parameters, 

observations

reject  if p-value 

Specification

one-sample problem: 

 observations taken under uniform conditions from a stable model with mean level 

θ = β ​ +0 β ​ +1 5β ​ =2 a β′ a =′ (1, 1, 5)

=θ̂ a ​ =′β̂ (1, 1, 5) ​ ​ ​ =
31.37
9.31
2.85

54.96

y = β ​ +0 β ​x ​ +1 1 β ​x ​ +2 2 β ​x ​ +3 3 ϵ

β ​ =1 2β ​2 β ​ −1 2β ​ =2 0

β ​ =3 0

A ∈ a × (k + 1)

​ ​ ​ ​ ​ ​ ​ =(0
0

1
0

−2
0

0
1

)

β ​0

β ​1

β ​2

β ​3

​(0
0

)

H ​ :0 Aβ = 0 H ​ :A β ​ =j  0

H ​ :restrict μ = β ​ +0 β ​x ​ +1 1 β ​x ​ +2 2 β ​x ​3 3 H ​ :full μ = β ​ +0

β ​x ​ +1 1 β ​x ​ +2 2 β ​x ​ +3 3 β ​x ​ +4 4 β ​x ​ +5 5 β x ​6 6

y = β ​ +0 β ​(2x ​ +2 1 x ​) +2 ϵ

SSE ​ −restrict SSE ​full

μ = β ​0 SSE ​ =restrict SST

F = ​ ∼
SSE ​/(n−k−1)full

(SSE ​−SSE ​)/arestrict full F ​a,n−k−1 a A k n

H ​0 < α

y ​ =i β ​ +0 ϵ ​i

y ​, ..., y ​1 n β ​0

E(y ​) =i β ​0

E(y) = Xβ

y = (y ​, ...y ​)1 n
′

X = (1, ..., 1)′

β = β ​0



in R: lm(y~1)

two-sample problem: 

 taken under one set of conditions (standard process), mean 

 taken under another set of conditions (new process), mean 

alternative: 

 indicator variables

matrix form 

in R: lm(y~x1+x2-1)

hypothesis: 

polynomial models:

linear: 

​ ​ =β̂0 ​y

=σ̂2 s =2
​ =

n−1
s ​yy

​

n−1
​
(y ​

−
​
)∑i=1

n
i y

2

SSE = SST

y ​ =i ​ ​{β ​ + ϵ ​1 i

β ​ + ϵ ​2 1

i = 1, 2, ..,m
i = m + 1, ...,n

y ​, ...y ​1 m β ​1

y ​, ..., y ​m+1 n β ​2

y ​ =i β ​x ​ +1 i1 β ​x ​ +2 i2 ϵ ​i

E(y ​) =i β x ​ +1 i1 β ​x ​2 i2

x ​,x ​i1 i2

x ​ =i1 ​ ​{1
0

i = 1, 2, ...,m
i = m + 1, ...,n

x ​ =i2 ​ ​{0
1

i = 1, 2, ...,m
i = m + 1, ...,n

E ​ ​ ​ =

y ​1

⋮
y ​m

y ​m+1

⋮
y ​n

​ ​ ​β ​ +

1

⋮
1
0

⋮
0

1 ​ ​ ​β ​

0

⋮
0
1

⋮
1

2

E(y) = Xβ

X = ​ ​ ​ ​

1

⋮
1
0

⋮
0

0

⋮
0
1

⋮
1

β = ​(β ​1

β ​2
)

β ​ =1 β ​2

y ​ =i β ​ +0 β ​x ​ +1 i ϵ ​i



lm(y~x)

quadratic: 

lm(y~x+I(x^2))

-th degree: 

lm(y~poly(x, degree=k, raw=T))

systems of straight lines: yields of a chemical process which changes linearly with temperature...

: yields of a chemical process at temperatures  in the absence of a catalyst
( )

: yields of a chemical process at the same temperatures  in the
presence of a catalyst ( )

case a (main effects): the catalyst has an effect; the effect is the same at all temperatures

alternative (indicator variable): 

matrix form: 

X = ​ ​ ​ ​

1

⋮
1

x ​1

⋮
x ​n

y ​ =i β ​ +0 β ​x ​ +1 i β ​x ​ +2 i
2 ϵ ​i

X = ​ ​ ​ ​ ​

1

⋮
1

x ​1

⋮
x ​n

x ​1
2

⋮
x ​n

2

k y ​ =i β ​ +0 β ​x ​ +1 i ... + β ​x ​ +k i
k ϵ ​i

X = ​ ​ ​ ​ ​

1

⋮
1

...

⋱
...

x ​1
k

⋮
x ​n
k

y ​, ..., y ​1 m t ​, ..., t ​1 m

x ​ =i 0

y ​, ..., y ​m+1 2m t ​, ..., t ​1 m

x ​ =i 1

μ ​ =i ​ ​{
β ​ + β ​t ​0 1 i

β ​ + β ​t ​ + β ​0 1 i−m 2

i = 1, 2, ...,m

i = m + 1, ..., 2m

E(y ​) =i β ​ +0 β ​t ​ +1 i β ​x ​2 i

x ​ =i ​ ​{0
1

i = 1, 2, ...,m
i = m + 1, ..., 2m

t ​ =i+m t ​, i =i 1, 2, ...,m

E(y) = Xβ

y = ​ ​ ​

y ​1

⋮
y ​m

y ​m+1

⋮
y ​2m



hypothesis: 

case b (interaction): the catalyst has an effect; the effect changes with temperature

catalyst absent ( ): 

catalyst present ( ): 

matrix form: 

hypothesis:  (no rejection  catalyst has no effect)

catalyst depends on temperature? 

one-way classification (k-sample problem): comparison of several "treatments"; generalization of
the two-sample problem

 catalysts,  observations with the -th catalyst ( )

 total observations

X = ​ ​ ​ ​ ​

1

⋮
1
1

⋮
1

t ​1

⋮
t ​m

t ​1

⋮
t ​m

0

⋮
0
1

⋮
1

β = ​ ​ ​

β ​0

β ​1

β ​2

β ​ =2 0

μ ​ =i β ​ +0 β ​t ​ +1 i β ​x ​ +2 i β ​t ​x ​ i =3 i i 1, 2, ..., 2m

x ​ =i 0 μ ​ =i β ​ +0 β ​t ​ i =1 i 1, 2, ...,m

x ​ =i 1 μ ​ =i β ​ +0 β ​t ​ +1 i−m β ​ +2 β ​t ​ i =3 i−m m + 1, ..., 2m

μ ​ =i β ​ +0 β ​ +2 (β ​ +1 β ​)t ​3 i−m

E(y) = Xβ

y = ​ ​ ​

y ​1

⋮
y ​m

y ​m+1

⋮
y ​2m

X = ​ ​ ​ ​ ​ ​

1

⋮
1
1

⋮
1

t ​1

⋮
t ​m

t ​1

⋮
t ​m

0

⋮
0
1

⋮
1

0

⋮
0
t ​1

⋮
t ​m

β = ​ ​ ​

β ​0

β ​1

β ​2

β ​3

β ​ =2 β ​ =3 0 →

β ​ =3 0

k n ​i i i = 1, ..., k

n = n ​ +1 ... + n ​k



: -th observation from the -th catalyst group ( )

matrix form: 

: regressor vectors indicating the group membership of the observations

example (3 groups):

LSE: 

hypothesis: 

alternative (reference group): relate group means to the mean of a reference group (here, the
first group)

matrix form:  where  and 

example (3 groups):

y ​ij j i i = 1, ..., k; j = 1, ...,n ​i

E(y ​) =ij β ​i

E(y) = Xβ = β ​x ​ +1 1 ... + β ​x ​k k

x ​i

x ​ =ji ​ ​{
1
0

y ​ from group iij

otherwise

y = ​ ​ ​

y ​11

⋮
y ​1n ​1

y ​21

⋮
y ​2n ​2

y ​31

⋮
 y ​3n ​3

X = (x ​,x ​,x ​) =1 2 3 ​ ​ ​ ​ ​

1

⋮
1
0

⋮
0
0

⋮
0

0

⋮
0
1

⋮
1
0

⋮
0

0

⋮
0
0

⋮
0
1

⋮
1

β = ​ ​ ​

β ​1

β ​2

β ​3

​ ​ =β̂i ​ ​yi

β ​ =1 β ​ =2 ... = β ​k

β ​ =i β ​ +1 δ ​, i =i 2, 3, ...k

E(y ​) =ij ​ ​{β ​1

β ​ + δ ​1 i

i = 1
i = 2, ..., k

E(y) = Xβ X = (1,x ​, ...,x ​)2 k β = (β ​, δ ​, ..., δ ​)1 2 k
′



LSE: 

multicollinearity: in the presence of one variable, the other is not important enough to have it
included; the two variables express the same information, so there is no point to include both (p.
157 / 171)

typically shown by the fact that, in a model which includes both covariates, neither is significant
on its own (t-test)

orthogonality: special properties for  matrices with orthogonal columns (dot product of any two
columns 0)...

non-changing estimates:  remains the same, regardless of how many variables there are in
the model

additivity of SSRs: , for a differing number
of variables in a model

orthogonal  independence: the components of  are independent (covariances between
 zero)

Model Diagnostics

possible reasons for a model being inadequate:

inadequate functional form: missing needed variables and nonlinear components

incorrect error specification: non-constant , non-normal distribution, non-independent
errors

unusual observations: outliers playing a big part

residual analysis: using the residual to assess the adequacy of a model

residual: 

-th case in dataset: 

X = (1,x ​,x ​) =2 3 ​ ​ ​ ​ ​

1

⋮
1
1

⋮
1
1

⋮
1

0

⋮
0
1

⋮
1
0

⋮
0

0

⋮
0
0

⋮
0
1

⋮
1

β = ​ ​ ​

β ​1

δ ​2

δ ​2

​ =β̂ ( ​ ​, ​ ​ −y1 y2 ​ ​, ..., ​ ​ −y1 yk ​ ​)y1
′

X

β ​i

SSR(x ​, ...,x ​) =1 k SSR(x ​) +1 ... + SSR(x ​)k

⟹ ​β̂

β ​i

Var(ϵ ​)i

e = y − ​ŷ

​ =ŷ Hy

i e ​ =i y ​ −i ​ ​ŷi

https://en.wikipedia.org/wiki/Regression_validation
https://en.wikipedia.org/wiki/Statistical_model_validation#Residual_diagnostics
https://en.wikipedia.org/wiki/Errors_and_residuals


estimates the random component 

correctly specified model: 

incorrectly specified model: 

"true" model: 

: regressor vector not in 

: a parameter

 and  should be uncorrelated

fitted values should not carry any information on the residuals

in other words: a graph of the residuals against the fitted values should show no patterns

properties: for , where  are elements of ...

 constant

 not constant

 uncorrelated

 not uncorrelated

standardized residuals: residuals standardized to have approx. mean zero and variance one

definition: 

recall: 

studentized residuals: the dimensionless ratio resulting from the division of a residual by an
estimate of its standard deviation

 or  would make us question whether the model is adequate for that case 

a histogram or a dot plot of the studentized residuals helps us assess whether one or more
of the residuals are unusually large

serial correlation (autocorrelation): if a regression model is fit to time series data (e.g. monthly,
yearly...), it is likely that errors are serially correlated (as opposed to the errors  being independent
for time indices )

positively autocorrelated: a positive error last time unit implies a similar positive error this time
unit

detection: calculate lag  sample autocorrelation  of the residuals ( )

measures the association within the same series (residuals)  steps apart

sample correlation between  and its -th lag, 

lag  autocorrelation always between  and 

ϵ

E(e) = (I − H)E(y)

E(e) = 0

E(e) = (I − H)E(y) = (I − H)Xβ = ... = Xβ − Xβ = 0

E(e) = 0

E(y) = Xβ + uγ

u L(X)

γ

E(e) = (I − H)E(y) = (I − H)(Xβ + uγ) = γ(I − H)u = 0

e ​ŷ

y = Xβ + ϵ h ​ij H

Var(ϵ ​) =i σ2

Var(e ​) =i σ (1 −2 h ​)ii

Cov(ϵ ​, ϵ ​) =i j 0, i = j

Cov(e ​, e ​) =i j −σ h ​, i =2
ij  j

e ​ =i
s

​

s
e ​i

=σ̂2 s =2
​

n−k−1
e e′

∣d ​∣ >i 2 3 i

ϵ ​t

t

k r ​k r ​ =0 1

k

e ​t k e ​t−k

k −1 +1

https://en.wikipedia.org/wiki/Studentized_residual
https://en.wikipedia.org/wiki/Autocorrelation#Regression_analysis


graphically: plot  against  and look for associations (positive: upwards, negative:
downwards)

in R: acf(fit$residuals,las=1)

autocorrelation function (of the residuals): graph of autocorrelations  as a function of the
lag 

two horizontal bands at  are added to the graph

sample autocorrelations that are outside these limits are indications of autocorrelation

if (almost) all autocorrelations are within these limits, one can make the assumption of
independent errors

Durbin-Watson test: examines lag 1 autocorrelation  in more detail; complicated to compute

: independent errors

 or : correlated errors

outlier: an observation that differs from the majority of the cases in the data set

one must distinguish among outliers in the  (response) dimension (a) vs. outliers in the 
(covariate) dimension (b) vs. outliers in both dimensions (c)

 dimension: outliers that have unusual values on one or more of the covariates

 dimension: outliers are linked to the regression model

random component too large?

response or covariates recorded incorrectly?

missing covariate?

detection: graphically, studentized residual, leverage

influence: an individual case has a major influence on a statistical procedure if the effects of the
analysis are significantly altered when the case is omitted

leverage: a measure of how far away the independent variable values of an observation are from
those of the other observations

definition:  for -th independent observation,  (entry in hat matrix )

properties:

 is a function of the covariates ( ) but not the response

 is higher for  farther away from the centroid 

rule of thumb: a case for which the leverage exceeds twice the average is considered a
high-leverage case

formally: 

influence: study how the deletion of a case affects the parameter estimates

e ​t e ​t−k

r ​k

k

± ​

​n
2

r ​1

DW ≈ 2

DW > 2 DW < 2

y x

x

y

h ​ii i i = 1, ..,n H

h ​ii x

h ​ii x x

​h ​ =∑i=1
n

ii tr(H) = k + 1

=h ​

n
k+1

h ​ >ii 2 =h ​

n

2(k+1)

https://en.wikipedia.org/wiki/Leverage_(statistics)


after deleting the -th case:  for the remaining  cases

: the estimate of  without the -th case

: the estimate of  for all cases

influence of the -th case: 

Cook's D statistic: estimate of the influence of a data point when performing a least-squares
regression analysis

 should be examined

 great concern

Lack of Fit

lack of fit test: can be performed if there are repeated observations at some of the constellations of
the explanatory variables

formally: for  observations, only  different values of  were observed

there were  values of  measured at covariate value 

one-way classification model: 

so, in essence, each individual result for a certain constellation  is just 

matrix form: 

: vector of responses, 

: design matrix with ones and zeros representing the  groups

: vector of unknown means 

 (avg. of group )

restricted (parametric) model:  estimate via least squares

PESS: 

d.f. number of observations minus number of groups ( )

LFSS: 

d.f. number of groups  - number of parameters (lin: 2 params.)

i y = Xβ + ϵ n − 1

​ ​β̂(i) β i

​β̂ β

i ​
−β̂ ​ ​β̂(i)

D ​ >i 0.5

D ​ >i 1

n k x

n ​i y x ​, i =i 1, ..., k

x ​ :1 y ​, ..., y ​11 1n ​1

⋮
x ​ :k y ​, ..., y ​k1 kn ​k

y ​ =ij β ​I(x ​ =1 i x ​) +1 ... + β ​I(x ​ =k i x ​) +k ϵ ​ij

x ​i β ​ +i ϵ ​ij

E(ϵ ​) =ij 0

Var(ϵ ​) =ij σ2

y = Xβ+ ϵ

y ∈ n × 1 n = ​n ​∑
i=1
k

i

X ∈ n × k k

β ∈ k × 1 μ ​i

( ​ ​, ..., ​ ​) =β̂1 β̂k ( ​ ​, ..., ​ ​)y1 yk

​ ​ =yi ​ ​ y ​

n ​i

1 ∑
j=1
n ​i

ij i

y ​ =ij β ​ +0 β ​x ​ +1 i ϵ ​ij

PESS = SSE ​ =full ​ ​(y ​ −∑
i=1
k ∑

j=1
n ​i

ij ​ ​)yi
2

n − k

LFSS = ​n ​( ​ ​ −∑i=1
k

i yi ​ ​
−β̂0 ​ ​x ​

) ≥β̂1 i
2 0

k

SSE ​ =restrict PESS + LFSS

https://en.wikipedia.org/wiki/Cook%27s_distance


test (linear):  vs. 

reject  lack of fit, reject restricted model

test (general):  vs. 

variance-stabilizing transformations: find a simple function  to apply to values  in a data set to
create new values  such that the variability of the values  is not related to their mean
value

assume  where  is a fixed mean

 has a non-constant variance that depends on the mean

 known

goal: find  such that  is constant and does not depend on 

goal: find  such that , such that finally 

example: 

Box-Cox transformations: find  s.t. the transformed response  minimizes 
(done in a table, compare various s to their s)

: log transform using limit lm(log(...)~., data=...)

: square root transform lm(sqrt(...)~., data=...)

: no transform lm(...~., data=...)

: square transform lm((...)*(...)~., data=...)

in R: library(MASS); boxcox(fit)

Model Selection

goal: given observational data, find the best model which incorporates the concepts of model fit
and model simplicity

increasing the number of predictors increases variability in the predictions

 average variance  for  covariates and
sample size 

multicollinearity: different methods of analysis may end up with final models that look very
different, but describe the data equally well

SSE ​ ≥restrict SSE ​full

H ​ :restrict μ ​ =i β ​ +0 β ​x ​1 i H ​ =full μ ​ =i β ​I(x ​ =1 i x ​) +1 ... +
β ​I(x ​ =k i x ​)k

F = ​ ∼PESS/(n−k)
LFSS/(k−2)

F ​k−2,n−k

H ​ ⟹0

H ​ :restrict μ ​ =i β ​ +0 β ​x ​ +1 i β ​x ​ +2 i
2 ... H ​ =full μ ​ =i β ​I(x ​ =1 i x ​) +1

... + β ​I(x ​ =k i x ​)k

F = ​ ∼
PESS/(n−k)

LFSS/(k−dim(β)) F ​k−dim(β),n−k

g x

y = g(x) y

y = μ + ϵ μ

Var(y) = (h(μ)) σ2 2

h

g(x) Var(g(x)) μ

Var(g(y)) = (g (μ)) (h(μ)) σ′ 2 2 2

g g (μ) =′
​

h(μ)
1 Var(g(y)) ≈ σ2

h(μ) = μ ⟹ g (μ) =′
​ ⟹

μ
1 g(μ) = ln(μ)

λ y ​i
(λ)

SSE(λ)
λ SSE(λ)

λ = 0

λ = ​2
1

λ = 1

λ = 2

Var( ​) =ŷ σ H ⟹2
​ ​Var( ​) =

n
1 ∑i=1

n
ŷ ​

n

σ (k+1)2

k

n

https://en.wikipedia.org/wiki/Variance-stabilizing_transformation


model selection: given observations on a repsonse  and  potential explanatory variables
, select a model  where...

 is a subset of the original regressors 

no important variable is left out of the model

no unimportant variable is included in the model

all possible regressions: fit  models if  variables are involved

 for  variables and  regression coefficients

increase in  means decrease in , approaching  when 

increase in  means decrease in 

 does not depend on the covariates; just on  (see definition)

therefore,  approaches  as  increases, so we don't use , since we'd just choose the
model with the most variables

: adjusted 

remedies the problem of  continually increasing by dividing the degrees of freedom

ideal model and choice of : highest 

equivalent: smallest 

: Akaike's Information Criterion

prefer models with smaller 

: Bayesian Information Criterion

larger penalty for more variables

automatic model selection methods: forward selection, backward elimination, stepwise
regression (needed in R: library(MASS) )

forward selection: start with the smallest model, build up to the optimal model

in R: stepAIC(lm(y~1, data=dataset), direction = "forward", scope =

list(upper = lm(y~., data=dataset))[, k = log(nrow(dataset))])  (for BIC:

[...] )

backward elimination: start with the largest model and build down to the optimal model

in R: stepAIC(lm(y~., data=dataset), direction = "backward"[, k =
log(nrow(dataset))])

stepwise regression: oscillate between forward selection and backward elimination

in R: use either previous function, but with direction = "both"

forward selection

y q

v ​, ..., v ​1 q y = β ​ +0 β ​x ​ +1 1 ... + β ​x ​ +p p ϵ

x ​, ...,x ​1 p v ​, ..., v ​1 q

2q q

R ​ =k
2 1 − ​

SST
SSE ​k k k + 1

k SSE ​k 0 k = n − 1

R2 s2

SST y

R2 1 k R2

R ​adj
2 R2

R2

k R ​adj
2

s2

AIC

AIC

BIC

https://en.wikipedia.org/wiki/Model_selection
https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Bayesian_information_criterion


INIT

  M = intercept-only model

  P = all covariates

  

REPEAT

  IF P empty STOP

  ELSE

    calculate AIC for sizeof(P) models, each model containing one covariate 

in P is added to M

    IF all AICs > AIC(M) STOP

    ELSE

      update M with covariate whose addition had minimum AIC

      remove covariate from P

backward elimination

INIT

  M = model with all covariates

  P = all covariates

  

REPEAT

  IF P empty STOP

  ELSE

    calculate AIC for sizeof(P) models, each model without each of the 

covariates in P

    IF all AICs > AIC(M) STOP

    ELSE

      update M by deleting covariate that led to minimum AIC

      remove covariate from P

stepwise regression

INIT

  M = intercept-only model OR full model

  e = small threshold

  

REPEAT UNTIL STOP

  do a forward step on M

  do a backward step on M

  

# For both steps, the differences in AIC need to be

# greater than e for the selection to go forward, otherwise

# the changes can keep undoing each other.



Nonlinear Regression

linear model (recap):  where 

key: linearity of the parameters 

the regressor variables  can be any known nonlinear function of the regressors...

intrinsically nonlinear model: a nonlinear model that cannot be transformed into a linear model

counterexample:  can be transformed into 

require iterative algorithms and convergence (vs. linear models, which are analytic)

linear trend model: 

: growth rate, unbounded

: starting value at 

nonlinear regression model: 

 iid. for 

: vector of  covariates for the -th case (typically , where the
covariate is time)

: vector of  parameters to be estimated along with  (usually a different num. of parameters
than covariates)

: nonlinear model component

estimates:

: no closed form!

use iterative function to minimize 

 (the square roots of the diagonal elements in the covariance matrix
provide estimates of the standard errors)

off-diagonal elements provide estimates of the covariances among the estimates

 C.I. for : 

 vs. : 

for constants:  vs. : 

restricted models or goodness-of-fit tests can be performed similarly as for linear models

in R: fitnls = nls(y~(formula using a, b),start=list(a=...,b=...))

y = μ + ϵ μ = β ​ +0 β ​x ​ +1 1 ... + β ​x ​k k

β ​i

x ​i

y = αx ​x ​ϵ1
β

2
γ ln(y) = ln(α) + β ln(x ​) +1

γ ln(x ​) +2 ln(ϵ)

μ ​ =t α + γt

γ

α t = 0

y ​ =i μ ​ +i ϵ ​ =i μ(x ​,β) +i ϵ ​i

ϵ ​ ∼i N(0,σ )2 i = 1, ...,n

x ​ =i (x ​, ...,x ​)i1 im
′ m i m = 1

β p σ2

μ(x ​,β)i

S( ​) =β̂ ​(y ​ −∑
i=1
n

i μ(x ​,β))i
2

​β̂

S( ​)β̂

=σ̂2 s =2
​ =

n−p
S( ​)β̂

​

n−p
​(y ​−μ(x ​,β))∑i=1

n
i i

2

Var(
​
) ≈β̂ s (X X)2 ′ −1

s.e.( ​ ​) =β̂i ​v ​ii

100(1 − α)% β ​j ​ ±β̂j t ​s.e.( ​ ​)n−p,1−α/2 β̂j

H ​ :0 β ​ =j 0 H ​ :a β ​ =j  0 t = ​ ∼
s.e.( ​ ​)β̂j

​ ​β̂j t ​n−p

H ​ :0 β ​ =j c H ​ :a β =j  c t = ​ ∼
s.e.( ​ ​)β̂j

​ ​−cβ̂j t ​n−p



Newton-Raphson method: a root-finding algorithm which produces successively better
approximations to the zeroes of a real-valued function

goal: find  that minimizes , here  or 

: the -vector containing the first derivatives of  w.r.t. 

: the  matrix of second derivatives with the -th element  (Hessian

matrix)

general: initialize  starting value, then repeat until convergence:
1. 

2. 

problem: unstable due to inversion

scoring: initialize  starting value, then repeat until convergence:
1. 

2. 

information matrix: 

problematic: local minima that "trap" iterative algorithms, parameters of highly varying
magnitudes (e.g. one parameter in range 0-1, another in the thousands), badly specified models
with non-identifiable parameters (similar to multicollinearity)

Time Series Models

first-order autoregressive model (AR1): 

autocorrelations of observations 1 step apart: 

all correlations among observations one step apart  are the same

 (correlations between  and )

autocorrelations of observations  steps apart: 

properties of autocorrelations:

they depend only on the time lag between the observations (so the time indices don't matter;
just the time distance)

they decrease exponentially with the time lag (because )

the farther apart the observations, the weaker the autocorrelation

if  is close to 1, the decay is slow

autocorrelation functions (lag  correlation): 

β f(β) S(β) − logL(β)

Df(β) = ( ​, ..., ​)∂β ​1

∂f
∂β ​p

∂f ′ p f β ​i

D f(β)2 p × p ij ​∂β ​∂β ​i f

∂ f2

β ​ =old

β ​ ≈new β ​ −old (D f(β ​)) Df(β ​)2
old

−1
old

β ​ =old β ​new

β ​ =old

β ​ ≈new β ​ +old (I(β ​)) D logL(β ​)old
−1

old

β ​ =old β ​new

I(β) = E(−D logL(β))2

y ​ =t μ(X ​,β) +t ϵ ​t

ϕ

ϕ

ϕ = Corr(ϵ ​, ϵ ​) =1 2 ... = Corr(ϵ ​, ϵ ​)n−1 n

∣ϕ∣ < 1 −1 +1

k ϕk

ϕ =k Corr(ϵ ​, ϵ ​) =1 k+1 ... = Corr(ϵ ​, ϵ ​)n−k n

−1 < ϕ < 1

ϕ

k ρ ​ =k ϕ =k Corr(ϵ ​, ϵ ​)t−k t

ρ ​ =0 1

https://en.wikipedia.org/wiki/Newton%27s_method


correlated error at time :  where 

white noise (random shocks): 

 is the "usual" regression model error; mean 0, all uncorrelated

 for all 

expanded: 

stationary model: fixed level 0; realizations scatter around the fixed level and sample paths
don't leave this level for long periods

in R: library(nlme); fitgls=gls(y~x,correlation=corARMA(p=1,q=0))  (change p=2  for

AR2)

random walk model: 

cumulative sum of all random shocks up to time 

nonstationary model: no fixed level; paths can deviate for long periods from the starting point

first-order difference: 

well-behaved, stationary, uncorrelated

effects of ignoring autocorrelation: what happens when we fit a standard linear model even if the
errors are correlated?

stationary errors: variance of  will be overestimated compared to the true variance
(inefficiency)

 ratios too small  null hypothesis less likely to be rejected when it should be

non-stationary errors: variance of  will be underestimated compared to the true variance

 ratios too large  null hypothesis likely to be rejected when it shouldn't be

forecasting (prediciton): given data up to time period , predict response at time period  (
step-ahead forecast)

 step-ahead forecast: 

: forecast origin

: forecast horizon

assumption: future values of the covariate  are known (e.g. own future investments)

1 step forecast (AR1, one covariate): assume  known...

ρ ​ =k ρ ​−k

t ϵ ​ =t ϕϵ ​ +t−1 a ​t a ​ ∼t N(0,σ ​)a
2

a ​t

a ​t

Corr(a ​, a ​) =t−k t 0 k = 0

ϵ ​ =t a ​ +t ϕa ​ +t−1 ϕ a ​ +2
t−2 ...

E(ϵ ​) =t 0

Var(ϵ ​) →t ​1−ϕ2
σ ​a

2

y ​ =t μ(X ​,β) +t ϵ ​t

ϕ = 1

ϵ ​ =t ϵ ​ +t−1 a ​ =t a ​ +t a ​ +t−1 a ​ +t−2 ...

t

w ​ =t ϵ ​ −t ϵ ​ =t−1 a ​t

​β̂

t →

​β̂

t →

n n + r r

r y ​(r) =n ​ ​ŷn+r

n

r

x ​t

x ​n+1



observation: 

prediction: 

95% CI: 

general step forecast (AR1, one covariate): 
 for 

95% CI: 

Logistic Regression

logistic regression: regression where the response variable is binary (general: categorical)

: outcome of case 

, independent

 (success)

: inflection point

: steepness of sigmoid-like function

risk of  for factor : 

odds of  for a fixed : 

how much higher is the probability of the occurrence  compared to the
nonoccurrence of ?

odds of  occurence is  times more likely than nonoccurence

odds ratio: 

 vector of log odds ratios

what is the multiplicative factor by which the odds of occurrence increase /
decrease for a change from  to ?

e.g.  a change from  to 
decreases the odds of occurence by 

for  units:  with ratio measured as 

 (failure)

y ​ =n+1 ϕy ​ +n (1 − ϕ)β ​ +0 (x ​ −n+1 ϕx ​)β ​ +n 1 a ​n+1

​ ​ =ŷn+1 ​y ​ +ϕ̂ n (1 − ​) ​ ​ +ϕ̂ β̂0 (x ​ −n+1 ​x ​) ​ ​ϕ̂ n β̂1

​ ​ ±ŷn+1 1.96se( ​ ​)ŷn+1

​ =ŷn+r ​ ​ ​
+ϕ̂ŷn+r−1 (1 − ​

)
​ ​

+ϕ̂ β̂0 (x ​ −n+r

​x ​) ​ ​ϕ̂ n+r−1 β̂1 r ≥ 2

​ ​ ±ŷn+r 1.96se( ​ ​)ŷn+r

y ​i i, i = 1, 2, ...,n

y ​ ∼i Ber(π)

P (y ​ =i 1) = π

ln ​ =( 1−π(x ​)i
π(x ​)i ) x ​β =i

′ β ​ +0 β ​x ​ +1 i1 ... + β ​x ​p ip

π(x ​) =i ​

1+ex ​βi
′

e
x ​βi

′

1 − π(x ​) =i ​

1+ex ​β
i
′

1

β ​0

β ​1

y x π(x) = P (y = 1∣x) = ​

1+ex β′
ex β′

y x Odds(x) = ​
=1−π(x)

π(x)
​
=1−P (y=1∣x)

P (y=1∣x) exp(x β)′

y

y

n : 1 ⟹ n

OR = ​ =
Odds(x=0)
Odds(x=1)

​

​

P (y=0∣x=0)
P (y=1∣x=0)

​

P (y=0∣x=1)
P (y=1∣x=1)

β = ln ​ −( 1−π(x+1)
π(x+1) ) ln ​ =( 1−π(x)

π(x) ) ln(OR)

exp(β) = OR

x x + 1

β = −0.2 → exp(β) = 0.82 ⟹ x x + 1
18%

k βk exp(βk)

P (y ​ =i 0) = 1 − π

E(y ​) =i π

https://en.wikipedia.org/wiki/Logistic_regression


one covariate model: 

 (no assoc. between  and )

MLE : Newton-Raphson...

CIs and tests:

 CI for : 

 CI for : 

Wald test:  vs. 

case: an individual observation

constellation: grouped information at distinct levels of the explanatory variables

; number of cases at the -th constellation

: number of successes at the -th constellation

prob. of success for -th constellation: 

likelihood ratio tests (LRT): used to compare the maximum likelihood under the current model
(the “full” model), with the maximum likelihood obtained under alternative competing models
("restricted" models)

 linear predictor  vs.  linear predictor 

 subset of 

LRT statistic: 

equiv.: 

reject  if statistic greater than corresponding chi-square value

large value  the success probability depends on one or more of the regressors
(i.e. full model better)

small value  none of the regressors in the model influence the success probability

deviance: twice the log-likelihood ratio between the saturated model and the parameterized
(full) model;  constellations

exp(x β) =′ β ​ +0 β ​x1

ln ​ =( 1−P (y=1∣x)
P (y=1∣x) ) β ​ +0 β ​x1

Odds(x) = ​ =1−P (y=1∣x)
P (y=1∣x) exp(β ​ +0 β ​x)1

Odds(x = 0) = exp(β ​ +0 β ​ ⋅1 0) = exp(β ​)0

Odds(x = 1) = exp(β ​ +0 β ​ ⋅1 1) = exp(β ​ +0 β ​)1

OR = ​ =
Odds(x=0)
Odds(x=1) exp(β ​)1

β ​ =1 ln(OR)

H ​ :0 β ​ =1 0 x y

β ​ =0 ln(Odds(x = 0))

​β̂

100(1 − α)% ln(OR) ​ ​ ±β̂j z ​se( ​ ​)1−α/2 β̂j

100(1 − α)% OR exp( ​ ​ ±β̂j z ​se( ​ ​))1−α/2 β̂j

H ​ :0 β ​ =j 0 H ​ :A β ​ =j  0 : ​
∼

se( ​ ​)β̂j

​ ​β̂j N(0, 1)

n ​k k

y ​k k

k π(x ​,β) =k ​1+exp(x ​β)k

exp(x ​β)k

H ​ :restrict x ​β ​res
′

res H ​ :full x β′

x ​res x

2 ⋅ ln ​ =(
L(restrict)
L(full) ) 2 ⋅ ln ​ ∼(

L( ​ ​)β̂res

L( ​)β̂ ) χ ​a
2

2 ⋅ (ln(L(full)) − ln(L(restrict)))

a = dim(β) − dim(β ​)res

H ​restrict

⟹

⟹

m



saturated model: each constellation of the explanatory variables is allowed its own distinct
success probability

p-value: 1 - pchisq(D, 𝑎)

in R: freqs <- cbind(yes, no); fit <- glm(freqs~x[+...], family="binomial")

Poisson Regression

generalized linear model (GLM): generalizes linear regression by allowing the linear model to be
related to the response variable via a link function

response variables : share the same distribution from the exponential family (Normal,
Poisson, Binomial...)

parameters  and explanatory variables 

monotone link function : relates a transform of the mean  linearly to the explanatory
variables

standard linear regression:  (identity function)

logistic regression:  (logit)

Poisson regression: 

Poisson regression model: response represents count data (e.g. number of daily equipment
failures, weekly traffic fatalities...)

interpretation of coefficients: changing  by one unit to  while keeping all other
regressors fixed affects the mean of the response by 

example: 

95% CI: 

for the mean ratio : 

everything else identical to logistic regression

​ =π̂k ​

n ​k

y ​k

D = 2
​
=ln(L(full))

ln(L(saturated)) 2 ⋅ ln ​ ∼(
L( ​)β̂

L( ​,..., ​)π̂1 π̂m ) χ ​a
2

a = m − dim(β)

LRT = D(restricted) − D(full)

y ​, ...y, ​1 n

β x ​, ...x ​1 p

g μ ​i

g(μ ​) =i β ​ +0 β ​x ​ +1 i1 ... + β ​x ​p ip

g(μ) = μ

g(μ) = ln ​( 1−μ
μ )

g(μ) = ln(μ)

P (Y = y) = ​e , y =
y!
μ
y −μ 0, 1, 2, ...

E(y) = Var(y) = μ > 0

g(μ) = ln(μ) = β ​ +0 β ​x ​ +1 1 ... + β ​x ​p p

μ = exp(β ​ +0 β ​x ​ +1 1 ... + β ​x ​)p p

x ​i x ​ +i 1
100(exp(β ​) −i 1)%

​ =exp(β ​+β ​x ​+...+β ​x ​)0 1 1 p p

exp(β ​+β ​(x ​+1)+...+β ​x ​)0 1 1 p p exp(β ​)1

​ ±β̂ 1.96se( ​)β̂

exp(β) exp( ​ ±β̂ 1.96se( ​))β̂

https://en.wikipedia.org/wiki/Generalized_linear_model


Linear Mixed Effects Models

linear mixed effects models: some subset of regression parameters vary randomly from one
individual to another

individuals are assumed to have their own subject-specific mean response trajectories over time

simple mixed effects model:  (observation = population mean + individual
deviation + measurement error)

: population mean (fixed effects, constant)

: individual deviation from the population mean (random effects) ( -th individual)

positive: individual responds higher than population average (higher on -axis)

negative: individual responds lower than population average (lower on -axis)

: within-individual deviations (measurement error) ( -th individual, -th observation)

 for 

 for 

in R: matrix format,  rows for  individuals and  columns for  time points per individual

has to be transformed into longitudinal format for use with lme

general linear mixed effects model: 
, where 

: outcomes (for -th individual, as for nearly everything here...)

: design matrix for fixed effects

: design matrix for random effects (columns are usually subset of columns of 
)

: fixed effects

any component of  can be allowed to vary randomly by including the corresponding
column of  in 

: random effects

Y ​ =ij β + b ​ +i e ​ij

β

b ​i i

b ​ ∼i N(0, d)

y

y

e ​ij i j

e ​ ∼ij N(0,σ )2

E(Y ​) =ij β

Var(Y ​) =ij d + σ2

Cov(Y ​,Y ​) =ij km 0 i = k

Cov(Y ​,Y ​) =ij ij Var(Y ​) =ij d + σ2

Cov(Y ​,Y ​) =ij ik d

Cor(Y ​,Y ​) =ij km 0 i = k

Cor(Y ​,Y ) =ij ij 1

Cor(Y ​,Y ​) =ij ik ​

d+σ2
d

n n m m

Y ​ =i X ​β +i Z ​b ​ +i i e ​, b ​ ∼i i N ​(0,D), e ​ ∼q i

N ​(0,R ​)n ​i i R ​ =i σ I ​

2
n ​i

Y ​ ∈i Rn ​i i

X ​ ∈i Rn ​×pi

Z ​ ∈i Rn ​×qi X ​i

β ∈ Rp

β

X ​i Z ​i

b ​ ∈i Rq



independent of covariates 

: within-individual errors

conditional mean: 

marginal mean: 

conditional variance: 

marginal variance: 

 (unbiased, restricted maximum likelihood)

 (biased)

: best linear unbiased predictor (BLUP)

"shrinks" the -th individual's predicted response profile towards the population-averaged
mean response profile

large  compared to  more shrinkage to mean

small  compared to  closer to observed value

large  less shrinkage

Statistical Learning (Machine Learning)

supervised learning: an outcome (which guides the learning process) predicted based on a set of
features

unsupervised learning: no outcome; only features observed (not relevant here)

outcome (outputs, responses, dependent variables): the thing to predict; can be quantitative
(ordered, e.g. stock price) or qualitative (unordered here, categorical, factors, e.g species of Iris)

predicting quantitative outcomes  regression

predicting qualitative outcomes  classification

features (inputs, predictors, independent variables): the data to make predcitions for the
outcome

training set: data set containing both features and outcomes to build the model

Prediction Methods

least squares model (linear model): high stability but low accuracy (high bias, low variance)

goal: predict  by 

: intercept (bias)

: random input vector (first element  for intercept)

: random outcome (to predict)

: joint distribution

: function for predicting  based on 

X ​i

e ​ ∈i Rn ​i

E(Y ​ ∣ b ​) =i i X ​β +i Z ​b ​i i

E(Y ​) =i X ​βi

Var(Y ​ ∣ b ​) =i i R ​i

Var(Y ​) =i Z ​DZ ​ +i i
′ R ​i

σ ​ =REML
2

​ ​(x ​ −
n−1

1 ∑i=1
n

i )x 2

σ ​ =ML
2

​ ​(x ​ −
n
1 ∑

i=1
n

i )x 2

​b̂i

i

R ​i D ⟹

R ​i D ⟹

n ​ ⟹i

→

→

Y f(X) = X β′

β ​0

X ∈ Rp 1

Y ∈ R
p(X,Y )

f(X) Y X



: vector that points in the steepest uphill direction

: training data

method: pick  to minimize residual sum of squares 

matrix notation: 

LSE: 

fitted value: 

theoretical: 

should only be used when  is continuous and Normal distributed

-nearest neighbor model: low stability but high accuracy (low bias, high variance)

use observations in training set closest in input space to  to form 

formally: 

: neighborhood of  defined by the  closest points  in the training sample

find  observations with  closest to new  in input space, and average their responses

Statistical Decision Theory

loss function : penalizes errors in prediction

expected prediction error: 

expected (squared) prediction error: criterion for choosing  based on the squared error loss
function (L2)

L2 Loss:  (most popular)

optimal Bayes classifier: minimize  for all 

nearest neighbor: 

as : 

L1 Loss:  (abs. value)

Categorical Data

estimate : contains values in the set of possible classes  where 

loss function: 

zero on he diagonal

nonnegative elsewhere

f (X) =′ β ∈ Rp

(x ​, y ​), ..., (x ​, y ​)1 1 n n

β RSS(β) = ​(y ​ −∑i=1
n

i x ​β)i
′ 2
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x Ŷ
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k
1 ∑

x ​∈N ​(x)i k
i

N ​(x)k x k x ​i

k x ​i x

L(Y , f(X))

EPE(f) = E ​(L(Y , f(X)))x,y

f

L ​ =2 L(Y , f(X)) = (Y − f(X))2

EPE(f) = E ​(Y −x,y f(X)) =2 (y −∫∫ f(x)) p(x, y)dxdy =2 ( (Y −∫ ∫
f(x)) p(y∣x)dy)p(x)dx =2 E ​(E ​((Y −x y∣x f(X)) ∣X))2

E ​((Y −y∣x f(X)) ∣ X)2 X

f ​(X) =bayes E ​(Y ∣X)y∣x

f(x) = Ave(y ​ ∣ x ​ ∈i i N ​(x))k

n, k → ∞, ​ →
n
k 0 f(x) → E(Y ∣ X = x)

E∣Y − f(X)∣
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: price paid for classifying an observation belonging to class  as 

zero-one loss function: all misclassifications are charged one unit

zero-one loss: 

Summary by Flavius Schmidt, ge83pux, 2025.
https://home.cit.tum.de/~scfl/
Images from Wikimedia.

L(k, l) G ​k G ​l

L(k, l) = ​ ​{
0

1

k = l

k = l

EPE = E(L(G, (X))) =Ĝ E ​(E ​(L(G, (X)) ∣ X))x g∣x Ĝ

E ​(L(G, (X)) ∣ X) =g∣x Ĝ ​L(G ​, f(X))p(G ​ ∣ X)∑k=1
K

k k

​ p(G ​ ∣ X) =∑k=1
K

k 1

f(X) = arg min ​ ​L(G ​, g)p(G ​ ∣ X)g∈G ∑
k=1
K

k k

f(X) = arg max ​ p(g ∣ X)g∈G

f(X) = f ​(X)bayes

EPE(f ​) =bayes E ​(L(Y , f ​(X)))x,y bayes

https://home.cit.tum.de/~scfl/
https://commons.wikimedia.org/wiki/Main_Page

