

GRNVS Tutorium 09 - SS21

Fabian Sauter

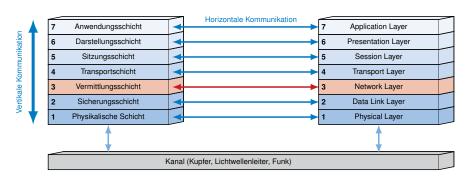
Technische Universität München

Grundlagen: Rechnernetze und Verteilte Systeme (IN0010)

Lehrstuhl für Netzarchitekturen und Netzdienste

Garching, 21.06.2021

Slides & Notes: http://grnvs.uwpx.org



Wiederholung

Kapitel 3: Vermittlungsschicht

ТИП

Einordnung im ISO/OSI-Modell

Kapitel 3: Vermittlungsschicht

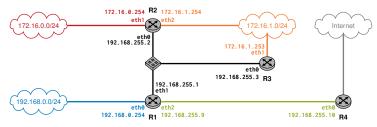
Vermittlungsarten

Adressierung im Internet

Wegwahl (Routing)

Statisches Routing

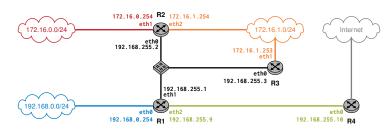
Dynamisches Routing


Autonome Systeme

Zusammenfassun

Literaturangaber

Wir betrachten im Folgenden das unten abgebildete Beispielnetzwerk:



- Die Farben der Links und Interface-Adressen verdeutlichen die einzelnen Subnetze
- Das Netzwerk 192.168.255.0/29 (schwarz) verfügt über 6 nutzbare Hostadressen
- Das Netzwerk 192.168.255.8/30 (grün) ist ein Transportnetz mit nur 2 nutzbaren Hostadressen
- Die übrigen Netze sind /24 Netze mit jeweils 254 nutzbaren Hostadressen

Frage: Wie entscheidet R1, an welchen Next-Hop ein Paket weitergeleitet werden soll?

Statisches Routing Routing Table

Beispiel: Routing-Tabelle für R1

Destination	NextHop	Costs	Iface
192.168.255.8/30	0.0.0.0	0	eth2
192.168.255.0/29	0.0.0.0	0	eth1
192.168.0.0/24	0.0.0.0	0	eth0
172.16.1.0/24	192.168.255.3	1	eth1
172.16.0.0/23	192.168.255.2	1	eth1
0.0.0.0/0	192.168.255.10	0	eth2

- Die Netze 172.16.{0,1}.0/24 wurden zusammengefasst
- Die Route 0.0.0.0 wird auch als Default Route bezeichnet
- Interessant: R1 kennt zwei (eigentlich sogar drei) Routen zum Netz 172.16.1.0/24!

ТШП

Longest Prefix Matching

- R1 berechnet das logische AND aus der Zieladresse des Pakets und den Subnetzmasken (welche aus der Präfixlänge hervorgehen) in seiner Routingtabelle.
- 2. Das Ergebnis wird mit dem Eintrag in der Spalte "Destination" verglichen.
- 3. Stimmt das Ergebnis damit überein, werden Gateway und zugehöriges Interface bestimmt.
- Nachdem die MAC-Adresse des Gateways ggf. via ARP aufgelöst wurde, wird das Paket mit einem neuen Ethernet-Header versehen und weitergeleitet.

Beispiel: R1 erhalte ein Paket mit der Zieladresse 172.16.1.23.

	Destination	NextHop	Costs	Iface
\rightarrow	192.168.255.8/30	0.0.0.0	0	eth2
	192.168.255.0/29	0.0.0.0	0	eth1
	192.168.0.0/24	0.0.0.0	0	eth0
	172.16.1.0/24	192.168.255.3	1	eth1
	172.16.0.0/23	192.168.255.2	1	eth1
	0.0.0.0/0	192.168.255.10	0	eth2

IP-Adresse Subnetz Maske Netzadresse

10101100 . 00010000 . 00000001 . 000101 <mark>11</mark>	172.16.1.23
11111111 . 11111111 . 11111111 . 1111111	255.255.255.252
10101100 . 00010000 . 00000001 . 000101 <mark>00</mark>	172.16.1.20

 \Rightarrow kein Match, da 172.16.1.20 \neq 192.168.255.8

ТШП

Longest Prefix Matching

- R1 berechnet das logische AND aus der Zieladresse des Pakets und den Subnetzmasken (welche aus der Präfixlänge hervorgehen) in seiner Routingtabelle.
- 2. Das Ergebnis wird mit dem Eintrag in der Spalte " Destination" verglichen.
- 3. Stimmt das Ergebnis damit überein, werden Gateway und zugehöriges Interface bestimmt.
- Nachdem die MAC-Adresse des Gateways ggf. via ARP aufgelöst wurde, wird das Paket mit einem neuen Ethernet-Header versehen und weitergeleitet.

Beispiel: R1 erhalte ein Paket mit der Zieladresse 172.16.1.23.

	Destination	NextHop	Costs	Iface
,	192.168.255.8/30	0.0.0.0	0	eth2 eth1
\rightarrow	192.168.255.0/29 192.168.0.0/24	0.0.0.0	0 0	eth0
	172.16.1.0/24 172.16.0.0/23	192.168.255.3 192.168.255.2	1 1	eth1 eth1
	0.0.0.0/0	192.168.255.10	0	eth2

IP-Adresse Subnetz Maske Netzadresse

10101100 . 00010000 . 00000001 . 00010<mark>111</mark> 172.16.1.23 11111111 . 11111111 . 1111111000 255.255.255.248 10101100 . 00010000 . 00000001 . 00010000 172.16.1.16

 \Rightarrow kein Match, da 172.16.1.16 \neq 192.168.255.0

Longest Prefix Matching

- R1 berechnet das logische AND aus der Zieladresse des Pakets und den Subnetzmasken (welche aus der Präfixlänge hervorgehen) in seiner Routingtabelle.
- 2. Das Ergebnis wird mit dem Eintrag in der Spalte "Destination" verglichen.
- Stimmt das Ergebnis damit überein, werden Gateway und zugehöriges Interface bestimmt.
- Nachdem die MAC-Adresse des Gateways ggf. via ARP aufgelöst wurde, wird das Paket mit einem neuen Ethernet-Header versehen und weitergeleitet.

Beispiel: R1 erhalte ein Paket mit der Zieladresse 172.16.1.23.

	Destination	NextHop	Costs	Iface
	192.168.255.8/30	0.0.0.0	0	eth2
\rightarrow	192.168.255.0/29 192.168.0.0/24	0.0.0.0 0.0.0.0	0	eth1 eth0
	172.16.1.0/24 172.16.0.0/23	192.168.255.3 192.168.255.2	1	eth1 eth1
	0.0.0.0/0	192.168.255.10	0	eth2

 \Rightarrow kein Match, da 172.16.1.0 \neq 192.168.0.0

Longest Prefix Matching

- R1 berechnet das logische AND aus der Zieladresse des Pakets und den Subnetzmasken (welche aus der Präfixlänge hervorgehen) in seiner Routingtabelle.
- 2. Das Ergebnis wird mit dem Eintrag in der Spalte "Destination" verglichen.
- 3. Stimmt das Ergebnis damit überein, werden Gateway und zugehöriges Interface bestimmt.
- Nachdem die MAC-Adresse des Gateways ggf. via ARP aufgelöst wurde, wird das Paket mit einem neuen Ethernet-Header versehen und weitergeleitet.

Beispiel: R1 erhalte ein Paket mit der Zieladresse 172.16.1.23.

	Destination	NextHop	Costs	Iface
	192.168.255.8/30	0.0.0.0	0	eth2
	192.168.255.0/29 192.168.0.0/24	0.0.0.0 0.0.0.0	0	eth1 eth0
\rightarrow	172.16.1.0/24 172.16.0.0/23	192.168.255.3 192.168.255.2	1	eth1 eth1
	0.0.0.0/0	192.168.255.10	o o	eth2

 IP-Adresse
 10101100.00010000.00000001
 00010111
 172.16.1.23

 Subnetz Maske
 11111111.1111111
 11111111
 00000000
 255.255.255.0

 Netzadresse
 10101100.00010000.00000001
 000000001
 172.16.1.0

 \Rightarrow Match, da 172.16.1.0 = 172.16.1.0 \Rightarrow Gateway ist 192.168.255.3

Dynamisches Routing

Mittels Routing-Protokollen können Router miteinander kommunizieren und Routen untereinander austauschen. Routingprotokolle können nach Ihrer Funktionsweise wie folgt gruppiert werden:

Distanz-Vektor-Protokolle

- Router kennen nur Richtung (NextHop) und Entfernung (Kosten) zu einem Ziel (vgl. Straßenschild mit Richtungs- und Entfernungsangabe).
- Router haben keine Information über die Netzwerktopologie.
- Router tauschen untereinander lediglich kumulierte Kosten aus (z. B. den Inhalt Ihrer Routingtabellen).
- Funktionsprinzip basiert auf dem Algorithmus von Bellman-Ford, der kürzeste Wege ausgehend von einem Startknoten ermittelt und sich leicht verteilt implementieren lässt.

Link-State-Protokolle

- Router informieren einander zusätzlich zu den Kosten auch darüber, wie ein Ziel erreichbar ist.
- Häufig komplexe Nachbarschaftsbeziehungen und Update-Nachrichten.
- Router erhalten so vollständige Topologieinformationen.
- Basierend auf den Topologieinformationen bestimmt jeder Router kürzeste Pfade,
 z. B. mittels Dijkstras Algorithmus.

Dynamisches Routing

Eigenschaften des Algorithmus von Bellman-Ford:

- Im n-ten Durchlauf der while-Schleife werden alle Pfade der Länge h\u00f6chstens n ber\u00fccksichtigt (vergleiche min-plus-Produkt in n-ter Potenz).
- Keine komplexen Datenstrukturen notwendig.
- Verteilte (dezentrale) Implementierung ohne Kenntnis der Topologie möglich.
- Laufzeit in $\mathcal{O}(|N| \cdot |E|)$.

Eigenschaften des Algorithmus von Dijkstra:

- Es werden immer Pfade über den im jeweiligen Schritt am günstigsten erreichbaren Knoten gesucht (Greedy-Prinzip).
- Wurde ein Knoten abgearbeitet, so ist garantiert, dass der kürzeste Pfad zu diesem Knoten gefunden ist.
- Resourcenintensiver als der Algorithmus von Bellman-Ford, da komplexere Datenstrukturen notwendig sind (Priority Queue).
- Vollständige Kenntnis der Netzwerktopologie erforderlich.
- Asymptotisch bessere Laufzeit.
- Laufzeit in O(|E| + |N| log₂ |N|).

Dynamisches Routing

Übersicht: Ausgewählte Routing-Protokolle

Distanz-Vektor-Protokolle

RIP (Routing Information Protocol)

Sehr einfaches Protokoll, Hop-Count als einzige Metrik, geeignet für eine geringe Anzahl von Netzen, wird von den meisten Routern unterstützt (sogar einige Heimgeräte)

- IGRP (Interior Gateway Routing Protocol)
- Proprietäres Routing Protokoll von Cisco, unterstützt komplexere Metriken als RIP
- EIGRP (Enhanced Interior Gateway Routing Protocol)
- Proprietäres Routing Protokoll von Cisco, Nachfolger von IGRP, deutlich verbesserte Konvergenzeigenschaften.
- AODV (Ad hoc On-Demand Distance Vector)

Einsatz in kabellosen vermaschten Netzwerken, Routen werden nicht proaktiv ausgetauscht sondern on-demand gesucht (reaktives Protokoll)

Link-State-Protokolle

- OSPF (Open Shortest Path First)
 - Industriestandard für mittlere bis große Anzahl von Netzwerken
- IS-IS (Intermediate System to Intermediate System)
 - Seltener eingesetztes, leistungsfähiges Routingprotokoll, welches unabhängig von IP ist, da es sein eigenes L3-Protokoll mitbringt
- HWMP (Hybrid Wireless Mesh Protocol)
 - Ermöglicht Routing in IEEE 802.11s (Wireless Mesh Networks), wobei Routing-Entscheidungen hier allerdings auf Basis von MAC-Adressen anstatt von IP-Adressen getroffen werden ⁴

⁴ MAC-based Routing ist ein Spezialfall für (kabellose) Meshnetzwerke, in dem sich nicht alle Knoten direkt erreichen aber dennoch eine gemeinsame Broadcast-Domain bilden.

Ablauf:

- Aufgabe 1
- Aufgabe 2
- Aufgabe 3

Studenten zählen

(Nur als Erinnerung für mich.)