Auto-Tuning with Early Stopping in AutoPas

Manuel Lerchner
Technical University of Munich
Munich, Germany

Abstract—Simulating molecular dynamics (MD) presents a
significant computational challenge due to the vast number of
particles involved in modern experiments. Naturally, researchers
have put much effort into developing algorithms and frame-
works that can efficiently simulate these systems. This paper
focuses on the AutoPas framework, a modern particle simulation
library that uses dynamic optimization techniques to achieve
high performance in complex simulation scenarios. We introduce
the AutoPas framework and investigate a possible improvement
to AutoPas’ auto-tuning capabilities by introducing an early
stopping mechanism aiming to reduce the overhead of parameter
space exploration. Our evaluation shows that such a mechanism
can reduce the total simulation time by up to 21.1% in specific
scenarios, demonstrating the potential of this improvement.

Index Terms—molecular dynamics, auto-tuning, AutoPas,
early-stopping, GROMACS, LAMMPS, Is1 mardyn

I. INTRODUCTION

Molecular dynamics simulations represent a computational
cornerstone in various scientific fields. These simulations typ-
ically use complex and computationally intensive interaction
models acting on enormous numbers of particles to ensure
accurate results. Consequently, the computational requirements
for these simulations can be substantial and require highly
optimized algorithms and frameworks to achieve feasible
performance.

Well-established molecular dynamics engines, such as
GROMACS, LAMMPS, and Isl mardyn, solve this chal-
lenge by providing a single, highly optimized implementa-
tion determined before the start of the simulation. As their
implementation is determined statically, these engines must
rely on static optimizations to improve their performance.
Static optimizations are typically selected based on predefined
performance models and must be fine-tuned for specific hard-
ware architectures. Common static optimization techniques in-
clude automatic optimizations performed by modern compilers
(e.g., loop unrolling, inlining, auto-vectorization), conditional
compilation based on the target hardware (e.g., SIMD), or
manual selection of simulation parameters based on expert
knowledge [1].

AutoPas approaches the challenge of high-performance
molecular dynamics simulations differently: Instead of choos-
ing a single implementation prior to the simulation, AutoPas
uses dynamic optimizations to adjust its implementation based
on the simulation state and the actual hardware performance.
This approach is favorable, as the engine can adapt and op-
timize itself without external intervention. However, dynamic
optimizations come at the cost of increased complexity and

potential overhead due to the need for frequent re-evaluations
of the selected implementation.

This paper provides an overview of the AutoPas framework
and the benefits and challenges of using dynamic auto-tuning
in molecular dynamics simulations. Moreover, we investigate
the potential of an early stopping mechanism and evaluate its
performance in the context of the AutoPas framework.

II. RELATED WORK

Established MD engines such as GROMACS, LAMMPS,
and Is1 mardyn have been developed over many years and have
been optimized to achieve high performance in their respective
use cases. This section provides an overview of the default
implementations of these engines.

A. GROMACS

GROMACS implements a single, highly optimized variant
of the Verlet Cluster List algorithm. The algorithm allows for
flexible cluster sizes specifically designed for achieving good
SIMD vectorization [2].

Gromacs allows setting the vectorization parameters for
the cluster size M and the number of particles in neighbor
groups N statically to tune the force calculations to the
SIMD width of the system [2]. With suitable values for M
and N, computations of M x N particle interactions can be
performed with just two SIMD load instructions [3], drastically
reducing the number of memory operations required for the
force calculations and reaching up to 50% of the peak flop
rate on all supported hardware platforms [3].

Tuning those parameters is time-consuming and relies on
a detailed understanding of many low-level software opti-
mization aspects of the different hardware platforms [2]. In
GROMACS, the developers must create and maintain such
performance models for each supported hardware platform,
which is a time-consuming and labor-intensive process [2].

B. LAMMPS

LAMMPS utilizes a performance-optimized version of
the Verlet List algorithm. To optimize cache performance,
LAMMPS stores its neighbor lists in a global data structure
split across multiple memory pages. Each page stores neighbor
lists for multiple particles in a contiguous memory block, al-
lowing for efficient allocation and deallocation of the neighbor
lists [4]. All particle data is stored in a Structure of Arrays
(SoA) layout [4], allowing for efficient vectorization of the
force calculations.

C. Isl mardyn

Is1 mardyn differs from the previously mentioned MD
engines as it uses the Linked Cells algorithm for particle
interactions. Using LinkedCells provides a better memory
efficiency than GROMACS and LAMMPS, allowing for sim-
ulations of massive particle systems [5]. Internally, Is1 mardyn
uses the default data layout of AoS (Array of Structures) for
storing particle data and converts it to an SoA (Structure of
Arrays) layout when required. Particular branches aimed at
simulating massive particle systems can use a RMM (Reduced
Memory Mode) layout, allowing for simulations of up to
twenty trillion atoms [5].

While GROMACS, LAMMPS, and Isl mardyn achieve
remarkable performance through specialized and statically
optimized implementations, their reliance on manual tuning
and hardware-specific adjustments presents challenges. These
limitations have led to the development of frameworks like
AutoPas, which aim to dynamically optimize their perfor-
mance based on the simulation state and hardware charac-
teristics.

III. AUTOPAS

AutoPas' was developed on the basis of creating an efficient
node-level particle simulation engine applicable to a wide
range of scientific fields [6]. To achieve this goal, AutoPas
uses a modular architecture that seamlessly integrates different
algorithms and data structures into the simulation engine. As
it is not capable of running simulations on its own, AutoPas
serves as an intermediary layer between user-provided sim-
ulation code and implementations specifically designed to
efficiently solve N-Body problems. The modular nature of
AutoPas enables it to combine different implementations and
create a wide range of so-called configurations.

To eliminate the need for manual configuration selection and
enable dynamic optimization, AutoPas provides an auto-tuning
framework. This framework periodically assesses different
configurations and selects optimal ones based on performance
metrics. This selection process is managed by TuningStrate-
gies that systematically suggest promising configurations to
evaluate. Figure 1 illustrates the high-level architecture of the
AutoPas library.

User Simulator:
* Molecular Dynamics
* Space Debris

¢ Discrete Elements

Algorithm
Library
« Particle Container

* Parallel Traversal
« Data Structure

Tuning
Strategy

A scheme for
selecting the optimal
algorithmic
configuration

Fig. 1: AutoPas Library Structure as depicted by [7]

A. Algorithm Library

All different algorithmic implementations for solving N-
Body problems are part of the so-called Algorithm Library
of AutoPas. The Algorithm Library contains different imple-
mentations for certain key aspects of the simulation, such
as neighbor identification, traversal patterns, memory layouts,
and optimization techniques. Currently, AutoPas supports the
six tunable parameters: Container, Data Layout, Newton 3,
Traversal, Load Estimator and Cell Size Factor which can be
combined to create different configurations.

Maintaining a library of different implementations has sev-
eral benefits: As the library is modular, it is straightforward
to add new, potentially hardware-specific, implementations for
each key aspect of the simulation. This ensures that the simula-
tion engine remains maintainable and can provide performance
portability across a wide range of hardware platforms. The
interchangeable nature of the implementations also ensures
implicit backward compatibility, making it easy to study the
effects of new hardware on existing implementations. Users of
the library also benefit from this approach. As AutoPas is able
to automatically select the best configuration for their specific
use case and hardware setup, users do not need to have a
deep understanding of the underlying hardware or software
optimizations and can fully focus on the high-level aspects of
their simulation [6] [8].

B. Tunable Parameters

This section provides a brief overview of the six tunable

parameters available in AutoPas.

Container
Containers are responsible for storing the simulation
particles so that relevant neighbor particles can be de-
termined efficiently. As AutoPas focuses on short-range
interactions with a force cutoff radius r., efficient neigh-
bor identifications using just O(V) distance calculations
are possible [1]. The container types depicted in Figure 2
will be shortly described below.

o Linked Cells
The Linked Cells algorithm maintains a grid of cells,
each storing a list of particles located within the cell.
When calculating forces for a particle, only? particles
in neighboring cells (depicted in blue) must be consid-
ered, as all other particles are guaranteed to be outside
the cutoff radius.
LinkedCells introduces many spurious distance calcu-
lations (shown by arrows to gray particles), which can
be reduced by using a smaller cell size factor [9].
LinkedCells are very cache-friendly as spatially close
particles are stored together in memory [8].

o Verlet Lists
The Verlet Lists algorithm uses a second radius 7, =
re + Ay (yellow circle) and considers all particles
within this radius as potential neighbors. Contrary

! https://github.com/AutoPas/AutoPas
21f cellSizeFactor = cellSize/r. = 1.

https://github.com/AutoPas/AutoPas

to LinkedCells, each particle maintains its own list
of potential neighbors, resulting in a higher memory
overhead. As the bigger radius r, provides a buffer
region, it is possible to only rebuild the neighbor-list
every n simulation steps, as long as no particle can
move from outside r.+ A to inside r. unnoticed [10].
VerletLists have few spurious distance calculations but
are less cache-friendly as neighboring particles are not
stored together in memory [8]. This results in very
inefficient vectorization [2].
e Verlet Cluster Lists

The Verlet Cluster Lists algorithm improves on the
VerletLists algorithm by grouping particles into clus-
ters of size M (M = 4 in the figure) and performing
neighbor-list calculations on a cluster level [2]. This
reduces the memory overhead significantly. However,
it results in more spurious distance calculations as all
particles in neighboring clusters must be considered
when calculating forces. When M is chosen in accor-
dance with the SIMD width of the system, efficient
vectorization is possible [8] [2].

E B oE

o o o\b\b

o o o ©

Linked Cells Verlet Lists Verlet Cluster Lists

Fig. 2: Important container types as depited by [8]. The
cutoff radius r. is shown using a red circle. Arrows represent
distance checks between particles. Only particles shown in
blue contribute to the final force calculation.

Data Layout
The Data Layout describes how the particles are stored in
memory. Possible choices are SoA (Structure of Arrays)
and AoS (Array of Structures). SoA allows for better vec-
torization as properties of multiple particles can be loaded
efficiently into SIMD registers. However, accessing the
properties of a single particle is more expensive, requiring
multiple memory accesses. AoS is the opposite. It allows
for efficient access to properties of a single particle to,
e.g., send it to another MPI rank, but results in inefficient
vectorization [8].
Newton 3

A common optimization in molecular dynamics involves
applying Newton’s third law to reuse force calculations
between particle pairs, effectively reducing computational
costs by half. However, not all parallel traversal patterns
can safely implement this optimization without risking
race conditions. For those that do, synchronization points
must be added to ensure accurate force application, which
in turn limits the potential for parallelism.

Traversal

Traversals are responsible for iterating over the particles
in the simulation and calculating their interactions in a
shared-memory environment [11]. The traversal pattern
determines to which extent force calculations can be
parallelized and whether optimizations, such as Newton 3,
can be applied. The traversal patterns depicted in Figure 3
will again be shortly introduced below.

o COI
The CO1 traversal pattern processes each cell in-
dependently, resulting in an embarrassingly parallel
traversal. Newton’s Third Law cannot be used with
this traversal pattern since adjacent cells are processed
simultaneously, which could lead to race conditions
when applying forces. As no synchronization between
cells is required, the COl traversal pattern has the
highest degree of parallelism [10].

e CI8
The C18 traversal pattern uses color assignments to en-
sure that no race conditions occur when using Newton
3. Figure 3 shows the regular color assignments, ensur-
ing that no two cells of the same color share common
neighbors. To ensure that forces are only applied once
when using Newton 3, each cell only applies forces to
cells above or right of it. During the force calculation,
all available threads work on a single color, which
allows for a safe application of forces on neighboring
cells and reduces scheduling overhead [10]. As the
color groups must be processed sequentially, the C18
traversal introduces 18 synchronization points, which
reduces the overall degree of parallelism [10].

e CO8
The CO8 traversal pattern is similar to the C18 traversal
pattern but uses a different coloring scheme with only
eight colors, reducing the number of synchronization
points to eight. The CO8 traversal pattern has a degree
of parallelism between the COl and C18 traversal
patterns [10].

Co1 C18 Co8

Fig. 3: Important Traversal Types as depicted by [10].

Load Estimator

Different load estimators can be used to estimate and
fairly divide work across all available processing units.
Maintaining a good workload distribution reduces the idle
time of processing units and thus increases the overall
simulation speed.

Cell Size Factor

The default cell size factor of 1 results in a cell size
of r. (see Figure 2). As discussed previously, the large
area of neighboring cells causes many spurious distance
calculations, which can be reduced by using a smaller
cell size factor. As decreasing the cell size factor also
increases the memory overhead due to the higher number
of cells to be maintained in memory [9] [12], the cell size
factor must be chosen carefully.

C. Auto-Tuning Framework

A manual selection of suitable implementations for each
tunable parameter would require extensive domain knowledge
that is challenging to acquire and maintain under the constantly
changing software and hardware landscape. To address this
issue, AutoPas performs automated algorithm selection to
optimize specific performance metrics, such as runtime or
energy efficiency [8]. Internally, AutoPas periodically initiates
so-called tuning-phases in which promising configurations are
evaluated in order to determine the best configuration for the
current simulation state. The winning configuration is then
used until the next tuning phase is initiated.

The currently available tuning strategies in AutoPas are:

FullSearch
The FullSearch strategy naively evaluates all possible
configurations, thus always finding the best configuration.

RandomSearch
The RandomSearch strategy randomly selects configura-
tions out of the entire search space, causing less overhead
than the FullSearch strategy at the cost of potentially
missing the best configuration.

BayesianSearch
The Bayesian Search strategy is similar to the Random-
Search strategy. However, it uses a Bayesian optimization
algorithm to select the next configuration to evaluate
based on previous measurements [13]. An improvement
to better account for the discrete tuning space of AutoPas
called BayesianClusterSearch is also available [13].

PredictiveTuning
The PredictiveTuning strategy extrapolates previously
gathered timing measurements of a configuration to pre-
dict its performance in the current simulation state. This
allows for an efficient rejection of inefficient configura-
tions without evaluating them [14].

RuleBasedTuning
The RuleBasedTuning strategy uses a set of rules to
discard undesirable configurations immediately. The rules
are based on expert knowledge in a if-then fashion and
use aggregate statistics of the simulation state to make
decisions [15].

FuzzyTuning
The FuzzyTuning strategy is similar to the RuleBased-
Tuning strategy but uses fuzzy logic systems to eval-
uate configurations. This allows for both an inter- and
extrapolation of the rules to account for configurations
not covered by the expert knowledge [16].

IV. BENEFITS OF AUTO-TUNING

Since no single configuration can deliver optimal perfor-
mance across all simulation scenarios [6], dynamic perfor-
mance tuning is essential for maintaining high efficiency
across diverse simulation conditions. This section discusses
some of the key benefits of using AutoPas’s auto-tuning
framework.

Performance Improvements

The most compelling advantage of auto-tuning is the sig-
nificant performance improvements it can achieve. It has been
shown many times that AutoPas can improve simulation times
across diverse molecular dynamics simulation scenarios, both
in the standalone application as well as in established MD
engines such as Is] mardyn and LAMMPS [11] [8]. Those
improvements provide compelling evidence for the effective-
ness and importance of the auto-tuning approach.

Accessibility and Ease of Use

AutoPas’s tuning framework enables users to achieve opti-
mal performance directly out of the box without requiring deep
expertise in performance optimization. Different performance
characteristics caused by varying hardware setups are automat-
ically accounted for by the auto-tuning framework, allowing
users to focus on the actual simulation [6].

The inherent user-friendliness is particularly valuable when
integrating AutoPas into other simulation frameworks, as de-
velopers can treat the simulation engine as a black box and
let the auto-tuning framework handle the optimization.

V. DRAWBACKS OF AUTO-TUNING
Suboptimal Configurations

A major drawback of auto-tuning in the way it is im-
plemented in AutoPas is the inherent overhead caused by
tuning phases. Even though it is an important characteristic of
tuning strategies to infer and evaluate only those configurations
that are likely to perform well, this inference is not always
successful. Many configurations can turn out to be orders of
magnitude slower than the optimal configuration [15] [16],
making their evaluation extremely costly.

Advanced tuning strategies such as RuleBasedTuning or
FuzzyTuning can mitigate this problem to some extent, how-
ever even they cannot guarantee always finding the best
configuration, as the underlying expert knowledge for both
strategies is expected to be highly incomplete.

This challenge highlights the need for additional opti-
mization techniques, such as the early stopping mechanism
introduced in section VI, to reduce the overhead caused by
evaluating suboptimal configurations.

Figure 4 shows a typical timing profile of the ExplodingLig-
uid simulation for every available tuning strategy. The inherent
overhead caused by tuning phases is very noticeable and is
present in all tuning strategies. For some tuning strategies,
the overhead results in a considerable increase in the total
simulation time (see default cases in Figure 5a and Figure 5b).

Periodic Re-Tuning

Even though AutoPas is capable of performing periodic
auto-tuning, it is often beneficial to just execute a single tuning
phase right at the beginning of the simulation.

Ideally, the aforementioned overhead of evaluating subopti-
mal configurations leads to discovering a better configuration
at the end of the tuning phase. However, many scenarios,
especially homogeneous ones with simple interaction models,
tend to behave fairly stable over time, making it very likely
that re-tuning does not lead to an improved configuration. In
such cases, the overhead of re-tuning is unnecessary and only
increases the total simulation time. Figure 4 depicts this effect
for the ExplodingLiquid simulation.

Further evaluation of the data obtained in [17] shows that
only three out of 184 runs using slight variations of example
scenarios provided by md-flexible’ show any changes
in the best configuration after the initial tuning phase. This
effect occurs in both single and multi-node simulations and
indicates that all currently provided example scenarios of md—
flexible are incapable of demonstrating the benefits of
periodic re-tuning.

More complex scenarios, most likely involving multiple
MPI ranks and inhomogeneous particle distributions, are nec-
essary to fully demonstrate the benefits of periodic re-tuning.
Simulating such inhomogeneous scenarios in an MPI envi-
ronment increases the chance of varying particle distribution
across both MPI ranks and time steps, increasing the likelihood
of benefitting from periodic re-tuning on each rank (See [7]).

PredictiveTuning - mean: 3.37ms
BayesianClusterSearch - mean: 2.93ms
FullSearch - mean: 2.71ms
BayesianSearch - mean: 2.63ms
RuleBasedTuning - mean: 2.49ms
++ FuzzyTuning [Suitability] - mean: 1.69ms

FuzzyTuning [Components] - mean: 1.38ms

—— Optimum - mean: 1.18ms

12

i
o

o

Time calculating forces [ms]

1000 2000 3000 4_1000 5000 6000 7000
Fig. 4: Typical timing profile of the ExplodingLiquid simula-
tion for every available tuning strategy. The plot clearly shows
that all tuning strategies introduce overhead during the tuning
phases. Data obtained from [17]

3md-flexible is a molecular dynamics simulation framework making
use of the AutoPas library. It is included in the AutoPas repository and
provides a wide range of example scenarios to demonstrate the capabilities
of the AutoPas library.

VI. EARLY STOPPING OPTIMIZATION

To minimize some of the introduced drawbacks of the auto-
tuning process, [15] [16] [18] suggest that an early stopping
mechanism could be beneficial for the AutoPas framework.
The primary goal of such a mechanism would be to detect
tuning iterations that take much longer than the currently
best-known configuration and to stop the evaluation of those
configurations early. There are two approaches to this problem:

« Stopping Further Samples

As AutoPas evaluates a configuration multiple times to
reduce measurement noise, a simple way to implement
early stopping would be to stop the evaluation of further
samples as soon as it is clear that the performance is
significantly worse than the best-known configuration.
This approach however requires fully evaluating some
samples of a bad configuration.

o Interrupting the Evaluation

A more fine-grained approach, proposed in [15], could
interrupt the evaluation of a long-running configuration
while it is still being evaluated. Such a change would
require a big rewrite of AutoPas’ internal structure and
is therefore not feasible in the short term.

To get a first impression of the potential benefits of an
early stopping mechanism, we implemented the first approach
into the AutoPas framework?. The changes to the existing
codebase are minimal, as the early-stopping mechanism can be
implemented using existing functionality. Algorithm 1 shows
the main changes to the AutoTuner. cpp file.

Both described approaches require a user-defined threshold,
called earlyStoppingFactor, to determine how much slower
a configuration can be compared to the best-known config-
uration before it should be stopped early. The effect of this
threshold will be evaluated in the following section.

Algorithm 1 Early Stopping Algorithm in AutoPas

1: procedure CHECKEARLYSTOPPINGCONDITION()

2: if not ENOUGHCONFIDENCE() then

3 return

4: end if

5: evidenceEstimate < ESTIMATERUNTIMEFROMSAMPLES()
6: bestEvidence < GETLATESTOPTIMALCONFIGURATION()
7. slowdownFactor < %

8: if slowdownFactor > earlyStoppingFactor then

9: abort < true

10: end if

11: end procedure

12: procedure GETNEXTCONFIGURATION
13: if not inTuningPhase then

14: return (currentConfig, false)

15: else if numSamples < maxSamples then
16: return (currentConfig, true)

17: else

18: stillT'uning < TUNECONFIGURATION()

19: return (newConfig, stillTuning)

20: end if

21: end procedure

4See https://github.com/AutoPas/AutoPas/pull/995 for the changes.

https://github.com/AutoPas/AutoPas/pull/995

A. Evaluation: Exploding Liquid Simulation

To evaluate the performance of the early stopping mech-
anism, we perform benchmarks using the Exploding Liquid
scenario’ provided by md-flexible. All runs are performed
using a single node of the CoolMUC4 supercomputer using
two threads and are repeated five times.

FullSearch (Figure 5a)
Early stopping combined with the FullSearch strategy,
is able to reduce the total simulation time from 13.93
seconds to 10.99 seconds at earlyStoppingFactor =~
1.05. This corresponds to reducing the total simulation
time by 21.1%.

PredictiveTuning (Figure Sb)
Early stopping combined with the PredictiveTuning strat-
egy, is able to reduce the total simulation time from 15.86
seconds to 12.58 seconds at earlyStoppingFactor =~
1.05. This corresponds to reducing the total simulation
time by 20.7%.

FuzzyTuning (Figure 5c)
Early stopping combined with the FuzzyTuning strategy
shows no significant changes in the total simulation time.

B. Analysis and Discussion

Impact of the Early Stopping Factor:
As expected, the benchmark results suggest that choosing
a lower earlyStoppingFactor generally results in shorter
simulation times whenever bad configurations are present
during the tuning phases. Further analysis suggests that
tuning phases result in equally performing configurations
regardless of the chosen earlyStoppingFactor, indicating
that all performance improvements are directly caused by
faster tuning phases.
As the limiting case of earlyStoppingFactor — oo
effectively disables the early stopping mechanism, the per-
formance converges to the default implementation without
early stopping.
Interestingly, the limit earlyStoppingFactor — 1 does
not impact the total simulation time negatively. This in-
dicates that estimateRuntimeFromSamples () pro-
vides a reliable estimate of the actual performance even
with few samples and thus allows for very aggressive early
stopping.
In general, the earlyStoppingFactor should however be
chosen high enough to provide a sufficient margin to
account for measurement noise, while being low enough to
stop the evaluation of slow configurations effectively. Based
on the benchmark results, earlyStoppingFactor ~ 1.5
seems to be a good compromise, as lower thresholds only
provide marginal improvements.
It is however unclear whether such a threshold is universally
applicable to all scenarios. Additional benchmarking across
a broader range of use cases is needed to validate these
preliminary findings.

SThe input file can be found at explodingLiquid.yaml. A video of the
simulation is available at https://youtu.be/u7TE5KiSQOS.

Total time spent calculating forces [Full Search]

B Simulation Phases
B Tuning Phases

[
S

-
N

=
o

[e]

o

IS

N

Total time spent calculating forces [s]

0
105131151292515 2 25 3 35 &4 45 5 55 6 5 1 15 8 3,%0%%{3\,\“
Early Stopping Factor

(a) Time spent calculating forces for Exploding Liquid Scenario using
the FullSearch strategy with early stopping and two threads.

Total time spent calculating forces [Predictive Tuning]

— 16

o)

Py

g 14

s

g,lz

& 10

2

S 8

e

26

&

g 4

= @ Simulation Phases

8 .

e 2 B Tuning Phases
0

105131151292515 2 25 3 35 &4 45 5 55 6 g5 1 15 8 3,%0%%{3\,\\{
Early Stopping Factor

(b) Time spent calculating forces for Exploding Liquid Scenario using
the PredictiveTuning strategy with early stopping and two threads.

Total time spent calculating forces [Fuzzy Tuning [Suitability]]

B Simulation Phases
B Tuning Phases

=
o

@

o

IS

N

Total time spent calculating forces [s]

0
105131151292515 2 25 3 35 4 45 5 55 6 65 1 15 8 3-510%%}30\‘
Early Stopping Factor

(c) Time spent calculating forces for Exploding Liquid Scenario using
the FuzzyTuning[Suitability] strategy with early stopping and two
threads.

Impact of the Tuning Strategy:

The evaluated benchmarks show that the FullSearch and
PredictiveTuning strategies benefit drastically from early
stopping. As the FullSearch strategy naturally encounters
many bad configurations, such a big improvement is ex-
pected. The PredictiveTuning strategy, on the other hand,
is not able to leave the initial data collection phase, as the
benchmark is too short. Longer benchmarks are needed to
show the differences between FullSearch and Predictive-
Tuning more clearly.

The FuzzyTuning strategy is unaffected by the early stop-
ping mechanism, as it already performs nearly optimally
without early stopping. This indicates that the FuzzyTuning
strategy is very effective at avoiding bad configurations,
making the early stopping mechanism redundant.

https://doku.lrz.de/coolmuc-4-1082337877.html
 https://github.com/AutoPas/AutoPas/blob/master/examples/md-flexible/input/explodingLiquid.yaml
https://youtu.be/u7TE5KiSQ08

Future Work:

The current implementation of the early stopping mech-
anism starts with a fresh set of evidence samples in each
tuning phase. This results in not using the information gath-
ered in previous tuning phases, which could potentially help
to stop evaluating bad configurations earlier. An improved
version could keep track of a running average of evidence
measurements collected during the prior simulation phase,
allowing the early stopping mechanism to start with a rea-
sonable estimate of achievable performance, thus increasing
the likelihood of stopping more unsuitable configurations
early.

VII. CONCLUSION

We presented an overview of the AutoPas framework and
its auto-tuning capabilities and demonstrated the benefits and
challenges of dynamic auto-tuning in molecular dynamics
simulations.

The main contribution of this paper is the introduction of an
early stopping mechanism to reduce the overhead of parameter
space exploration in the AutoPas framework. Our evaluation
shows that such a mechanism can reduce the total simulation
time by up to 21.1% in specific scenarios with only minor
changes to the existing codebase, demonstrating the potential
of this improvement.

Further evaluation of the early stopping mechanism across
a broader range of use cases is however necessary to validate
these preliminary findings and to determine whether the early
stopping mechanism is universally applicable to all scenarios.

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

F. A. Gratl, S. Seckler, N. Tchipev, H.-J. Bungartz, and P. Neumann,
“Autopas: Auto-tuning for particle simulations,” in 2019 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2019, pp. 748-757.

S. Pdll and B. Hess, “A flexible algorithm for calculating pair
interactions on simd architectures,” Computer Physics Communications,
vol. 184, no. 12, pp. 2641-2650, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0010465513001975
Solving Software Challenges for Exascale. Stockholm, Sweden:
Springer, 2015, revised Selected Papers.

A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in 't Veld, A. Kohlmeyer, S. G. Moore,
T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and
S. J. Plimpton, “Lammps - a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum scales,” 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0010465521002836

N. Tchipev, S. Seckler, M. Heinen, J. Vrabec, F. Gratl, M. Horsch,
M. Bernreuther, C. W. Glass, C. Niethammer, N. Hammer, B. Krischok,
M. Resch, D. Kranzlmiiller, H. Hasse, H.-J. Bungartz, and P. Neumann,
“Twetris: Twenty trillion-atom simulation,” The International Journal of
High Performance Computing Applications, vol. 33, no. 5, pp. 838-854,
2019. [Online]. Available: https://doi.org/10.1177/1094342018819741
N. P. Tchipev, “Algorithmic and implementational optimizations
of molecular dynamics simulations for process engineering,” Ph.D.
dissertation, Technische Universitit Miinchen, 2020. [Online]. Available:
https://mediatum.ub.tum.de/1524715

S. J. Newcome, F. A. Gratl, P. Neumann, and H.-J. Bungartz, “Towards
the smarter tuning of molecular dynamics simulations,” in SIAM Con-
ference on Computational Science and Engineering (CSE23). SIAM,
Feb 2023.

F. A. Gratl, S. Seckler, H.-J. Bungartz, and P. Neumann, “N
ways to simulate short-range particle systems: Automated algorithm
selection with the node-level library autopas,” Computer Physics
Communications, vol. 273, p. 108262, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S001046552100374X
C. Menges, “Optimization and evaluation of the linked-cell algorithm,”
Bachelor’s Thesis, Technical University of Munich, Aug 2019.

S. J. Newcome, F. A. Gratl, P. Neumann, and H.-J. Bungartz,
“Towards auto-tuning multi-site molecular dynamics simulations with
autopas,” Journal of Computational and Applied Mathematics, vol.
433, p. 115278, 2023. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0377042723002224

S. Seckler, F. Gratl, M. Heinen, J. Vrabec, H.-J. Bungartz, and
P. Neumann, “Autopas in Isl mardyn: Massively parallel particle
simulations with node-level auto-tuning,” Journal of Computational
Science, vol. 50, p. 101296, 2021. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S1877750320305901

M. Papula, “Implementing the linked cell algorithm in autopas using
references,” Bachelor’s Thesis, Technical University of Munich, Sep
2020.

J. Nguyen, “Mixed discrete-continuous bayesian optimization for auto-
tuning,” Master’s thesis, Technical University of Munich, Oct 2020.

J. M. Pelloth, “Implementing a predictive tuning strategy in autopas
using extrapolation,” Bachelor’s Thesis, Technical University of Munich,
Sep 2020.

T. Humig, “Project report: Exploring performance modeling in autopas,”
Project Report, Technical University of Munich, Oct 2023.

M. Lerchner, “Exploring fuzzy tuning technique for molecular dynamics
simulations in autopas,” Bachelor’s Thesis, Technical University of
Munich, Aug 2024.

——, “Autopas fuzzy tuning - bachelor thesis,” 2024, accessed:
2024-11-26. [Online]. Available: https://github.com/ManuelLerchner/
AutoPas-FuzzyTuning-Bachelor-Thesis

HobbyProgrammer, “Skip (or even timeout) extremely long running
iterations of configurations during tuning,” https://github.com/AutoPas/
AutoPas/issues/673, 2022, accessed: 2024-11-06.

https://www.sciencedirect.com/science/article/pii/S0010465513001975
https://www.sciencedirect.com/science/article/pii/S0010465521002836
https://www.sciencedirect.com/science/article/pii/S0010465521002836
https://doi.org/10.1177/1094342018819741
https://mediatum.ub.tum.de/1524715
https://www.sciencedirect.com/science/article/pii/S001046552100374X
https://www.sciencedirect.com/science/article/pii/S0377042723002224
https://www.sciencedirect.com/science/article/pii/S0377042723002224
https://www.sciencedirect.com/science/article/pii/S1877750320305901
https://www.sciencedirect.com/science/article/pii/S1877750320305901
https://github.com/ManuelLerchner/AutoPas-FuzzyTuning-Bachelor-Thesis
https://github.com/ManuelLerchner/AutoPas-FuzzyTuning-Bachelor-Thesis
https://github.com/AutoPas/AutoPas/issues/673
https://github.com/AutoPas/AutoPas/issues/673

	Introduction
	Related Work
	GROMACS
	LAMMPS
	ls1 mardyn

	AutoPas
	Algorithm Library
	Tunable Parameters
	Auto-Tuning Framework

	Benefits of Auto-Tuning
	Drawbacks of Auto-Tuning
	Early Stopping Optimization
	Evaluation: Exploding Liquid Simulation
	Analysis and Discussion

	Conclusion
	References

