
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Markov chains and Markov decision processes in
Isabelle/HOL

Johannes Hölzl

Received: – / Accepted: –

Abstract This paper presents an extensive formalization of Markov chains (MCs)
and Markov decision processes (MDPs), with discrete time and (possibly infinite) dis-
crete state-spaces. The formalization takes a coalgebraic view on the transition systems
representing Markov chains and constructs their trace spaces. On these trace spaces
properties like fairness, reachability, and stationary distributions are formalized. Simi-
lar to Markov chains, MDPs are represented as transition systems with a construction
for trace spaces. These trace spaces provide maximal and minimal expectation over
all possible non-deterministic decisions. As applications we provide a certifier for fi-
nite reachability problems and we relate the denotational semantics and operational
semantics of the probabilistic guarded command language (pGCL).

A distinctive feature of our formalization is the order-theoretic and coalgebraic
view on our concepts: we view transition systems as coalgebras, we view traces as
coinductive streams, we provide iterative computation rules for expectations, and we
define many properties on traces as least or greatest fixed points.

Keywords Markov chains · Markov decision processes · probabilistic guarded
command language · probabilistic model checking · Isabelle/HOL

1 Introduction

Markov chains (MCs) and Markov decision processes (MDPs) with discrete state space
and discrete time are popular probabilistic models of network protocols, algorithms,
communication systems or biological systems. In computer science, they are used to
analyze probabilistic programs [25], provide semantics for programming languages [23],
or analyze queuing and reliability problems [50]. In this paper we present the formaliza-
tion of Markov chains and Markov decision processes in Isabelle/HOL. The applications
of this formalization range from the implementation of a probabilistic model checker on

The author is supported by the DFG project Ni 491/15-1.

Johannes Hölzl
Department of Informatics, Technical University of Munich, 85748 Garching, Germany
E-mail: hoelzl@in.tum.de

2 Johannes Hölzl

MDPs — e.g. extending the CAVA project [18] to probabilistic models —, over using
probabilistic models in software verification [36], to the formalization of probabilistic
semantics [23].

From a computer science point there are two interesting views on probabilistic pro-
grams: (1) a denotational view where the observation is the distribution of the program
results including its termination and (2) an operational view where the observation is
the distribution of program traces. While (1) requires less mathematical support it
also is less expressive. The operational semantics allows us to reason about the inter-
action with deliberately non-terminating software like operating systems. In this paper
we formalize both views while focusing on the operational semantics and later relate
it with the denotational semantics. This allows us to introduce an operational view
on probabilistic programs, relate it to the denotational view (see Section 5), and also
analyze the behaviors of non-terminating programs (see Section 3.6).

1.1 Approach

In this paper we follow a coalgebraic and order-theoretic view on Markov chains. This
is different from the traditional way, where properties on Markov chains are expressed
using explicit time points ti and specific paths x0, x1, . . . , xi. For example, the memory-
less property states, that for a time point t and for all paths s0, . . . , st:

Pr(Xt = st | Xt−1 = st−1, . . . , X0 = s0) = Pr(Xt = st | Xt−1 = st−1) . (1)

This traditional approach is based on the analysis of stochastic processes (e.g. the
sequence of random variables Xt in Eq. (1)), especially when working with continuous
time. It is however difficult to derive computation rules over such stochastic processes.
An obvious observation of Eq. (1) is that it is a very rigid statement, we can only
reason about a single path on our Markov chain. Another observation is that there is an
implicit probability space in Pr(. . .) and on top of this we have a stochastic process X.
In contrast to this, we introduce a coalgebra to model the transition function, construct
a probability space, and give a powerful prove rule. Another difference to the traditional
approach is: we do not split the stochastic process into a probability space and the
stochastic process X, but we directly operate on the law of the stochastic process,
i.e. the push-forward measure of X.

In the coalgebraic approach, we first start with a transition system. A F-transition
system is represented as a pair (A, τ : A → F(A)), where A is the state space and τ
describes the transitions per state. And F is a functor describing the possible structure
of the transitions, e.g. F(A) = P(A) would be a purely non-deterministic transition
system. In our setting we will use two instances for F : F(A) = D(A), the probability
mass functions (pmfs, also called discrete distributions) on A, or F(A) = P(D(A)),
sets of pmfs on A. The former are purely probabilistic, the latter combine probabilistic
and non-deterministic choice. In our Isabelle/HOL formalization we will write K ::
α⇒ α pmf or K :: α⇒ α pmf set for transition systems (K for Markov kernel). The
set A is represented by the type α and F is determined by the return type.

For a Markov chain given by a kernel K, we want to define the expectation of a
function on traces in this Markov chain. For this we construct a probability measure
Ts describing the probability that a set of traces is observed in the Markov chain when
started in state s. Besides being a probability measure Ts has the following defining

Markov chains and Markov decision processes in Isabelle/HOL 3

property: For each measurable function f and state s, we have the following equation
for the expectation of f :∫

ω

f(ω) dTs =
∫
t

(∫
ω

f(t·ω) dTt
)

dKs (2)

We call this equation the iteration rule. It says: the expectation of f(ω) over all traces
ω starting from s is the expectation over all following states t (of the distribution given
by Ks) of the expectation of f over all traces when we start in t.

What are the benefits of these approaches? The coalgebraic approach gives us
a compositional way to define the transition system of Markov chains. This is done
by defining a monad on the type of probability mass functions which allows us to
compose the transitions per state from basic distributions. Also after applying Eq. (2)
the integral over K is usually nicely decomposed following the construction of K itself.
Conversely if we want to prove a statement abstractly over K the Eq. (2) allows us to
encode many statements directly in terms of f , while Eq. (1) often requires to bring the
statement in the right form. Instead of splitting the trace space up into a probability
space and a stochastic process we directly operate on the trace space. This results in
slightly less cluttered theorem statements. To reconstruct the traditional statements it
is enough to equate the trace space with the push-forward measure of the stochastic
process.

The order-theoretic view is expressed by the fact that we specify properties using
least and greatest fixed points. For example, the hitting time hS over an infinite word
ω is often defined as the first time t, s.t. ωt ∈ S. We define hS as the least fixed
point of the functional F where F hS (s·ω) = (if s ∈ S then 0 else hS(ω) + 1). In
many cases, the integral of a fixed point is easy to compute by using the iteration rule
(and the transfer theorems presented in Section 2.2.1). A good overview of the order-
theoretic approach is provided by Monniaux [43], presenting abstract interpretation to
analyze MDPs. Again the benefit of this approach is compositionality: many properties
are expressible as fixed points and the integral of a fixed point is often proved to be a
fixed point again with just one proof rule.

1.2 Contributions

The main contribution of this work is the formalization of Markov chains and Markov
decision processes with potentially infinite state spaces. This does not only include
the construction of the trace spaces, but consequently developing theorems to com-
pute certain probabilities, e.g. reachability, hitting time or stationary distributions, on
countable state spaces. The central theorems for Markov decision processes are the
existence of optimal schedulers and the iteration rules for reachability problems. This
allows us to give a very simple formalization of the equivalence proof for the operational
and denotational semantics of the probabilistic guarded command language (pGCL).

1.3 Structure

In the next section we give an overview of the foundations our formalization is based on,
i.e. fixed points on complete lattices, measure theory, and coinductive streams. Starting
with Section 3 we formalize Markov chains: construct the trace space and provide

4 Johannes Hölzl

theorems to analyze fixed points on them. Section 3.6 is concerned with the traditional
Markov chain analysis of recurrent states and stationary distributions. In Section 4
we formalize MDPs, maximal and minimal expectations on them, and the analysis
of reachability problems. In Section 5 we equate the denotational and operational
semantics of pGCL. Finally, we give an overview of related work concerned with the
analysis of probabilistic systems in interactive theorem provers.

The Isabelle/HOL formalizations of these theories is publicly available in the AFP
entry Markov_Models [32].

2 Foundations

This section provides an overview of formalized theory in Isabelle/HOL as required
for Markov chains and MDPs. That is we introduce the key definitions, theorems, and
notations.

The term syntax used in this paper follows Isabelle/HOL, i.e. function application
is juxtaposition as in f t and t :: τ means that term t has type τ . Types are built
from the base types like bool (booleans), nat (natural numbers), real (real numbers),
enat = nat ∪ {∞} (extended natural numbers), ereal = real ∪ {−∞,∞} (extended real
numbers), type variables (α, β, etc), via the function type constructor α⇒ β, and via
the set type constructor α set. Isabelle/HOL supports type classes providing common
operations and specifications for a class of types. Type variables can be annotated with
a type class, written as τ :: tc. By giving a definition for the type class operations and
proving the associated specifications we instantiate a type for a type class. Important
for us are order type classes like complete-lattice or topologies like topological-space.
We define infix syntax for the function space: A→ B = {f | ∀a ∈ A. f a ∈ B}, for the
function image: f ‘ I = {f x | x ∈ I}, for the relational image: R “ S = {y | (x, y) ∈
R ∧ x ∈ S}, and for the indicator function indicator A x = (if x ∈ A then 1 else 0). For
types α and β in the order type class, we define for a function f :: α⇒β to be monotone:
mono f ←→ (∀a b. a ≤ b −→ f a ≤ f b) and anti-monotone: antimono f ←→ (∀a b. a ≤
b −→ f b ≤ f a).

2.1 Lattices and Fixed Points

When working with infinite lists, extended real numbers (R), or the semantics of a while
combinator (e.g. in pGCL), lattice theory and fixed points are helpful abstractions. For
an introduction in lattices and orders see the book by Davey and Priestley [14]. Most of
Isabelle’s fixed point theory was introduced by Paulson [44]. For the theory presented
in this paper we mainly added Lemma 2 and the transfer rules (Lemmas 4 and 5).

Isabelle/HOL provides type classes for complete lattices (complete-lattice) and com-
plete linear orders (complete-linorder). They extend orders by binary supremum (xty),
binary infimum (xuy), as well as supremum of a set (

⊔
A) and infimum of a set (

d
A).

For the latter two we use the binder syntax:
⊔
i∈I A i =

⊔
(A‘I) and

d
i∈I A i =

d
(A‘I).

Important complete lattices include bool, enat, ereal, and the function space α⇒ β if
β is a complete lattice. In the rest of this subsection we assume that all lattices and
orders are complete lattices.

On complete lattices, we define the least and greatest fixed points of a function f to
be lfp f =

d
{u | f u ≤ u} and gfp f =

⊔
{u | u ≤ f u}. By the Knaster-Tarski theorem

Markov chains and Markov decision processes in Isabelle/HOL 5

we know that for each monotone function f the fixed points always exist. Then we get
the equations lfp f = f (lfp f) and gfp f = f (gfp f). And for least and greatest fixed
points we have induction and coinduction rules:

Lemma 1 (Fixed point induction and coinduction)

mono f ∀x ≤ lfp f. P x −→ P (f x)

∀S. (∀x ∈ S. P x) −→ P
(⊔

S
)

P (lfp f)

mono f ∀x ≥ gfp f. P x −→ P (f x)

∀S. (∀x ∈ S. P x) −→ P
(l

S
)

P (gfp f)

Note that the third premise (the admissibility assumption for P) also implies P ⊥ (resp.
P >).

To calculate with fixed points we prove the rolling and the diagonal rules from fixed
point calculus [5, 14]:

Lemma 2 (Rolling, iteration, and diagonal rule) The following fixed point equa-
tions hold for least (fp = lfp) and greatest fixed points (fp = gfp).

mono g mono f

g (fp (λx. f (g x))) = fp (λx. g (f x)))

mono f

fp (fn+1) = fp f

∀x y w z. x ≤ y −→ w ≤ z −→ f xw ≤ f y z
fp (λx. fp (f x)) = fp (λx. f x x)

To use least and greatest fixed points in measure theory, we need countable approx-
imations of them. This is possible if the function f is continuous. We call a function f
sup-continuous (inf-continuous) if for each monotone sequence A :: nat⇒α the function
commutes with supremum: f (

⊔
iA i) =

⊔
i f (A i), resp. for a anti-monotone sequence

A the function commute with infimum: f (
d
iA i) =

d
i f (A i). Inf-continuous and

sup-continuous functions are monotone.

Lemma 3 (Fixed points as infinite iteration) For sup-continuous (inf-continuous)
functions the least (greatest) fixed point is the supremum (infimum) of all iterations:

sup-continuous f

lfp f =
⊔
i::nat

f i⊥

inf-continuous f

gfp f =
l

i::nat

f i>

The following transfer rule allows us to transfer fixed points between types. Our
theorem is for continuous functions, which is necessary when transferring through the
non-negative integral.

Lemma 4 (Transfer rule for continuous fixed points)

sup-continuous f, g, and α
α⊥ = ⊥ α ◦ f = g ◦ α

α(lfp f) = lfp g

inf-continuous f, g, and α
α> = > α ◦ f = g ◦ α

α(gfp f) = gfp g

Proof (by equational reasoning)

α(lfp f) = α(
⊔
i

f i ⊥) =
⊔
i

α(f i ⊥) =
⊔
i

gi (α ⊥) =
⊔
i

gi ⊥ = lfp g

The proof for the greatest fixed point is dual. ut

6 Johannes Hölzl

However, these transfer rules require that α is well-behaved on the whole type. In the
later application to measures and integrals, the values on which we apply α need to be
restricted to measurable sets and non-negative functions. Also α does not necessarily
map ⊥ to ⊥ (or > to >), it is only smaller (or greater) than all elements returned by
g. For this we introduce the stronger variant, which restricts the elements to which we
apply α by a predicate P :

Lemma 5 (Strong transfer rule for continuous fixed points)

P ⊥ ∀x. P x −→ P (f x)
∀M. (∀i. P (M i)) −→ P (

⊔
iM i) sup-continuous f and g

∀M. mono M −→ (∀i. P (M i)) −→ α (
⊔
iM i) = (

⊔
i α (M i))

α⊥ ≤ lfp g ∀x ≤ lfp f. P x −→ α (f x) = g (αx)

α(lfp f) = lfp g

The rule for greatest fixed points is dual.

Proof This proof is similar to the proof of Lemma 4. However this time we need to
apply anti-symmetry to be able to use α ⊥ as a lower bound. By induction on i we show
that P (f i ⊥) holds, by continuity of P follows P (lfp f). Also we show α(f i ⊥) ≤ lfp g
by induction on i. Hence with continuity of α and sup-continuous f :

α(lfp f) =
⊔
i

α(f i ⊥) ≤ lfp g

The converse direction is shown by fixed point induction on g. There the induction
hypothesis is S ≤ α(lfp f) and we finish the proof with the equational calculation:

g S ≤ g (α (lfp f)) = α (f (lfp f)) = α (lfp f).

ut

2.2 Measures and Probability Spaces

The measure and probability theory used in this paper was introduced in Isabelle/HOL
by Hölzl and Heller [28], and since then continuously extended [4,16,22,26,30,31,33]. It
is generic enough to be used for other applications than discrete stochastic processes,
as demonstrated by Gouezel [22] and by Avigad et al. [4]. In this section we give a
short overview of the existing measure spaces. A more detailed overview of the theory
is given in [26,28].

A measurable space on a set Ω is a σ-algebra on Ω, i.e. a set of sets which contains
the empty set and the space Ω, and which is closed under complement and countable
union. They are used to specify the domains of measures: measures are undefined on
non-measurable sets. All theorems involving measures require that the occurring func-
tions and sets are measurable. This propagates to derived objects, be it probabilities
or integrals. A function µ is a measure on a σ-algebra A on Ω iff it is a non-negative
and countably-additive function and maps µ ∅ = 0.

Markov chains and Markov decision processes in Isabelle/HOL 7

Definition 1 (Measures) Measures are represented by the type α measure, with the
following projection functions:

space :: α measure⇒ α set
sets :: α measure⇒ α set set
emeasure :: α measure⇒ α set⇒ ereal

For M :: α measure, the sets setsM form a σ-algebra on spaceM , and emeasureM
is a measure on that σ-algebra. For finite measure values we introduced measure ::
α measure⇒ α set⇒ real as abbreviation for measureM A = emeasureM A (with an
implicit coercion from extended reals to reals on the right-hand side), if the measure
of A is infinite then measureM A = 0.

We define that a predicate P holds almost-everywhere on M when the measure of
its complement is 0:

AE x in M. P x←→ ∃N ∈ setsM. emeasure M N = 0 ∧ {x ∈ spaceM. ¬ P x} ⊆ N.

WhenM is a probability measure, i.e. emeasureM (spaceM) = 1, we write prob-spaceM .
On such measures, we introduce the notation:

Pr(x inM. P x) = measureM {x ∈ spaceM. P x}.

An important way to construct measurable spaces, is sigma Ω A, which is the
smallest σ-algebra on the space Ω s.t. all sets in A are measurable. And

⊔σ
i∈IMi

which is the smallest σ-algebra s.t. for all i ∈ I the measurable sets of Mi are also
measurable.

Measurability can be lifted from sets to functions. Measurable functions are a cen-
tral notion in measure theory, be it for integration, transformation of measures or as
predicates.

Definition 2 (Measurable Functions) A measurable function f maps elements of
M to elements of N , and maps measurable sets of N to measurable sets of M by its
inverse image.

- →σ - :: α measure⇒ β measure⇒ (α⇒ β) set
M →σ N = {f ∈ space M → space N |

∀A ∈ sets N. {x ∈ space M. f x ∈ A} ∈ sets M}

For f ∈ M →σ N , we write that f is N -measurable on M , omitting either N or M
when the reader can infer them from the context.

We write vsigma Ω M f to be the smallest σ-algebra on Ω, s.t. f is M -measurable.
We introduce B :: bool measure, where all sets (i.e. {{}, {True}, {False}, {True,False}})
are measurable. Here P ∈ M →σ B is equal to {x ∈ space M | P x} ∈ sets M . We
prefer the former notation as it fits with our other measurability rules.

For a type α in the type class topological-space, we define its Borel space borel =
sigma UNIV {S :: α set | open S}. It is the smallest σ-algebra where each open set
from the topology is measurable. From this follows immediately that every continuous
function f is also measurable, i.e. f ∈ borel →σ borel. For many functions used in
Isabelle/HOL we provide measurability rules, e.g. assuming f , g, and P are measurable
then the functions f + g, f − g, −f , f ∗ g, f/g, if P then f else g, min, max, abs,
ln etc. are measurable on the corresponding measurability spaces. Functions like f/g

8 Johannes Hölzl

and ln are complicated cases as they are not continuous on the entire type. However,
in Isabelle/HOL we have f/0 = 0 and ln is arbitrary but constant for non-positive
values, i.e. ln x = ln y for x, y ≤ 0. To prove measurability of such a function f we
cover the real numbers with a countable set C of measurable sets and prove that for
each element Ω ∈ C the function f is measurable when restricted to Ω.

A class of measurable functions we want to mention explicitly are the least and
greatest fixed points. We know that for any sequence of measurable functions F into
the extended reals and into the extended natural numbers, the supremum

⊔
i F i and

the infimum
d
i F i is measurable. Now by Lemma 3, for a measurable and continuous

function its fixed points are also measurable:

Lemma 6 (Measurable least and greatest fixed points into borel) Fixed points
of functions F :: (α⇒ ereal)⇒ (α⇒ ereal) are measurable:

F ∈
(
M →σ borel

)
→
(
M →σ borel

)
sup-continuous F −→ lfp F ∈M →σ borel
inf-continuous F −→ gfp F ∈M →σ borel

2.2.1 Integration of Non-negative Functions

Each measureM gives rise to a non-negative Lebesgue integral
∫
f dM on non-negative

borel-measurable function f on M into ereal. For measurable functions we prove the
usual theorems about the Lebesgue integral, i.e. that it is monotone and linear and
that dominated and monotone convergence holds.

Similar to monotone convergence, we prove a rule for convergence towards 0. How-
ever, it is possible to construct a sequence of functions with infinite integral where the
infimum of the sequence is the constant 0-function. To avoid this we assume that start-
ing from some index the sequence has a finite integral. Then monotone convergence
towards 0 is easily derived from dominated convergence of the Lebesgue integral.

Lemma 7 (Monotone convergence towards 0)

antimono F ∀i. F i ∈M →σ borel ∃i.
∫
F i dM <∞∫ l

i

F i dM =
l

i

∫
F i dM

For our applications we often integrate over functions defined as fixed points. From
monotone convergence follows that the non-negative integral is continuous on measur-
able functions. Now, the transfer rules of Lemma 4 are not directly applicable. The
problems are that (1) ⊥ is not mapped to ⊥, (2) the integral is only inf-continuous
when the integral is bounded, and (3) the integral is only continuous on measurable
functions. Luckily, with Lemma 5, we can derive the transfer rules specific for the
non-negative integral:

Lemma 8 (Non-negative integral transfers least fixed points) The integral of
the least fixed point of f :: (α⇒ ereal)⇒ (α⇒ ereal) can be transferred into the least

Markov chains and Markov decision processes in Isabelle/HOL 9

fixed point of g :: (β⇒ ereal)⇒ (β⇒ ereal):

∀s. sets (M s) = setsN ∀F s. 0 ≤ g F s
sup-continuous f, g f ∈

(
N →σ borel

)
→
(
N →σ borel

)
∀s. ∀F ∈ N →σ borel. F ≤ lfp f −→

∫
f F d(M s) = g

(
λs.

∫
F d(M s)

)
s∫

lfp f d(M s) = lfp g s

Proof This is essentially an instance of Lemma 5, where α F s =
∫
F d(M s) and

P f is f ∈ N →σ borel. α is continuous on functions restricted to P by monotone
convergence. ut

We get a similar transfer rule for the greatest fixed point. We just need to be sure
that the integral of f is always finite, otherwise we cannot apply Lemma 7.

Lemma 9 (Non-negative integral transfers greatest fixed points) The integral
of the greatest fixed point of f :: (α⇒ ereal)⇒ (α⇒ ereal) can be transfered into the
greatest fixed point of g :: (β⇒ ereal)⇒ (β⇒ ereal):

∀s. sets (M s) = setsN ∀s. emeasure (M s) (space (M s)) 6= 0

inf-continuous f, g f ∈
(
N →σ borel

)
→
(
N →σ borel

)
∀s. ∀F ∈ N →σ borel.

∫
f F d(M s) <∞

∀s. ∀F ∈ N →σ borel.
∫
f F d(M s) = g

(
λs.

∫
F d(M s)

)
s∫

gfp f d(M s) = gfp g s

Proof This is essentially an instance of the dual of Lemma 5, where α F s =
∫
F d(M s)

and P f describes measurable and finitely integrable functions: f ∈ N →σ borel and
∀s.

∫
f d(M s) < ∞. α is continuous on functions restricted to P by monotone

convergence towards 0 (Lemma 7). ut

The rules for fixed points (i.e. Lemmas 6, 8, and 9) are the main additions for the
MDP theory presented in this paper.

2.2.2 Constructing Measure Spaces

Directly constructing measures, i.e. showing countable additivity of a measure, is often
difficult. To simplify constructions, Isabelle’s measure theory provides the following
basic construction mechanisms:

– The counting measure on a space Ω returns the cardinality of the measured set:
emeasure (count-spaceΩ)A = ||A|| for a finite set A ⊆ Ω. Here, every subset of Ω is
measurable and hence (count-spaceΩ →σ M) = (Ω → space M). Integration over
the counting space is a generalization of summation: for a non-negative function f
with finite support {x ∈ Ω | f x 6= 0}, we have∫

f d(count-spaceΩ) =
∑

x∈Ω∧f x 6=0

f x.

10 Johannes Hölzl

– For f ∈ M →σ N given, the distribution (or push-forward measure) of f is for all
A ∈ setsN :

emeasure (distrM N f)A = emeasureM {x ∈ spaceM | f x ∈ A}

The integral of g over the distribution of f equals integral of (g ◦ f):∫
g d(distrM N f) =

∫
g ◦ f dM

– For a measure M and a measurable set S with a non-zero and finite measure
0 < emeasure M S <∞, we can define the conditional probability cprobM S:

emeasure (cprobM S)A =
emeasureM (S ∩A)

emeasureM S
for all measurable sets A

With this we write the conditional probability

Pr(x inM. P x | x ∈ S) = Pr(x in cprobM S. P x).

– For an I-indexed family of probability measures M we define the product measure∏σ
i∈I M i, the index I is not restricted to be countable. On this product the pro-

jections λx. x j into M j are independent, i.e. for a finite set J ⊆ I and measurable
sets Aj for j ∈ J :

Pr
(
x in

(∏σ

i∈I
M i
)
.∀j ∈ J. x j ∈ Aj

)
=
∏
j∈J

Pr(x inM j. x ∈ Aj)

2.3 Giry Monad

An important construction mechanism for probabilistic programming language seman-
tics is the Giry monad [20], providing a monadic structure on sub-probability mea-
sures. A sub-probability measure M is a measure with weight less or equal to 1, i.e.
emeasure M (space M) ≤ 1. For the Giry monad we introduce subprob-algebra, a mea-
surable space on the set of sub-probability measures. Originally, it was formalized in
Isabelle/HOL for the semantics of a simple programming language in Eberl et al. [16].

For this paper the Giry monad on sub-probability measures is used to introduced
the discrete Giry monad on probability mass functions in the next subsection (where
it is used to define Markov kernels), for the iteration rule of Markov chains (Theo-
rem 1), and for the product equation of Markov chains (Lemma 19). Stating these rules
in terms of measures, possible due to the Giry monad, gives less cluttered theorems
and a straightforward method to derive the corresponding statements about integrals,
measures and the almost everywhere quantifier. As an example we give Lemma 12
(a.k.a. Fubini’s theorem) at the end of this section.

Definition 3 (Measurable space of sub-probabilities)

subprob-algebra :: α measure⇒ α measure measure
subprob-algebra K =⊔σ

A∈sets K vsigma {M | sets M = sets K ∧ subprob M} borel (λM. emeasure M A)

So for all A ∈ sets K we get (λM. emeasure M A) ∈ subprob-algebra K →σ borel. And
the space of subprob-algebra K are all sub-probabilities over the measurable sets of K.

Markov chains and Markov decision processes in Isabelle/HOL 11

For the lifting of a measurable function f ∈M →σ N over a sub-probability M we
use distr M N f . The explicit annotation of the measurable space N is necessary as it
can not be computed from f or M .

Lemma 10 (Distributions on random variables)

f ∈M →σ N
(λµ. distr µ N f) ∈ subprob-algebra M →σ subprob-algebra N

We prove that distr is closed under composition and identity functions. Although we can
not state this in Isabelle/HOL, this shows that subprob-algebra with distr is an endo-
functor on the category of measurable spaces with measurable functions as morphisms.
By introducing a bind and return operation we define the Giry monad:

Definition 4 (Giry monad)

bind :: α measure⇒ (α⇒ β measure)⇒ β measure and
return :: α measure⇒ α⇒ α measure.

Similar to distr, the first parameter to return is the measurable space of the returned
measure. Note that sets (bind M N) is determined by the range of N . This behaviour
is different to distr and return which have an explicit parameter determining the mea-
surable sets of the returned measure.

We do not show the concrete definitions of these functions; important are the
following specifying properties. As they operate in the category of measurable spaces,
we express their behaviour in terms of measurable functions and integrals.

return M ∈M →σ subprob-algebra M

f ∈M →σ subprob-algebra N (λ(x, y). g x y) ∈ (M ×σ N)→σ subprob-algebra L

(λx. bind (f x) (g x)) ∈M →σ subprob-algebra L

f ∈ B →σ borel N ∈M →σ subprob-algebra B∫
f d(bind M N) =

∫
x

∫
f d(N x) dM

g ∈M →σ borel x ∈ space M 0 ≤ g x∫
g d(return M x) = g x

From the last two equations we derive similar rules for the behaviour of bind and return
under the measure of a set and the almost everywhere quantifier.

From these definitional equations we derive the monad laws.

Lemma 11 (Monad laws)

bind M (return M) =M

f ∈M →σ subprob-algebra N x ∈ space M

bind (return M x) f = f x

f ∈M →σ subprob-algebra N g ∈M →σ subprob-algebra R

bind (bind M f) g = bind M (λx. bind (f x) g)

12 Johannes Hölzl

As an application of the Giry monad, let us take a look at Fubini’s theorem (i.e. two
independent probabilistic choices can be swapped):

Lemma 12 (Fubini’s theorem on the Giry monad)

subprob M subprob N

bind M (λx. bind N (λy. return (M ×N) (x, y))) =
bind N (λy. bind M (λx. return (M ×N) (x, y)))

The proof is done on the generating set of the product measure M × N , i.e. we need
to prove that both measures are equal on all rectangular sets A × B for A ∈ sets M
and B ∈ sets N .1 From this theorem we can then derive its form for non-negative
integrals, measures of sets and the almost everywhere quantifier using the previously
stated definitional equations for bind and return. We use a similar approach for the
trace space of Markov chains in Section 3.2.

2.4 Probability Mass Functions

An important subset of measures are the discrete probability measures. In a discrete
measure all sets and functions are measurable, and the mass of a set is the sum of the
mass of each element in the set. Hence, discrete probability measures are isomorphic
to probability mass functions (pmf) which assign the probability to single elements.

Hölzl et al. [30] introduce the type of probability mass functions as a subtype of
measures, allowing to transfer properties about measures to pmfs. This is done by using
the lifting and transfer commands by Huffman and Kunčar [34]. The pmf-subtype is
introduced using the typedef-command:

α pmf = {M | prob-spaceM ∧ setsM = UNIV ∧
(∃S. countableS ∧ emeasureM S = 1)}

This generates an injective representation function measure-pmf :: α pmf⇒α measure.
We declare it as a coercion function, hence omitting it in most cases. In particular,
we write measure p A for measure (measure-pmf p) A. So, the probability mass of a
value x is the measure of its singleton set {x}: We lift the projection function pmf,
the support set set-pmf, the functorial operator map-pmf, and the monadic operators
bind-pmf and return-pmf. The lift-definition-command [34] allows us to specify the
behaviour of each of the functions on measures and then lifts them into functions on
pmfs by introducing the necessary coercion functions (e.g. measure-pmf).

lift-definition pmf :: α pmf⇒ α⇒ real is
λM x. measure M {x}

lift-definition set-pmf :: α pmf⇒ α set is
λM. {x | measure M {x} 6= 0}

lift-definition map-pmf :: (α⇒ β)⇒ α pmf⇒ β pmf is
λf M. distrM (count-spaceUNIV) f

lift-definition bind-pmf :: (α⇒ β pmf)⇒ α pmf⇒ β pmf is
bind

lift-definition return-pmf :: α⇒ α pmf is
return (count-spaceUNIV)

1 The proof in the Isabelle repository is derived from Fubini’s theorem on σ-finite measures.
The reason is that Isabelle’s Giry monad is only available on sub-probability measures, hence
following the presented proof would result in a weaker theorem.

Markov chains and Markov decision processes in Isabelle/HOL 13

For map-pmf, bind-pmf, and return-pmf we get the Giry monad for pmfs, now the
monadic laws do not require measurability assumptions. The type of pmfs forms a
bounded natural functor and hence can be used in (co)datatype definitions, for more
information see [9, 30].

In the rest of this paper we will use set-pmf as a coercion, e.g. we write t ∈ M

instead of t ∈ set-pmf M .
We provide the following discrete distributions:

Bernoulli For 0 ≤ p ≤ 1 we have
pmf (bernoulli-pmf p)True = p and pmf (bernoulli-pmf p)False = 1− p.

Uniform For a non-empty, finite set A we have

pmf (pmf-of-setA) i =

{
1
||A|| if x ∈ A
0 otherwise

Binomial For n and 0 ≤ p ≤ 1 we have
pmf (binomial-pmf n p) k = (nk) ∗ p

k ∗ (1− p)n−k
Geometric For 0 < p ≤ 1 we have

pmf (geometric-pmf p) k = (1− p)k ∗ p
Poisson For 0 < r we have

pmf (poisson-pmf r) k = rk

k! ∗ exp
−r

Conditional For a pmf p and a set A with measure pA 6= 0 we have

pmf (cond-pmf p A)x =

{
pmf p x

measure p A if x ∈ A
0 otherwise

2.5 Stream Space

When modelling the trace spaces of Markov models we use coinductively defined
streams, as formalized by Blanchette et al. [10]. This formalization also provides a
shallow embedding of linear temporal logic (LTL) formulas. Streams are essentially
sequences (i.e. functions of type nat⇒ α), but constructed recursively from a head
element and a stream tail. Similarly, Hurd [35] introduces a recursive view on Boolean
sequences (equal to bool stream), however without bisimulation and a mechanism to
define corecursive functions.

Streams are introduced using Isabelle’s codatatype-command [9]:

α stream = SCons (shd : α) (stl : α stream)

The codatatype-command automatically defines the map function smap :: (α⇒β)⇒
α stream ⇒ β stream, and a set projection sset :: α stream ⇒ α set. The function
to-stream :: (nat⇒α)⇒α stream converts sequences to streams, ω !! n selects the n-th
element of ω, sdrop n ω drops the first n-elements from a stream ω, and streams S =
{ω | sset ω ⊆ S} the set of all streams on S.

Blanchette et al. [10] introduce predicate transformers on streams to express LTL
formulas. These transformers are composable as the quantifiers are not functions over
state predicates, but over stream predicates. We use the usual notation for predi-
cates, i.e. Ψ uΦ for conjunction, Ψ tΦ for disjunction, and −Ψ for negation. We define
(Ψ impl Φ) ω ←→ (Ψ ω −→ Φ ω), nxt Φ ω ←→ Φ (stl ω), and HLD Φ ω ←→ shd ω ∈ Φ.
Fig. 1 lists the predicate transformers (i.e. Always, Eventually, and Strong Until) and
counting operators (i.e. Count Occurence and First Occurence). They are defined in

14 Johannes Hölzl

Always
alw :: (α stream⇒ bool)⇒ (α stream⇒ bool)

alw Φ ω
gfp
= Φ ω ∧ alw Φ (stl ω)

Eventually
ev :: (α stream⇒ bool)⇒ (α stream⇒ bool)

ev Φ ω
lfp
= Φ ω ∨ ev Φ (stl ω)

Strong Until
- suntil - :: (α stream⇒ bool)⇒ (α stream⇒ bool)⇒ (α stream⇒ bool)

(Ψ suntil Φ) ω
lfp
= Φ ω ∨

(
Ψ ω ∧ (Ψ suntil Φ) (stl ω)

)
Count Occurrences
scount :: (α stream⇒ bool)⇒ (α stream⇒ enat)

scount P ω
lfp
= if P ω then scount P (stl ω) + 1 else scount P (stl ω)

First Occurrence
sfirst :: (α stream⇒ bool)⇒ (α stream⇒ enat)

sfirst P ω
lfp
= if P ω then 0 else sfirst P (stl ω) + 1

Fig. 1 Stream Operations

terms of greatest fixed points (gfp) and least fixed points (lfp), giving us certain theo-
rems for free, e.g. measurability.

The functions suntil, scount, sfirst, and the measure on stream spaces (introduced
in the next section) were explicitly developed for the work presented here.

2.6 Stream Measure

Before we start to use streams in probability theory we need a measurable space and
a measure on it. For this we introduce the canonical measure on streams, for which
all (co)recursively defined functions are measurable, and for which we can define a
measure s.t. all elements at different positions are independently distributed. Such a
measure is isomorphic to the infinite product measure

∏σ
n::nat M , so we define it as

its embedding:

Definition 5 (Stream Measure)

stream-space :: α measure⇒ α stream measure
stream-space M =

distr
(∏σ

n::nat M
) (

vsigma (streams (space M)) (op !!) (
∏σ
n::nat M)

)
to-stream

By definition, the measurable space of stream-space is the smallest measurable space
s.t. !! is measurable. Hence each function which makes !! measurable is also measurable:

Lemma 13 (Basic Measurability on the Stream Space)

(λω. ω !! i) ∈ stream-space M →σ M
∀i. (λx. f x !! i) ∈ N →σ M
f ∈ N →σ stream-space M

Markov chains and Markov decision processes in Isabelle/HOL 15

The measurability of shd, stl, sdrop, x · ω, smap, and to-stream is easily derived by these
two rules. The measurability of the stream operations in Fig. 1 are proved using
Lemma 6. Moreover, Lemma 13 allows us to prove the following coinduction rule:
a function is stream-measurable if it is in a set F , which is closed under composition
with stl and where all functions are measurable under shd.

Lemma 14 (Coinduction on Stream Spaces)

f ∈ F ∀f ∈ F. shd ◦ f ∈ N →σ M ∀f ∈ F. (stl ◦ f) ∈ F
f ∈ N →σ stream-space M

For the canonical measure on stream spaces (i.e. the countably infinite product
space of M), we get an iteration rule on the integral. This is a helpful rule to compute
the integral of a function f defined recursively over the input stream.

Lemma 15 (Iterative Stream Space Measure)

f ∈ stream-space M →σ borel∫
f d(stream-space M) =

∫
x

∫
ω

f (x · ω) d(stream-space M) dM

3 Markov Chains

In this section we introduced the necessary theories to model and analyze Markov
chains. As mentioned in the introduction there are two different views on discrete-time
Markov chains:

– As a probabilistic transition system, explicitly given as the transitions per state.
The Markov chains depicted in Fig. 2 can be straightforwardly translated into such
transition systems.

– As a discrete stochastic process which is memoryless and time-homogeneous.

We introduce Markov chains as probabilistic transition systems K and for each K

we construct a probability space T on its infinite traces. To relate both views, in
Section 3.5, we will show that each discrete stochastic process implies a probabilistic
transition system K, and vice versa.

Let us take a look at properties of Markov chains we want to analyze. As examples
we use the Markov chains depicted in Fig. 2. Fig. 2 (a) is a irregular but finite MC,
and Fig. 2 (b) shows a so called birth-death process with an infinite state space. In the
later, the states value increases with probability 1/3, or decreases by 2/3 (and in the
case of state 0 it stays 0 with probability 2/3). In Section 3.7 we will formalize these
Markov chains in Isabelle/HOL.

The formalization presented in this paper is oriented towards questions of the fol-
lowing kind (e.g. about the Markov chains in Fig. 2):

Q1 When we start (b), what is the probability that it comes back to 0?
Q2 Is it possible that (a) never reaches C3 or that (b) never reaches a state n?
Q3 When we start (b), what is the average time until it reaches 0 again?
Q4 When (a) runs for a long time, is C3 more likely to occur than C1?

16 Johannes Hölzl

A

B

C1 C2

C3

1
2

1
2

1
2

1
2

1
3

1
3

1
3

1
31

3

1
3

1
2

1
4

1
4

(a) A finite process

0

1

2

2
3

1
3

2
3

1
3

2
3

(b) An infinite birth-death process

Fig. 2 Two Markov chains

We wish to express these questions in Isabelle/HOL as concise as possible using the
stream operators introduced in Fig. 1. To achieve this, we use the theory of Markov
chains to express the probability of a set of infinite traces, and integrals on them. We
recommend readers unfamiliar with this topic the book by Woess [51], an introductory
text book which we use for the analysis part of our formalization.

The theory of Markov chains allows us to reduce some of these questions to an
analysis of the graph of non-zero transitions, and to the solution of a linear equation
system (in the finite case) or to finding a least fixed point (in the infinite case). Alter-
natively, we can use generating functions to analyze them. These are also the kind of
questions usually answered by probabilistic model checkers on finite models.

3.1 Transition Probabilities

The transition system of a Markov chain specifies for each of its states a distribution of
the follower states. Such a transition system is completely described by a function K
(the Markov kernel):

K :: σ⇒ σ pmf

There is no restriction on the type σ, or on the distributionsK s. An implicit restriction
given by the type σ pmf is that for each s, the support set of K s is countable and
non-empty. This has the nice side-effect that in Isabelle/HOL no further assumptions
are necessary about K, everything is encoded in the type. In the rest of the section we
implicitly assume a K :: σ⇒ σ pmf.

For a state s, we call the set set-pmf (K s), i.e. the follower states with non-zero
probability, the enabled states in s (for readability, we will often write t ∈ K s instead
of t ∈ set-pmf (K s)). The enabled transitions define a directed graph, the vertices
are the states of the Markov chain, and (s, t) is an edge when t ∈ K s. A state t is
accessible from s if it is reachable in finitely many steps:

Markov chains and Markov decision processes in Isabelle/HOL 17

Definition 6 (Accessible states) The states accessible from s are defined as reflexive
and transitive closure of K:

acc-on :: σ set⇒ σ × σ set
acc-on S = {(s, t) | t ∈ K s ∧ t ∈ S}∗
acc = acc-on UNIV

Here R∗ is the reflexive, transitive closure of a relation R. The acc-on S relation addi-
tionally enforces that we want to stay in the subset S of the state space.

A stream ω :: σ stream of states is enabled from a starting state s when each state
in the stream is enabled by the previous one.

Definition 7 (Enabled stream) We define enabled :: σ⇒ σ stream⇒ bool coinduc-
tively, over the following rule:

enabled t ω t ∈ K s

enabled s (t · ω)

3.2 Probability and Expectation on Markov Chain Traces

Now, the probability that a Markov chain defined byK visits the sequence s0, s1, . . . , sn
of states is the product of pmf (K si) si+1 for i from 0 to n − 1. The probability for
an infinite sequence is 0 (assuming pmf (K s) t < 1 for infinitely many transitions).
Fortunately, measure theory allows us to assign a meaningful probability to sets of
traces. So, to reason about the infinite behaviour of Markov chains we construct the
probability measure on traces (streams of states).

Such infinite traces occur when we reason about fairness, safety, liveness or other
limiting behaviour of Markov chains. To handle this, we present in this section an
iterative view on the trace space, which matches our coalgebraic view of streams. As
mentioned, a Markov chain can also be seen as a stochastic process X, i.e. a probability
measure with a sequence of random variables Xt representing the state of the Markov
chain at time t. In Section 3.5 we show that the coalgebraic view is equivalent to the
stochastic process view. The construction resembles [26], except that we now use pmfs
to represent the transition probabilities. Also, the cardinality of the state space is not
restricted.

Before we construct the probability measure, we first fix the measurable space of
traces S to be the measurable space on streams of states, i.e. the smallest σ-algebra s.t.
the head and tail projections are measurable. For this we use the stream space defined
in Section 2.5.

S :: σ stream measure
S = stream-space (count-spaceUNIV)

On the measurable space S, we will introduce the trace space T s with s as the starting
state. That trace space T s should give rise to the iteration rule Eq. (2).

How can we construct the probability measure T s? Our first option is to use the
method by Hurd [35] and define the algebra of finite unions of cylinders, i.e. sets
starting with the same prefix. We have Caratheodory’s extension theorem available,
but operating on finite unions of cylinders is very cumbersome. Introductions to the
theory of Markov chains, like in Kwiatkowska et al. [38] for probabilistic model checking,
use a semi-ring of cylinder sets. This already simplifies the existence proof for the

18 Johannes Hölzl

trace space, and in Isabelle/HOL Caratheodory’s extension theorem is available on
semi-rings too. However we still need to show that the premeasure (i.e. the measure
on cylinders) is countably additive, which is quite involved. We use an alternative
construction composing the stream measure and the push-forward measure.

First, we introduce the auxiliary constants D (the stream space of decisions σ⇒σ)
and walk. Then we define the trace measure T s as the push-forward measure of walk
over D. Finally, we characterize T s with Theorem 1. After this D and walk are not
needed anymore.

D :: (σ⇒ σ) stream measure
D = stream-space (

∏σ
s∈UNIV K s)

With this we avoid direct invocation of Caratheodory’s extension theorem, hence we
also circumvent proving countable additivity2.

The probability measure D provides us random streams of mappings from state to
a following state. We walk along the random stream of mappings, and map the current
state to the next state. An invariant we need to maintain is to return an enabled stream.
This is necessary, as otherwise the possible values for s in walk s are uncountable.
Fortunately, restricting to enabled states does not changed the probabilities as non-
enabled states have a probability of 0. To maintain the invariant, we use Hilbert-choice,
written εt. t ∈ K s, to guarantee that the returned stream is enabled. We define walk
by primitive corecursion on streams:

walk :: σ⇒ (σ⇒ σ) stream⇒ σ stream
shd (walk s ω) = force-hd s ω
stl (walk s ω) = walk (force-hd s ω) (stlω)
where force-hd s ω = if shdω s ∈ K s then shdω s else εt. t ∈ K s

Now, the trace space T s is simply a mapping of walk over all probabilistic decisions D:

T :: σ⇒ σ stream measure
T s = distrDS (walk s)

Now, showing enabled s (walk s ω), for all s and ω, is a simple coinductive proof. The
existence of an enabled next state is guaranteed by the pmf K s, as its support set is
never empty, i.e. set-pmf (K s) 6= ∅.

Enabledness is also important to show the measurability of walk. For this we prove
the following auxiliary rule:

g ∈ D →σ count-space (acc “ {s})
(λω. walk (g ω) (sdropnω)) ∈ D →σ S

This is done by coinduction with Lemma 14, where F f is instantiated with ∃n, g ∈
D →σ count-space (acc“{s}).f = (λω. walk (g ω) (sdropnω)). In the coinduction step,
g is composed with the choice of the next step. The range of g is acc “ {s}, the set of
states accessible from s, which is countable. So g ω is replaced by some constant t, then

2 A more powerful approach is the extension theorem by Ionescu-Tulcea, e.g. as presented
in [43, 46], which allows Markov kernels on arbitrary measurable spaces. While we formalized
this extension theorem in Isabelle/HOL it was not available for the formalization of Markov
chains. Our formalized version of Ionescu-Tulcea is available in Isabelle 2016.

Markov chains and Markov decision processes in Isabelle/HOL 19

the shd and stl projections of walk are measurable. Finally, by instantiating g ω = s

and n = 0 we get measurability of walk s:

walk s ∈ D →σ S

With this, the trace space T s is well defined as a probability measure, due to it being
a push-forward measure of a measurable function. Hence we derive the central rules
for our Markov chain formalization: the iteration rules of the trace space.

Theorem 1 (The Trace Space is an Iterative Probability Measure) From
measurability it immediately follows that the trace space is a probability measure and
almost everywhere enabled:

prob-space (T s) AE ω in T s. enabled s ω

The central rules for T are the iteration rules on T itself (using >>= syntax for the
monadic bind), under integration, under measure, and under the almost everywhere
quantifier:

T s = K s >>=λt. T t >>=λω. return S (t·ω)

f ∈ S →σ borel∫
f d(T s) =

∫
t

∫
ω

f (t · ω) d(T t) d(K s)

P ∈ S →σ B

Pr (ω in T s. P ω) =
∫
t

Pr (ω in T t. P (t·ω)) d(K s)

P ∈ S →σ B
AE ω in T s. P ω ←→ ∀t ∈ K s. AE ω in T t. P (t·ω)

We first prove the iteration rule on the Giry monad. Then the rules for the non-
negative integral, the measure operator, and the almost everywhere quantifier follow
immediately. After deriving these rules, walk and the definition of T is not needed
anymore.

We can even show that the iteration rule on measures (i.e. the first equation of
Theorem 1) uniquely determines the trace space. We prove that each family M of
probability measures on S, which are closed under iteration with K, are equal to T :

Theorem 2 (Iterative construction of T)

∀s. sets (M s) = sets S ∀s. prob-space (M s)
∀s. M s = K s >>=λt. M t >>=λω. return S (t·ω)

T =M

An important auxiliary lemma we obtain is that a stream predicate P holds almost
always, if it holds at each accessible state:

Lemma 16

P ∈ S →σ B ∀t. (s, t) ∈ acc −→ AE ω in T t. P ω

AE ω in T s. alwP ω

20 Johannes Hölzl

3.3 Fairness, Reachability, and Hitting Time

When analyzing LTL formulas on Markov chains, an important questions is: what is the
probability that the Markov chain stays in a set of states X until a predicate P holds on
the remaining stream. Here, P is a predicate on a stream so it can be an LTL formula
again. An important part of model checking is reachability analysis, i.e. the predicate
P just states that the first state in the stream is not in X. It is well-known that the
solution of a probabilistic reachability problem is a least fixed point. We generalize
this result from finite to infinite state spaces and arbitrary predicates P . The second
assumption states that on each prefix on which X holds, P holds at most once.

Lemma 17 (Probability of suntil)

P ∈ S →σ B ∀t. AE ω in T t. ¬(P u HLDX u nxt (HLDX suntilP)) ω

Pr (ω in T s. (HLD X suntil P)ω) =

lfp
(
λF s. Pr (ω in T s. P ω) +

∫
t

F t ∗ indicatorX t d(K s)

)
s

A specialized version of this theorem tells us, that the probability for P in state t is
independent of the reachability of t:

Corollary 1

P ∈ S →σ B

Pr
(
ω in T s. HLD (−{t}) suntil

(
HLD {t} u nxtP

)
ω
)
=

Pr
(
ω in T s. ev

(
HLD {t}

)
ω
)
∗ Pr (ω in T t. P ω)

A central property of Markov chains is fairness, i.e. when a state t is visited infinitely
often, then the transition to another state t′ ∈ K t is also taken infinitely often. This
holds for all Markov chains!

Definition 8 (Fair Stream)

fair :: σ⇒ σ⇒ σ stream⇒ bool

fair t t′ = alw
(
ev
(
HLD {t}

))
impl alw

(
ev
(
HLD {t} u nxt (HLD {t′})

))
Theorem 3 (Markov Chains are Fair)

t′ ∈ K t −→ AE ω in T s. fair t t′ ω

The proof for this theorem is based on Baier’s habilitation thesis [6]. We present our own
version, as it shows a nice application of our fixed point approach, and the previously
introduced theorems. In [33] another version of the proof was used. With the change
to the fixed point approach its size reduced by a third: from 89 lines to 60 lines.

Proof We define N to be the traces with infinitely many ts, but t is never followed
by t′:

N = alw (ev (HLD {t})) u alw (−(HLD {t} u nxt (HLD {t′})))

Now we prove the following inequality using greatest fixed point coinduction:

Pr (ω in T s. N ω) ≤ gfp (λx. 1 u x ∗ (1− pmf (K t) t′)) for all s (3)

Markov chains and Markov decision processes in Isabelle/HOL 21

As coinduction hypothesis we may assume ∀s. Pr (ω in T s. N ω) ≤ x. We do the
following calculation:

Pr (ω in T s. N ω)
≤ 〈by induction on the first ev (HLD {t}) hit by N〉

Pr
(
ω in T s. HLD (−{t}) suntil (HLD {t} u nxt (HLD (−{t′}) u nxtN) ω

)
= 〈by Corollary 1〉

Pr (ω in T s. ev (HLD {t}) ω)) ∗ Pr
(
ω in T t. (HLD (−{t′}) u nxtN) ω

)
≤ 〈by Theorem 1 and Pr(. . .) ≤ 1〉

1 ∗
∫
s
Pr (ω in T s. N ω) ∗ indicator (−{t′}) s d(K t)
≤ 〈by coinduction hypothesis〉∫

s
(1 u x) ∗ indicator (−{t′}) s d(K t)

= 〈integration over a non-negative constant〉
(1 u x) ∗ (1− pmf (K t) {t′})

With this we prove Eq. (3). By arithmetic we show that each fixed point of the right-
hand side of Eq. (3) is less or equal to 0, and hence the probability for N is 0.
Hence N almost never holds: AE ω in T s. alw (−N) ω, by Lemma 16. From this
follows AE ω in T s. fair t t′ ω. ut

A property which follows from fairness is reachability of a set B from s. Suppose
that we can always reach B, i.e. no matter where we go there is always an accessible
state in B. And assume the set of states accessible from s avoiding B is finite. Then
we know that the Markov chain reaches B with probability 1. This is simply proved by
contradiction on a path never reaching B. Then by the pigeon hole principle, a state in
−B will be reached infinitely often, proving that no state in direction towards B will
ever be taken, contradicting fairness.

Lemma 18 (Reachability)

finite (acc-on (−B) “ {s}) ∀s. (s, t) ∈ acc-on (−B) −→ ∃t′ ∈ B. (t, t′) ∈ acc

AE T s in ω. ev (HLDB)ω

This lemma tells us that deciding reachability with probability 1 is reducible to comput-
ing its bottom SCCs (strongly connected components). This constitutes an important
optimization for probabilistic model checking on Markov chains.

When the set B is always reached, we get a similar result for the expectation of
the hitting time.

Theorem 4 (Hitting Time Expectation)

s /∈ B finite
(
acc-on (−B) “ {s}

)
AE ω in T s. ev (HLDB)ω∫

sfirst (HLDB) d(T s) <∞

Similar to Theorem 3 the proof of Theorem 4 was updated from an older version to
a version using fixed points. The previous version was used for [33], and the change
reduced its size by ≈ 40%: from 181 lines to 106 lines. The theorem itself is an impor-
tant result for probabilistic model checking when computing rewards: it allows us to
decide for which states the rewards are finite, and then compute the finite rewards by
a system of linear equations.

22 Johannes Hölzl

3.4 Product Construction

Markov chains have a nice composition property: from two Markov kernels K1 and K2,
we can construct a product Markov kernel Kp. This will be necessary in the proof of
Theorem 11 about stationary distributions.

Definition 9 (Markov Kernel Product)

Kp :: (σ1 × σ2)⇒ (σ1 × σ2) pmf
Kp (a, b) = bind-pmf (K1 a) (λa

′. bind-pmf (K2 b) (λb
′. return-pmf (a′, b′)))

For the kernel Ki, we call the corresponding trace space Ti and the measurable
space Si for i = 1, 2, p. For Kp, the behaviour on the first part K1 of our state is now
independent of the second part K2. This should transfer to the trace space, i.e. the
first parts of the traces should be independently distributed of the second parts. We
show with Theorem 2 and Lemma 12, that the construction of Kp lifts to Tp.

Lemma 19 (Markov Chain Product)

Tp (a, b) = T1 a >>=λωa. T2 b >>=λωb. return Sp (szip (force a ωa) (force b ωb))

Here szip :: α stream⇒ β stream⇒ (α× β) stream is the zip-operation on streams. An
annoyance is the occurrence of force s ω, which forces the resulting trace to be enabled
starting with s. Either it returns ω if it is already enabled, or it selects similar to walk
an arbitrary enabled stream. This is necessary to show the measurability of szip.

Now we can show that the projections are independent:

Corollary 2 (Independence of the Markov Chain Product)

P1 ∈ S1 →σ B P2 ∈ S2 →σ B
Pr (ω in Tp (x1, x2). P1 (smap fst ω) ∧ P2 (smap snd ω)) =

Pr (ω in T1 x1. P1 ω) · Pr (ω in T2 x2. P2 ω)

3.5 Trace Space as Stochastic Process

One way to represent Markov chains is as a stochastic process X :: nat⇒ α⇒ σ, i.e.
a family of functions (Xn)n∈nat where Xn is measurable on a probability space M .
The space M represents the probabilistic behavior of our entire “world” and with X

we observe the behavior of our Markov chain.

Axiomatic Definition as Stochastic Processes We introduce the locale DTMC. It assumes
a stochastic process X and a probability spaceM which has the properties of a Markov

Markov chains and Markov decision processes in Isabelle/HOL 23

chain, i.e. it is memoryless and time-homogeneous.

locale DTMC = prob-space (M :: α measure) +
fixes S :: σ set and X :: nat⇒ α⇒ σ

assumes countable S and ∀n. AE ω in M. X n ω ∈ S
assumes ∀n. X n ∈M →σ count-space UNIV

assumes ∀n s t. — The stochastic process X is memoryless:
Pr
(
x in M. ∀n′ ≤ n. X n′ x = t n′

)
6= 0 −→

Pr
(
x in M. X (n+ 1) x = s | ∀n′ ≤ n. X n′ x = t n′

)
=

Pr (x in M. X (n+ 1) x = s | X n x = t n)

assumes ∀n n′ s t. — The stochastic process X is time-homogeneous:
Pr (x in M. X n x = t) 6= 0 ∧ Pr

(
x in M. X n′ x = t

)
6= 0 −→

Pr (x in M. X (n+ 1) x = s | X n x = t) =
Pr
(
x in M. X (n′ + 1) x = s | X n′ x = t

)
A DTMC is a set of states S and a time-indexed family of random variables X. The
type variable α contains the sample elements of our background probability space M .

The assumptions that the conditions are non-zero are required. Otherwise the
Markov chain in Fig. 2 would not fulfill the assumptions of our locale: as Pr(Xn =
A) = 0 for all 0 < n, an unrestricted time-homogeneous property would imply 1

2 =
Pr(X1 = B | X0 = A) = Pr(X2 = B | X1 = A) = 0. It is not necessary to restrict A
and B to be elements of S, as the probability to reach elements outside S is zero.

Definition 10 (Trace Space with Initial Distribution) From an initial distribu-
tion I :: σ pmf and a Markov kernel K :: σ⇒ σ pmf (and hence also a trace space T),
we can construct a Markov process T ′:

T ′ :: σ pmf⇒ σ stream measure
T ′ I = bind I (λs. distr (T s) S (λω. s·ω))

The stochastic process T ′ I fulfills the properties of DTMC:

Theorem 5 (T ′ I is a Markov Chain)

DTMC (T ′ I) (acc “ I) (λn ω. ω !! n)

Equivalence We show that both definitions of a Markov chain are equivalent. With
Theorem 1 we show the memory-less and the time-homogeneous property. The other
direction — to construct a Markov kernel from a stochastic process X fulfilling the
Markov chain properties — is more complicated. One problem is, that the Markov
kernel is defined at each state, even when it is not reached by X.

Definition 11 (Markov Kernel K from the Stochastic Process X) Given a
Markov process DTMC M S X we construct a Markov kernel K. When X reaches
state s at some time n, i.e. Pr (x in M. X nx = s) > 0, then we lift K s:

lift-definition K :: σ⇒ σ pmf is
λs. distr (cprob M {x ∈ space M | X n x = s}) (count-space UNIV) (X (n+ 1))

when no such n exists we simply define K s = return-pmf s. The initial distribution I
is lifted from X 0:

lift-definition I :: σ pmf is distr M (count-space UNIV) (X 0)

24 Johannes Hölzl

The time-homogeneous property tells us thatK is well-defined. FromK’s definition
we show that K is the transition probability (for reachable states):

Pr (x in M. X nx = s) > 0

pmf (K s) t = Pr (x in M. X nx = s | X (n+ 1)x = t)

The resulting trace space T ′ I is equal to the distribution of X:

Theorem 6 (The Markov kernel K′ has the distribution of X)

T ′ I = distrM S (λx. to-stream (λn. X n x))

Theorems 5 and 6 show that for each Markov chain represented as a stochastic
process there exists a Markov kernel representing the same Markov chain, and vice
versa.

3.6 Classifying Markov Chain States

Now we come to the questions stated at the beginning of Section 3: we want to classify
states based on their behaviour on the trace space. But before this, we introduce
communicating states and essential equivalence classes. They are directly defined by
the transition system, i.e. expressible with acc. In this section we assume a kernel K
and its trace space T .

Definition 12 (Communicating States) The communicating relation is the sym-
metric subset of the accessibility relation:

communicating :: (σ × σ) set
(x, y) ∈ communicating ←→ (x, y) ∈ acc ∧ (y, x) ∈ acc

The relation communicating is an equivalence relation as it is symmetric, reflexive, and
transitive. Its equivalence classes are called irreducible. We write the set of irreducible
classes as UNIV/communicating. In Fig. 2 (a) the irreducible classes are {A}, {B}, and
{C1, C2, C3}. Fig. 2 (b) has only one irreducible class: {0, 1, 2, . . .}. It is a so-called
irreducible Markov chain.

An equivalence class is essential iff no state outside the class is accessible from a
state inside the class. If the Markov chain reaches a state in an essential class, it will
stay in this class forever. Essential classes are equivalent to bottoms SCCs (strongly
connected components) in graph theory.

Definition 13 (Essential Class) An essential class C is an irreducible class where
all accessible states from C are again in C:

essential-class :: σ set⇒ bool
essential-class C ←→ C ∈ UNIV

/
communicating ∧

(
∀(x, y) ∈ acc. x ∈ C −→ y ∈ C

)

Markov chains and Markov decision processes in Isabelle/HOL 25

3.6.1 Recurrence

In this section we are interested in recurrence, the property of almost surely coming
back, and positive recurrence, to come back with a finite expectation. While this is
often a property of the transition graph, we need to analyze probabilities and even
generating functions converging against these probabilities. Hence in this subsection we
need convergence and derivatives on the real line. For this we use Isabelle’s multivariate
analysis library described in [29].

We write f z z→1−
−−−−→ x to state that the function f z converges to x as z approaches

1 from the left, X n
n→∞−−−−→ x to state that the sequence X n converges to x, and

f has-derivative y (at x) to state that y is the derivative of f at x.

Definition 14 (Recurrent States) A state x is recurrent iff it is guaranteed that
when we start in x, we come back to x.

recurrent :: σ⇒ bool
recurrent x ←→ Pr (ω in T x. ev (HLD {x}) ω) = 1

Q1 can be written as recurrent 0. For Q3 we are interested in the average time to
return to 0. For this we define the hitting time of x on the trace ω (this is also called
first passage time):

Definition 15 (Average Hitting Time)

M :: σ⇒ ereal
M x =

∫
sfirst (HLD {x}) d(T x)

With this Q3 can also be written as M x. When x is non-recurrent, M x is always
infinite. But even for a recurrent state it may be infinite. If M x is real, the state is
called positive recurrent:

Definition 16 (Positive Recurrent States)

posrecurrent :: σ⇒ bool
posrecurrent x ←→ recurrent x ∧M x <∞

Now we provide tools to relate (positive) recurrent states with other quantities, like
the probability to hit a state infinitely often or the average number of times of reaching
a state.

Definition 17 (Unbound Quantities)

G,U ′ :: σ⇒ σ⇒ ereal

G x y =

∫
scount (HLD {y}) d(T x)

U ′ x y =

∫
sfirst (HLD {y}) d(T x) + 1

The value G x y (G is called Green’s function or Green kernel) is the expected number
of occurrences of y, starting after x. The value U ′ x y is the expected number of steps
until y is reached, starting after x (including the last step in which y occurs).

26 Johannes Hölzl

H,U, F :: σ⇒ σ⇒ real
H x y = Pr (ω in T x. alw (ev (HLD {y})) ω)
U x y = Pr (ω in T x. ev (HLD {y}) ω)
F x y = Pr (ω in T x. ev (HLD {y}) (x·ω))

The value H x y is the probability that y is infinitely often reached when starting in x.
The values U x y and F x y concern the probability that y is reached when starting in
x, with the difference that U starts counting after x itself. Obviously, recurrent x←→
U x x = 1.

With the exception of H and U ′ the unbound quantities are expressible as infinite
sums over time-bounded probabilities:

Definition 18 (Time-bounded Reachability Probabilities)

p, u, f :: σ⇒ σ⇒ nat⇒ real
p x y n = Pr (ω in T x. (x · ω) !! n = y)
u x y n = Pr (ω in T x. sfirst (HLD {y}) ω = (n :: nat))
f x y n = Pr (ω in T x. sfirst (HLD {y}) (x·ω) = (n :: nat))

Lemma 20 (Unbound Quantities as Series of Time-bounded Probabilities)

G x y =
∑
n p x y n F x y =

∑
n f x y n U x y =

∑
n u x y n

The sum in G x y can be infinite. To avoid case distinctions for proofs about G, and
to take advantage of mathematical analysis, the theory of Markov chains introduces
generating functions. For a probability or expectation P =

∑
n fn, its power series is

called a generating function Pg z =
∑
n fn · z

n. Here z is a real number between 0 and

1. If z approaches 1 from the left, we have Pg z
z→1−
−−−−→ P .

Definition 19 (Generating Functions for G, F , U and U ′)

Gg, Fg, Ug, U
′
g :: σ⇒ σ⇒ real⇒ real

Gg x y z =
∑
n p x y n · z

n

Fg x y z =
∑
n f x y n · z

n

Ug x y z =
∑
n u x y n · z

n+1

U ′g x y z =
∑
n u x y n · (n+ 1) · zn

These functions are real valued and, as long as |z| < 1, the sums are well-defined. The
generating function U ′g is the derivative of Ug.

Lemma 21 (Unbound Quantities as Limits of Generating Functions) The
generating functions tend to their probabilistic variant, if z approaches 1 from the left:

Gg x y z
z→1−
−−−−→ G x y Ug x y z

z→1−
−−−−→ U x y Fg x y z

z→1−
−−−−→ F x y

For example, we can show that the average number of visits to x is inversely propor-
tional to the probability to not reach x:

G x x = 1/(1− U x x) .

However this equation is undefined when U x x = 1. With generating functions we
have a nice tool to relate them also in this case.

Markov chains and Markov decision processes in Isabelle/HOL 27

Theorem 7 (Relating recurrent and G)

|z| < 1

Gg x x z = 1
/
(1− Ug x x z)

As Gg x x z
z→1−
−−−−→ G x x we also know that:

1

1− Ug x x z
z→1−
−−−−→ G x x

So, recurrent x (i.e. U x x = 1) is equal to G x x =∞.

As G x x =∞←→ G y y =∞ if (x, y) ∈ communicating, we have:

Corollary 3 (recurrent is Invariant on Irreducible Classes)

(x, y) ∈ communicating

recurrent x←→ recurrent y

Recurrence is not only invariant on irreducible classes, we also know that recurrence
of a class implies that it is an essential class. Now we relate H, U and recurrent:

Lemma 22 (Relation between recurrent and H and U)

H x x =if recurrent x then 1 else 0 H x y = U x y ·H y y

recurrent x (x, y) ∈ acc

U y x = 1 ∧ recurrent y ∧ (x, y) ∈ communicating

For recurrent states accessible equals communicating hence they form an essential class:

Theorem 8 (Recurrent Classes are Essential)

recurrent x

essential-class {y | (x, y) ∈ acc}

With Theorem 8 and the pigeon hole principle follows also that finite essential classes
are recurrent:

Corollary 4 (Finite Essential Classes are Recurrent)

finite C C ∈ UNIV
/
communicating

essential-class C ←→ (∀x ∈ C. recurrent x)

Lemma 22 also helps us to answer Q2 (which can be written formally as 1 −
U A C3 6= 0 or 1− U 0 n 6= 0), if we can show that C3 or n are recurrent.

Similar to recurrence, positive recurrence is invariant on irreducible classes. To
prove this, we show that the derivative of the generating function Ug is U ′g and then
applying l’Hôpital’s rule to relate U ′ and U :

28 Johannes Hölzl

Lemma 23 (Relation between U ′ and U)

|z| < 1

(Ug x x) has-derivative (U ′g x z) (at z)

recurrent x

1/U ′g x x z
z→1−
−−−−→ 1/U ′ x x

Hence positive recurrence is invariant on irreducible classes: either all states are positive
recurrent or all states are null recurrent.

Corollary 5 (Positive Recurrent is Invariant on Irreducible Classes)

(x, y) ∈ communicating

posrecurrent x←→ posrecurrent y

3.6.2 Stationary Distribution

A stationary distribution µ is a measure with the invariant, that it is closed under mul-
tiplication with the transition function τ : ∀y. µ y = (

∑
x µ x · τ x y). In Isabelle/HOL,

we use K, the representation as pmfs, and use the monadic bind:

Definition 20 (Stationary Distribution)

stationary-distribution :: σ pmf⇒ bool
stationary-distribution N ←→ N = bind-pmf N K

It is often very easy to show that a Markov chain has a stationary distribution N : we
only need to show that N is a solution to this equation system.

Example 1 (Stationary Distributions of Fig. 1) The essential class {C1, C2, C3} in
Fig. 2 (a) has the stationary distribution N with pmf N C1 = pmf N C2 = 3/10
and pmf N C3 = 4/10. Fig. 2 (b) is an essential Markov chain. Its stationary distribu-
tion N is pmf N n = 1/2n+1.

How do we compute such a distribution? Fortunately, we can compute the distribu-
tion by reachability analysis. When the stationary distribution exists, on an essential,
positive recurrent class, the inverse of the hitting time equals the stationary distribu-
tion.

Definition 21 (Stationary Distribution as Reverse of U ′)

stat :: σ set⇒ σ measure
stat C = point-measure UNIV

(
λx. indicator C x/U ′ x x

)
We define this as a measure, but not a probability mass function, as it will only be a
probability measure when it is a stationary distribution.

Lemma 24 (stat is a Sub-probability)

essential-class C countable C ∀x ∈ C. posrecurrent x
emeasure (stat C) UNIV ≤ 1

With this we can prove that: a stationary distribution on an essential class is always
positive recurrent and that the stationary distribution is equal to stat.

Markov chains and Markov decision processes in Isabelle/HOL 29

Theorem 9 (Stationary Distribution implies Positive Recurrence)

stationary-distribution N N ⊆ C countable C essential-class C

∀x ∈ C. posrecurrent x N = stat C

The last two proofs already require the relations between F and U ′ and their generating
functions. Using them we answerQ3; with the stationary distribution we computeM x.

Another property of the stationary distribution: it is the limit of the time bounded
probability p x y t when t goes to infinity. This limit does not always exist: the Markov
chain on states A and B with the only transitions A → B and B → A has no such
limit. To avoid such cases, we introduce the class of aperiodic sets. The aperiodicity
guarantees that the probability p x y t does not oscillate in t.

Definition 22 (Aperiodic Classes)

aperiodic :: σ set⇒ bool
aperiodic C ←→ C ∈ UNIV

/
communicating ∧

(∀x ∈ C. Gcd {i | 0 < i ∧ 0 < p x x i} = 1)

The function Gcd computes the greatest common divisor of the (possibly infinite) set.
To prove aperiodicity it is enough to show for two numbers n andm, with gcd n m = 1,
that 0 < p x x n and 0 < p x x m. However for our analysis we need a different view,
we want to know that after a time point I, x is always reached again. We show that
these two views are equivalent:

Theorem 10 (Aperiodic Class equals Eventually Non-zero p)

aperiodic C ←→ C ∈ UNIV
/
communicating ∧ (∀x ∈ C. ∃I. ∀i ≥ I. 0 < p x x i)

The proof involves a little number theory: for a set S ⊆ N closed under addition and
containing at least one non-zero element we have m · gcdS ∈ S for almost all m ∈ N.
To prove that aperiodic implies the right-hand side we set S = {i | 0 < i∧0 < p x x i}.

Now we can prove our central theorem of this section: For an aperiodic, essential
class, the stationary distribution is the limit of the marginal distributions.

Theorem 11 (Stationary Distribution is Asymptotic Distribution)

stationary-distribution N
N ⊆ C countable C aperiodic C essential-class C

∀y ∈ C.
∫
x

∣∣∣p x y t− pmf N y
∣∣∣ d(count-space C) t→∞−−−−→ 0

∀x, y ∈ C. p x y t t→∞−−−−→ pmf N y

This proof requires the product construction of Markov chains as described in Sec-
tion 3.4. We construct the product of a Markov chain starting in a state y, and one
where the initial distribution is already N . Essential and aperiodic classes lift from the
factor Markov chains to the product Markov chain.

With that central theorem we answer our final question Q4. The Fig. 2 (b) is
aperiodic and has a stationary probability distribution, hence we only need to compare
the values of the stationary distribution.

30 Johannes Hölzl

3.7 Modelling Example (a) and (b) in Isabelle/HOL

We want to come back to the example Markov chains shown in Fig. 2, and the ques-
tions on them stated in the introduction. With the analysis introduced in the previous
sections, we can now state the questions formally:

Q1 When we start (b) does it always come back to 0?
Pr (ω in T 0. ev (HLD {0}) ω) = 1?

Q2 Is it possible that (a) never reaches C3 or that (b) never reaches a state n?
Pr (ω in T A. alw (¬HLD {C3}) ω) 6= 0 or Pr (ω in T 0. alw (¬HLD {n}) ω) 6= 0.

Q3 When we start (b) in 0, what is the average time until it reaches 0 again?∫
sfirst {0} d(T 0) = ?

Q4 When (a) runs for a long time, is C3 more likely to occur than C1?
limt→∞ Pr(ω ∈ T A. ω !! t = C3) ≥ limt→∞ Pr(ω ∈ T A. ω !! t = C1)

Now we want to model the examples from Fig. 2 in Isabelle/HOL and compute
their stationary distribution.

Example (a) We first define a datatype state = A|B|C1|C2|C3. The Markov chain on
it does not have any repeating structure, we construct the Markov kernel by describing
the transition function τ as a matrix:

τ a b =


1/2 if (a, b) ∈ {(A,B), (A,C1), (B,B), (B,C1), (C3, C3)}
1/3 if (a, b) ∈ {(C1, C1), (C1, C2), (C1, C3), (C2, C1), (C2, C2), (C2, C3)}
1/4 if (a, b) ∈ {(C3, C1), (C3, C2)}
0 otherwise

We prove that {C1, C2, C3} is essential (by case distinction) and aperiodic (every state
has a loop).

Finally, we define the stationary distribution n:

lift-definition n :: state pmf is λC1 → 0.3 | C2 → 0.3 | C3 → 0.4 | -→ 0

Again by case distinction and computation by the simplifier we show that n fulfills the
equation of a stationary distribution.

Example (b) This example is more interesting, as it is infinite and has a structure
in it. Surprisingly its formalization is equivalently short. The Markov kernel is now
constructed out of a Bernoulli distribution, i.e. a coin flip with probability 1/3 true.

K x = map-pmf (λb. if b then x+ 1 else x− 1) (bernoulli-pmf (1/3))

Be aware that the difference on natural numbers is saturating, i.e. for x = 0 we have
x− 1 = 0. So pmf (K 0) 0 = 2/3. This transition is also in Fig. 2.

First, we deduce the accessibility structure: everything is from each state accessible:
(i, j) ∈ acc. This is proved by induction on the difference of i and j. Hence the entire
essential class is UNIV. As the state 0 has a loop, the entire system is also aperiodic.

Markov chains and Markov decision processes in Isabelle/HOL 31

Now the stationary distribution is geometric-pmf (1/2). The proof of this state-
ment works nearly automatic, as we have per state only two outgoing edges. So with
Theorem 11 we show the limit probability of being in a state j:

lim
n
p i j n =

(
1

2

)j+1

Note that the limit probability only depends on j: this is due to the asymmetry
at 0. We can compute with Theorem 9 the expected recurrence time (the inverse of
pmf (geometric-pmf (1/2)) i):

U ′ i i = 2i+1

4 Markov Decision Processes

In this section we introduce MDPs and their general representation in Isabelle/HOL.
These definitions and theorems are mostly mechanized (and generalized) versions of
definitions and theorems by Baier and Katoen [7], Baier [6], and de Alfaro [2]. MDPs
extend Markov chains with non-deterministic choices. Answering the same questions
(as presented in Section 3) on MDPs is more difficult, as we do not have a probability
space for traces anymore. Instead schedulers are introduced to resolve non-determinism:
a scheduler selects based on the history (i.e. the list of visited states) the distribution
of the next states. Then a MDP together with a scheduler implies a probability space
of traces. Questions like Q1 to Q4 are then stated for the maximal or minimal proba-
bility/expectation over a specific class of schedulers.

We define MDPs as non-deterministic probabilistic transition systems. The non-
determinism is modeled by a non-empty set of transition probabilities per state.

Definition 23 (Kernel of a MDP) The transition system of a Markov decision
process is specified by a function K :: σ⇒ σ pmf set (the kernel of the MDP) with the
property ∀x. K x 6= ∅.

For the rest of this section we assume a MDP specified by its kernel K.
The usual way to resolve the non-determinism is to introduce schedulers and use the

Markov chain induced by a scheduler [7] to assign probabilities to sequences. We use a
similar concept to resolve the non-determinism, namely configurations: A configuration
describes the current state s, a selected distribution inK s and future non-deterministic
behaviour by mapping each state to the future configuration.

Definition 24 (Configurations) The type of configurations are modelled as a non-
free codatatype (i.e. a codatatype with additional equalities):

σ cfg = Cfg (state: σ) (action: σ pmf) (cont: σ⇒ σ cfg)

state (cont c s) = s.

It is not possible to directly define such a non-free codatatype in Isabelle. Instead
we introduce a recursive codatatype with action and continuation and then define a
configuration datatype as pair of the recursive codatatype and the current state. And
on top of this we derive a corecursion operator and the usual selector functions.

32 Johannes Hölzl

In the literature the non-determinism is resolved by a scheduler, a function sc ::
σ list⇒ σ pmf with sc (h·s) ∈ K s. The scheduler is used to select the next action
depending on the previous behaviour of the MDP. A configuration can be seen as a
pair of scheduler sc and non-empty history h: In one direction, each scheduler sc and
history h give rise to a configuration c′ sc h, namely:

c′ sc h = Cfg (last h) (sc h) (λs. c′ sc (h · s)) .

In the other direction, a scheduler is constructed from a configuration c′ by iterating
the continuation of c′ over the history h and return state of the resulting configuration.

Definition 25 (Memoryless Configuration) A memoryless scheduler decides the
next step purely on the current state. We write a configuration with a memoryless
scheduler as memoryless-on f s, where f :: σ⇒ σ pmf. We define it by the following
primitive corecursive equations:

memoryless-on :: (σ⇒ σ pmf)⇒ σ⇒ σ cfg
state (memoryless-on f s) = s

action (memoryless-on f s) = f s

cont (memoryless-on f s) t = memoryless-on f t

Now, not every configuration is valid in our MDP, only those where the actions are
inK. For this we define the set of valid configurations from a state cfg-on :: σ⇒σ cfg set
coinductively with the following introduction rule:

state c = s action c ∈ K s ∀t ∈ action c. cont c t ∈ cfg-on t

c ∈ cfg-on s

MDPs do not have a probability space associated with them, instead one is usually
interested in the maximal and minimal probability over the valid configurations.

Definition 26 (Markov Kernel of a Configuration) We define K-cfg as a Markov
chain whose states are configurations:

K-cfg :: σ cfg⇒ σ cfg pmf
K-cfg c = map-pmf (cont c) (action c)

Definition 27 (Trace Space of a Configuration) The Markov chain trace space
T-cfg is the one induced by the Markov chain kernel K-cfg. It is used to construct a
trace space of states starting from a specific configuration c:

T :: σ cfg⇒ σ stream measure
T c = distr (T-cfg c) S (smap state)

4.1 Extremal Probability and Expectation on MDP Traces

Now, we use the MDP trace space T c to define the maximum and minimum expectation
and probabilities of the MDP:

Markov chains and Markov decision processes in Isabelle/HOL 33

Definition 28 (MDP Expectation) The maximum expectation E-sup s f and the
minimum expectation E-inf s f of a Borel-measurable function f starting in a state s
are defined as:

E-sup,E-inf :: σ⇒ (σ stream⇒ ereal)⇒ ereal

E-sup s f =
⊔

c∈cfg-on s

∫
f d(T c)

E-inf s f =
l

c∈cfg-on s

∫
f d(T c)

Definition 29 (MDP Probability) The maximal and minimal probability of a mea-
surable predicate P are defined as:

P-sup,P-inf :: σ⇒ (σ stream⇒ bool)⇒ ereal
P-sup s P =

⊔
c∈cfg-on s

Pr (ω in T c. P ω)

P-inf s P =
l

c∈cfg-on s

Pr (ω in T c. P ω)

The minimal and maximal expectations do not carry over linearity from integrals: they
are not additive anymore. Fortunately, both still support iteration:

Lemma 25 (Iteration for maximal and minimal expectation) Assume that f
is Borel-measurable. Then we get the following iteration rules:

E-sup s f =
⊔

D∈K s

∫
t

E-sup t (λω. f (t·ω)) dD

E-inf s f =
l

D∈K s

∫
t

E-inf t (λω. f (t·ω)) dD

Similarly to Lemma 8, we want to show that the minimal and maximal expectation
transfer certain least fixed points. For the maximal expectation this is quite obvious,
as the supremum of a least fixed point commutes with the supremum over all config-
urations. The following lemma is not as general as possible, as the functional reads in
each iteration only the head of the stream. This is enough for our current applications,
and it is symmetric with the lemma for minimal expectation.

Lemma 26 (E-sup Transfers Least Fixed Points)

g ∈ (count-space UNIV ×σ S)→σ borel ∀s. sup-continuous (g s)
∀s, c ∈ cfg-on s, f ∈ S →σ borel.

∫
ω
g s (f ω) d(T c) = g s (

∫
f d(T c))

E-sup s (lfp (λF (s·ω). g s ω)) = lfp
(
λf s.

⊔
D∈K s

∫
t

g t (f t) dD
)
s

Proving such a transfer lemma for the minimal expectation is more complicated,
Baier [6] shows how it is done for reachability probability when the set of distributions
per state are finite (i.e. K s is finite for all s). That proof nicely generalizes from
the reachability probability to expectations of least fixed points. Note the assumption
∀s. finite (K s): it is not clear to the author how to remove it or even weaken it.

34 Johannes Hölzl

Lemma 27 (E-inf Transfers Least Fixed Points)

g ∈ (count-space UNIV ×σ S)→σ borel ∀s. sup-continuous (g s) ∀s. finite (K s)
∀s. ∀c ∈ cfg-on s. ∀f ∈ S →σ borel.

∫
ω
g s (f ω) d(T c) = g s (

∫
f d(T c))

E-inf s (lfp (λF (s·ω). g s ω)) = lfp
(
λf s.

l

D∈K s

∫
t

g t (f t) dD
)
s

4.2 Reachability Probabilities on MDPs

A central property of model checking is the reachability probability, i.e. to compute the
probability of S1 suntil S2 for sets of states S1 and S2. In this section we will analyze
finite reachability probabilities, i.e. on a finite MDP. Hence in this and in the next
section we assume a finite MDP, i.e. there is a non-empty finite set S, under which K
is closed:

(⋃
x∈S

⋃
D∈K x set-pmf D

)
⊆ S and K x is finite for all x in S.

Definition 30 A reachability problem is defined by the transition states S1 ⊆ S and
the target states S2 ⊆ S. We assume non-overlapping S1 and S2: S1 ∩ S2 = ∅. We
write S1 U S2 for the sequences which stay in S1 until they reach S2 after a finite
time: S1 U S2 = (HLD S1) suntil (HLD S2).

For model checking a characterization as a least fixpoint is required and an optimal,
memoryless scheduler is needed. We get these by the following two theorems:

Theorem 12 (Least Fixed Point Characterization) The maximum reachability
probability P-sup s (S1 U S2), and the minimum reachability probability P-inf s (S1 U S2),
is characterized by the least fixpoint of F+, and F−, respectively:

P-sup s (S1 U S2) = lfp F+ s and P-inf s (S1 U S2) = lfp F− s where

F+ v s = if s ∈ S2 then 1 else if s ∈ S1 then
⊔

D∈K s

∫
v dD else 0

F− v s = if s ∈ S2 then 1 else if s ∈ S1 then
l

D∈K s

∫
v dD else 0

For our formalization in Isabelle/HOL we used the proof by Baier [6].

Theorem 13 (Existence of an Optimal Scheduler) There exists a memoryless
scheduler sc ∈ Πs∈SK s, for which the reachability probability is maximal:

P-sup s (S1 U S2) =

∫
t

P-sup t (S1 U S2) d(sc s) for s ∈ S1

The proof in Isabelle/HOL is based on the proof by de Alfaro [2, Theorem 3.10].
In the rest of this section we want to state rules to prove upper and lower bounds

of reachability probabilities. With a fixed memoryless scheduler sc we get a fully prob-
abilistic system τ s t = pmf (sc s) t. On such a system, we assume a set N ⊆ S which
is always reachable in S, i.e. there exists always an enabled path to N . The set N is
usually the set of states for which we know that reachability is 0 or 1. We use the
following theorem to reduce an inequality on two solution vectors (i.e. functions from
state to probability) to the inequality only on N . Then, when validating upper bounds,
we instantiate l with the maximum probability and u with the upper bound. When
validating lower bounds, we instantiate u with the minimum probability and l with the
lower bound.

Markov chains and Markov decision processes in Isabelle/HOL 35

Theorem 14 (Monotonicity of Solutions of Reachability Problems) We have
a fixed scheduler sc, which induces a Markov chain graph (hence also acc). Then for a
lower bound l and an upper bound u it is enough to compare them only on N :

∀s ∈ S \N.
∫
u d(sc s) ≤ u s ∀s ∈ S \N. l s ≤

∫
l d(sc s)

∀s ∈ N. l s ≤ u s ∀s ∈ S. ∃t ∈ N. (s, t) ∈ acc

∀s ∈ S. l s ≤ u s

This theorem is based on Baier and Katoen [7, Theorem 10.19], which is weaker as
it only shows equality instead of inequality. However, it is straightforward to adapt
their proof to our theorem. With this, Theorem 12, and the scheduler obtained by
Theorem 13, we validate upper bounds as follows:

Theorem 15 (Bound for Maximal Probability)

∀s ∈ S − S1 − S2. u s = 0 ∀s ∈ S2. u s = 1 ∀s ∈ S1, D ∈ K s.
∫
u dD ≤ u s

∀s ∈ S1. ∃t ∈ S2. (s, t) ∈ {(s, t) | s ∈ S1 ∧ t ∈
⋃

(K s)}∗

∀s ∈ S. P-sup s (S1 U S2) ≤ u s

The theorem for minimal probability is similar. However, for each state and each
scheduler we need to reach S2.

Theorem 16 (Bound for Minimal Probability)

wf R
∀s ∈ S − S1 − S2. l s = 0 ∀s ∈ S2. l s = 1 ∀s ∈ S1, D ∈ K s. l t ≤

∫
l dD

∀s ∈ S1, D ∈ K s. l s 6= 0 −→ ∃t ∈ D. t ∈ S2 ∨ (t ∈ S1 ∧ l t 6= 0 ∧ (t, s) ∈ R)
∀s ∈ S. l s ≤ P-inf s (S1 U S2)

The well-founded relation R guarantees that no matter which action a scheduler chooses
we can probabilistically choose a state with a smaller number of steps to reach a target
state. These two theorems allow us to validate bounds for the maximal and minimal
probability without knowing an optimal memoryless scheduler.

4.3 Certifying Model Checking Results

From Theorem 15 and 16 we derive a certification algorithm, presented in Fig. 3.
This algorithm will allow us to certify upper (lower) bounds of the maximal (minimal)
probability of a reachability problem.

The certification algorithm gets as input the Markov decision process, the reach-
ability problem, and the certificates for the maximum and minimum probabilities as
input values. They are represented as follows: The states and actions are represented
as natural numbers. Each entry in distr is indexed by state and contains a list of dis-
tributions indexed by action. The distributions are represented as an association list
from state to rational number. So the certificate represents the MDP interpreted as S
and K and the RP interpreted as S1, and S2. See the input and the interpretation in
Fig. 3. The algorithm needs to certify that the solutions sol+ and sol− fulfill

∀s ∈ S. sol− s ≤ P-inf s (S1 U S2) ∧ P-sup s (S1 U S2) ≤ sol+ s . (4)

36 Johannes Hölzl

Input Interpretation
n :: nat S =

{
0, . . . , n− 1

}
distr :: (nat× rat) list list array K s =

{
distr[s][i] | i < distr[s]

}
st1, st2 :: bool array S1 =

{
i < n | st1[i]

}
, S2 =

{
i < n | st2[i]

}
sol+, sol− :: rat array
wit+ :: (nat× nat× nat) array
wit− :: (nat list× nat) array

Implementation
valid-RP = 0 < n = |distrs| = |st1| = |st2| ∧

∀i < n. ¬(st1[i] ∧ st2[i]) ∧ distrs[i] 6= [] ∧ ∀d ∈ distrs[i]. valid-D d

valid-D d = distinct (map fst d) ∧
∑

(map snd d) = 1 ∧ ∀(j, x) ∈ d. 0 ≤ x ∧ j < n

valid-C s w (./) c = |s| = |w| = n ∧
∀i < n. if st2[i] then s[i] = 1 else if ¬st1[i] then s[i] = 0 else(

∀d ∈ distrs[i]. spmult d s ./ s[i]
)
∧

0 ≤ s[i] ∧
(
0 < s[i] −→ c distr[i] w[i]

)
chk+ D ((j, a), o) = j < n ∧ a < |D| ∧ snd wit+[j] < o ∧D[a]@j 6= 0 ∧ 0 < sol+[j]
chk− D (J, o) = ∀j ∈ J ||d ∈ D. j < n ∧ snd wit−[j] < o ∧ d@j 6= 0 ∧ 0 < sol−[j]

valid = valid-RP ∧ valid-C sol+ wit+ (≤) chk+ ∧ valid-C sol− wit− (≥) chk−

Fig. 3 The MDP reachability checker

For the logic, arrays A :: α array and lists xs :: α list are isomorphic. For an association
list xs :: (α×β) list, the lookup function xs@a returns b for the first occurrence of (a, b)
in xs. We write |A| for the size of an array A and A[i] for its i-th element. Functions in
Isabelle/HOL are always total, so when an array is accessed above its size or a lookup
on an association list fails they return a fixed but unknown element.

The assumptions in Theorem 15 require us to always guarantee to reach S2 for a
non-zero solution. For Theorem 16 a well-founded relation is required on the state set,
also to guarantee that S2 is reached. To validate these assumptions we use the witnesses
wit+ and wit−. The second part of the witnesses is the number of steps necessary to
reach S2. If we follow the action and state information stored in the first part of wit+

we always reach S2. For wit−, the action is chosen by the scheduler, so wit+ stores for
each action a state to go into the direction of S2.

Before we validate the solutions, we first check that the MDP and the RP are
correctly represented. For each association list in distrs, valid-D checks that the lookup
table only contains unique keys, and represents a probability distribution.

The validation function valid-C is parameterized in the solution s, the witness w, the
order ./, and the witness checker c. For each state and for each action it checks that the
solution is an upper or lower bound, depending on the order ./. The function spmult d s
implements the sparse vector-vector multiplication, i.e. spmult d s =

∑
i<n d@i · s[i].

For each state with a positive solution, we check that the witness points towards states
in S2, this check is done by c.

For the upper and lower bound validation, we only need to define the witness
checking. The function c is called for each state, and gets a distribution for each action
and the witness information. For the upper bound, the witness is an enabled state j

Markov chains and Markov decision processes in Isabelle/HOL 37

when the action a is chosen. It should have a smaller number of steps to reach S2. This
guarantees that we always have an enabled path to S2.

For the lower bound, the first part of the witness is a list of enabled states J . For
each action d there is an enabled state j with a smaller number of steps to reach S2.
This guarantees that for each strategy we find a path to S2 with non-zero probability.
We use the parallel list quantifier ∀j ∈ J ||d ∈ D. P j d defined as |J | = |D| ∧ ∀i <
|J |. P J [i] D[i].

We show soundness using Theorem 15 for the upper bound, and Theorem 16 for
the lower bound. For Theorem 16 we define s R t as snd wit−[s] > snd wit−[t]. For
Theorem 15 we can construct the necessary path to S2 for each s ∈ S1 by following
the first part of the witnesses.

Corollary 6 (Soundness) When valid returns true, then Eq. (4) holds.

The runtime complexity to validate a certificate is linear in the size of the problem,
i.e. it is O(M) where M is the number of enabled edges (s, α, t) with 0 < τ s α t.
The certificate does not contain the optimal schedulers. It is only necessary to provide
one scheduler which certifies a lower (or upper) bound. We hope that the approach
presented by Haddad and Monmege [24] can be used to produce such bounds.

5 Probabilistic Guarded Command Language (pGCL)

The probabilistic Guarded Command Language (pGCL) is a simple imperative lan-
guage allowing probabilistic and non-deterministic choice. An extensive discussion is
given by McIver and Morgan [42]. However, they miss the relation of the expectation
transformer semantics to an operational semantics. Such a correspondence proof is
given by Gretz et al. [23]. Here the reward of a run is computed using the program
state at termination. The correspondence proof in [23] computes the minimal expecta-
tion in the MDP by summing the probabilities of all outcomes. In this section we prove
the same statement in Isabelle/HOL by transferring a least fixed point through the
minimal expectation. We do not use the pGCL formalization by Cock [13] as he uses a
shallow embedding, while we need a deep embedding of pGCL programs to construct
the corresponding MDP. However, the work described in this section could be used to
connect the formalization of MDPs and the work on verification condition generators
for pGCL by Cock.

Definition 31 (pGCL Syntax)We define the syntax of pGCL programs as a datatype
over a state space σ, with state transformers σ⇒ σ:

σ pgcl = Skip | Abort | Assign (σ⇒ σ)
| Seq (σ pgcl) (σ pgcl)
| Par (σ pgcl) (σ pgcl)
| If (σ⇒ bool) (σ pgcl) (σ pgcl)
| Prob (bool pmf) (σ pgcl) (σ pgcl)
| While (σ⇒ bool) (σ pgcl) (σ pgcl)

Instead of using real numbers in the interval [0; 1] we use the isomorphic type bool pmf.
The type of states σ does not have any structure, we directly embed the operations in
our programs, c.f. the state update in Assign, or the predicates in If and While.

38 Johannes Hölzl

Definition 32 (pGCL Denotational Semantics as Expectation Transformer)
We specify the weakest pre-expectation transformer wp on the complete lattice of σ⇒
ereal where σ is the type of states. We need to restrict the expectations to be non-
negative, hence Abort does not return bottom but the constant 0, and the fixed point
in While needs to be clamped by 0.

wp :: σ pgcl⇒ (σ⇒ ereal)⇒ (σ⇒ ereal)
wp Skip f = f

wp Abort f = (λs. 0)
wp (Assign u) f = f ◦ u
wp (Seq c1 c2) f = wp c1 (wp c2 f)
wp (If b c1 c2) f = (λs. if b s then wp c1 f s else wp c2 f s)
wp (Par c1 c2) f = wp c1 f u wp c2 f
wp (Prob p c1 c2) f = (λs. pmf p True ∗ wp c1 f s+ pmf p False ∗ wp c2 f s)
wp (While b c) f = lfp (λX s. if b s then wp c ((λs. 0) tX) s else f s)

As small-step semantics we give a Markov decision process on σ pgcl × σ, i.e. the
product of program points and states. The MDP will provide us with a minimal ex-
pectation on traces on these states.

Definition 33 (pGCL Small-step Semantics as Markov Decision Process)
The step-function computes the transition from a configuration consisting of the current
program and state to the possible following configurations.

�-, -� :: σ pgcl⇒ σ⇒ (σ pgcl× σ) pmf set
� c, s� = {return-pmf (c, s)}

step :: (σ pgcl× σ)⇒ (σ pgcl× σ) pmf set
step (Skip, s) = � Skip, s�
step (Abort, s) = � Abort, s�
step (Assign u, s) = � Skip, u s�
step (Seq c1 c2, s) =
(map-pmf (λ(c′1, s

′). (if c′1 = Skip then c2 else Seq c′1 c2, s
′))) ‘ step (c1, s)

step (If b c1 c2, s) = if b s then step (c1, s) else step (c2, s))
step (Par c1 c2, s) = � c1, s� ∪ � c2, s�
step (Prob p c1 c2, s) = {map-pmf (λb. (if b then c1 else c2, s)) p}
step (While b c, s) = if b s then� Seq c (While b c), s� else� Skip, s�

This function defines the kernel of our MDP, hence we get a function E-inf repre-
senting the minimal expectation. The minimal expected outcome of a pGCL program
is now defined as its reward on this MDP.

Definition 34 (Reward of a Run of a pGCL Program) The reward of a run is
the value of the observation function f when the program terminates, i.e. when the
current command is Skip.

r :: (σ⇒ ereal)⇒ (σ pgcl× σ) stream⇒ ereal
r f = lfp (λF ((c, s) · ω). 0 t if c = Skip then f s else F ω)

The supremum with 0 is necessary to get a reward of 0 for non-terminating runs. Also,
with the supremum we guarantee that r is always non-negative.

Markov chains and Markov decision processes in Isabelle/HOL 39

For this reward function we can easily derive that the functional is non-negative,
monotone, continuous, and measurable, hence also r is non-negative, measurable, and
monotone. From this we derive that r nicely transfers through E-inf by instantiating
Lemma 27:

E-inf s (r f) = lfp

λF x. l

D∈step x

∫
(c,s)

if c = Skip then f s else F (c, s) dD

 s (5)

First we prove the following equations for Skip and Seq. These equations will be reused
multiple times in the final correspondence proof.

Lemma 28 (E-inf at a Skip state)

0 ≤ f s
E-inf (Skip, s) (r f) = f s

Lemma 29 (E-inf at a Seq state)

∀s. 0 ≤ f s
E-inf (Seq c1 c2, s) (r f) = E-inf (c1, s) (r (λs′. E-inf (c2, s′) (r f)))

Proof (by anti-symmetry) We use the representation of E-inf over r as least fixed point
and perform induction in both directions. What remains is applying one unfolding of
the least fixed point and using Lemma 28. ut

The minimal expectation E-inf over r is well-defined and we prove our final corre-
spondence theorem, equating the denotational (weakest pre-expectation transformer)
to the operational (MDP) semantics:

Theorem 17 (Correspondence) Assume a non-negative observation function f ::
σ⇒ ereal. Then the minimal expectation on the MDP equals the transformation by the
weakest pre-expectation transformer on f :

E-inf (c, s) (r f) = wp c f s

Proof (by structural induction on c, generalized in s and f) All cases besides While are
simple rewrites either directly with Eq. (5) or by Lemmas 28 and 29. For the While-case
we prove that E-inf over While is itself a least fixed point over E-inf:

E-inf (While g c, s) (r f) = lfp (λF s. if g s then E-inf (c, s) (r (0 t F)) else f s) s (6)

That the least fixed point at the right is less or equal to E-inf (While g c, s) (r f) is shown
by fixed point induction: either g s holds, then we have a sequential application and
finish the proof with Lemma 29, or g s does not hold, and the behavior is equal to Skip.

The other direction is more involved: we use the following functional w to unroll
the while-loop as a single least fixed point, then we massage it into the right form.

w F x =
l

D∈step x

∫
(d,s)


F (d, s) if d 6= Skip
F (c, s) if d = Skip ∧ g s
f s if d = Skip ∧ ¬g s

 dD

40 Johannes Hölzl

Then we prove the following rule, by induction on E-inf and generalizing over s, t
and d to abstract the position in the while-loop unrolling:

(t = While g c ∧ d = c ∧ g s) ∨ t = Seq d (While g c)

E-inf (t, s) (r f) ≤ lfp w (d, s)
(7)

We finish the proof with the following calculation:

E-inf (While g c, s) (r f)
= 〈by Eq. (5) and computing one iteration〉

if g s then E-inf (Seq c (While g c), s) (r f) else f s
≤ 〈by Eq. (7) where t = While g c, d = c and g s.〉

if g s then lfp w (c, s) else f s
≤ 〈by def. of w, Eq. (5), and diagonal rule of Lemma 2.〉

if g s then lfp (λF x. E-inf x (r (λs. if g s then 0 t F (c, s) else f s)) (c, s) else f s
= 〈by rolling rule of Lemma 2.〉

lfp (λF s. if g s then E-inf (c, s) (r (0 t F)) else f s) s

ut

In this proof the least fixed point transformations are especially helpful. The diagonal
rule of Lemma 2, i.e. lfp (λx. lfp (f x)) = lfp (λx. f x x), is the central part of our
proof, to unroll the entire While-loop.

With the correspondence theorem we get now two different views on the behavior
of pGCL programs.

6 Related Work

The first formalizations of measure and probability theory in a HOL theorem prover
was Hurd’s probabilistic monad [35]. He formalizes the foundations of measure the-
ory and used it to construct a probability space on nat⇒ bool. He verifies programs
using a random number generator as functions reading bits from traces in this proba-
bility space. To construct a specific probability distribution, Hurd’s approach requires
the construction of a random variable reading bits from the random monad. In our
approach we have the option to directly use the probability mass function to get a
certain probability distribution in a probabilistic program.

Liu et al. [40] classify finite-state Markov chains in HOL4 based on the probability
monad of [35]. They do not construct the trace space of Markov chains, and only give
an axiomatic definition of finite-state Markov chains as stochastic processes. Their
transition functions are modeled as σ ⇒ σ ⇒ real for which they do not provide a
compositional way to construct them. They show for aperiodic Markov chains that the
limit of the marginal probability is a stationary distribution. Their proof is only for
finite-state Markov chains, hence there is no construction of the product Markov chain
and generally the proofs are less involved.

The simpler approach, which does not require measure theory, is to employ ex-
pectation transformers or the Giry monad on distributions with countable support.
Hurd et al. [36] formalizes an expectation transformer approach which even allows de-
monic (non-deterministic) choice. He introduces pGCL programs as explicit datatypes
in HOL and provides a verification condition generator (VCG). This work was ex-
tended by Celiku and McIver [12] which introduces a VCG to prove upper bounds of

Markov chains and Markov decision processes in Isabelle/HOL 41

the expected running time of pGCL programs. A similar formalization was done by
Cock [13] in Isabelle/HOL, providing a VCG on the shallow embedding of pGCL pro-
grams. Audebaud and Paulin-Mohring [3] develop a shallow embedding of probabilistic
programs in Coq by formalizing the Giry monad on discrete distributions. Their usage
of sub-probability mass functions allows them to define a least fixed point on discrete
distributions. This is not directly possible in our formalization, as there is no general
order on probability mass functions, only on sub-probability mass functions. There
are further formalizations of probability mass functions in Coq. Affeldt, Hagiwara and
Sénizergues [1] use them to formalize information theory. Petcher and Morrisett [45]
as well as Rand and Zdancewic [48] introduce probabilistic programs generating finite
distributions. In Isabelle/HOL, Lochbihler [41] formalizes probabilistic programs inter-
acting with oracles. For this he introduces sub-probability distributions similar to [3]
and builds on top of them generative probabilistic values modeling the interaction with
an oracle. The formalizations in [1, 45, 48] are restricted to finite probability distribu-
tions. Besides Liu et al. [40], none of these approaches relate transition systems with
trace spaces, either they are only concerned with the trace space [35], or only with the
transition system [3,13,36,41].

The work presented in this paper is founded on Isabelle/HOL’s measure and proba-
bility theory presented in [26,31,33]. The previous work constructs finite-state Markov
chains to verify probabilistic model checking. We extend this to countable (possibly in-
finite) discrete state spaces, and further analysis concepts such as (positive) recurrence,
the period of a state and stationary distributions. Our new approach to Markov chains
subsumes the old formalization in [31,33]. The theories in the AFP [32] were ported to
our new formalization. Popescu et al. [47] use the work presented in this paper to model
programs with probabilistic choice and parallel composition as infinite-state Markov
chains. The Giry monad was introduced by Eberl et al. [16], the type of probability
mass functions was introduced by Hölzl et al. [30].

An earlier formalization of Lebesgue integration in Isabelle/HOL was done by
Richter [49]. A formalization of Markov kernels for Isabelle/HOL was already done
by Berg [8], unfortunately the author was not aware of this work until recently. Berg’s
formalization uses type classes to assign σ-algebras to types. This provided better au-
tomation but is less flexible: Isabelle only allows one type class instance (i.e. only one
σ-algebra) per type. For example this does not allow product σ-algebras on the function
space with explicit index sets.

On a non-formalized view, the work by Monniaux [43] is very similar to the mathe-
matical MDP analysis presented in this paper. While the formalization happened with-
out knowing the work by Monniaux, the developed Isabelle theories are very similar:
both (1) use fixed points to specify properties on the trace space, (2) compute inte-
grals of these properties by transfer theorems, and (3) finally equate an expectation
semantics to semantics on the trace space.

A fully automatic approach to analyzing Markov chains exists with probabilistic
model checkers, like PRISM [39] or MRMC [37]. Here we have the usual dichotomy
between model checking and theorem proving, where model checking works fully au-
tomatic, but only for a fixed Markov chain and for fixed properties, e.g. reachability
and average cost. Some approaches to go beyond fixed Markov chains are the use of
probabilistic push-down automaton (or equivalent, recursive Markov chains) [17,19] or
allowing to specify the transition probabilities of Markov chains and MDPs as polyno-
mials [15].

42 Johannes Hölzl

7 Discussion and Conclusion

We chose an unusual approach to the formalization of Markov chains and MDPs in
Isabelle/HOL, compared to mathematical textbooks. The abstract concepts of Markov
chains and MDPs itself are not changed, but we stick to an order theoretic and coalge-
braic view on the trace space of Markov chains (e.g. Theorem 1 in Section 3) or define
important properties as fixed points (e.g. Section 2.5). We rely on a well-developed the-
ory of lattices, fixed points (e.g. Section 2.1) and coinductive streams (e.g. Section 2.5),
allowing us to provide generic theorems and powerful induction principles. The formal-
ization is ∼ 7.600 lines of theory files, not containing the material in Section 2.

With our measure theoretic tools it is easy to show that Eq. (1) is equivalent to
Eq. (2) (assuming time-homogeneity); we do so in Section 3.5. However, for our purpose
using Eq. (2) produces shorter and more appealing proofs:

– Typical example of probabilities or expectations we want to compute are the prob-
ability until a certain set of states is reached or the expected hitting time for a set of
states. These are easily computed by solving a fixed point equation, as mentioned
in the previous paragraph, and the iteration rule given in Eq. (2).

– The iteration rule allows us to work with expectations. While an iteration rule can
be derived from Eq. (1) the other direction is easier: just instantiate f with the
indicator function, the rest follows by induction.

– In Eq. (1) we can only reason about one prefix s0, s1, . . . , st. It is possible, but not
always easy to derive the probability for more complex sets of traces. In Eq. (2) we
reason about the expectation of a function f , which subsumes the probability for
a prefix.

Similar to Eq. (2), we prove iteration rules for MDPs, here on the maximal and minimal
probability; see Section 4.1.

While many properties known from model checking are nicely described as fixed
points, properties known from classical Markov chain analysis are different. Properties
like stationary distributions, recurrence or time bounded probabilities are not definable
as fixed point over the trace space. Despite that difference, we can still use our Markov
chain framework to formalize such properties. As mentioned in the previous paragraph
our approach subsumes the usual formalization of Markov chains.

In our experience the usage of least and greatest fixed points leads to short and
natural proofs, i.e. natural in the sense that many involved definitions and proofs are
about fixed points and often involve theorems generic on complete lattices. Concrete
examples that the resulting proofs are shorter are found in the proofs for Theorem 3
and Theorem 4. The previous proofs where done without using and manipulating fixed
points. After rewriting the proofs using fixed points the size of the proofs where reduced
by around one third, c.f. Section 3.3. Another example is the formalization of Theo-
rem 17 to relate the denotational and operational semantics on PGCL in Section 5.
The entire formalization requires only ≈ 260 lines of theory in Isabelle/HOL. And it
is natural as (1) all operations and proofs working on expectation of infinite traces (or
infinite traces itself) could be reduced to fixed points and (2) after proving Eq. (5)
most parts of the proof are massaging fixed points with general fixed point theorems.

For us it was important to show the equivalence between the stochastic process
and the transition matrix interpretation of Markov chains. The measure space con-
structions in Section 3.2 made this possible. With this equivalence we not only allow
the application of our theory to Markov chains defined as stochastic processes, but give

Markov chains and Markov decision processes in Isabelle/HOL 43

a stronger guarantee that our formalization is generically applicable. As an unfortu-
nate counter-example, the formalization by Liu et al. [40] does not fulfill this guarantee.
In their formalization of the time-homogeneous property they do not include the as-
sumption that the states are reachable. Hence the Markov chains they handle are
restricted to Markov chains where the probability to reach a state is always non-zero,
i.e. Pr(X t = x) 6= 0 for all t.

One restriction of our formalization is that the trace space T x assumes a starting
state x. In Section 3.5 we introduce also T ′ parametric over an initial distribution I of
starting states. This is a simple combination of I and T using the bind operator of the
Giry monad.

We have shown that the formalization of Markov decision processes can be used (1)
to easily construct models — e.g. in the pGCL proof — and (2) to analyze properties
on the MDP — the certification of reachability results. Here our generalized view on
Markov kernels with arbitrary discrete state spaces caters for a concise construction of
MDPs. There is no need to restrict the state space to be countable.

As future work, we plan to extend and generalize Markov chains to continuous-time
Markov chains with discrete state space. In the course of this we extended also Markov
chains from discrete state spaces to state spaces on arbitrary measure spaces. The
rough diamond presented in [27] extends the pGCL semantics to provide semantics
for expected running time. This may enable the analysis of cryptographic protocols
were the operational semantics usually provides a clearer cost model. It should be
also possible to connect to other formalizations of probabilistic programs, i.e. provide
operational semantics for Cock’s pGCL formalization [13] and Lochbihler’s generative
probabilistic values [41].

Acknowledgments.

The author wants to thank Tobias Nipkow, Dmitriy Traytel, and Fabian Immler and
the anonymous reviewers for suggesting many textual improvements.

References

1. Affeldt, R., Hagiwara, M., Sénizergues, J.: Formalization of Shannon’s theorems. J. Autom.
Reasoning 53(1), 63–103 (2014)

2. de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford University
(1997). Technical report STAN-CS-TR-98-1601

3. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Science of
Computer Programming 74(8), 568–589 (2009). Special Issue on Mathematics of Program
Construction (MPC 2006)

4. Avigad, J., Hölzl, J., Serafin, L.: A formally verified proof of the Central Limit Theorem.
CoRR abs/1405.7012 (2014). URL http://arxiv.org/abs/1405.7012

5. Backhouse, R.C.: Galois connections and fixed point calculus. In: R.C. Backhouse, R.L.
Crole, J. Gibbons (eds.) Algebraic and Coalgebraic Methods in the Mathematics of Pro-
gram Construction, LNCS, vol. 2297, pp. 89–148 (2000)

6. Baier, C.: On the algorithmic verification of probabilistic systems. Habilitation, Universität
Mannheim (1998)

7. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
8. Berg, M.: Formal verification of cryptographic security proofs. Ph.D. thesis, Saarland

University (2013)
9. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly

modular (co)datatypes for Isabelle/HOL. In: G. Klein, R. Gamboa (eds.) Interactive
Theorem Proving (ITP 2014), LNCS, vol. 8558, pp. 93–110. Springer (2014)

http://arxiv.org/abs/1405.7012

44 Johannes Hölzl

10. Blanchette, J.C., Popescu, A., Traytel, D.: Unified classical logic completeness. In:
S. Demri, D. Kapur, C. Weidenbach (eds.) Automated Reasoning (IJCAR 2014), LNCS,
vol. 8562, pp. 46–60. Springer (2014)

11. Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.): Interactive Theorem Proving (ITP
2013), LNCS, vol. 7998. Springer (2013)

12. Celiku, O., McIver, A.: Cost-based analysis of probabilistic programs mechanised in HOL.
Nord. J. Comput. 11(2), 102–128 (2004)

13. Cock, D.: Verifying probabilistic correctness in Isabelle with pGCL. In: F. Cassez, R. Hu-
uck, G. Klein, B. Schlich (eds.) Systems Software Verification (SSV 2012), EPTCS, vol.
102, pp. 167–178 (2012)

14. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, second edn. Cambridge
University Press (2002)

15. Daws, C.: Symbolic and parametric model checking of discrete-time markov chains. In:
Z. Liu, K. Araki (eds.) Theoretical Aspects of Computing (ICTAC 2004), LNCS, vol. 3407,
pp. 280–294 (2004)

16. Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density functions. In:
European Symposium on Programming (ESOP 2015), LNCS (2015)

17. Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown automata. In:
Logic in Computer Science (LICS 2004), pp. 12–21 (2004)

18. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.: A fully
verified executable LTL model checker. In: N. Sharygina, H. Veith (eds.) Computer Aided
Verification (CAV 2013), LNCS, vol. 8044, pp. 463–478. Springer (2013)

19. Etessami, K., Yannakakis, M.: Recursive markov chains, stochastic grammars, and mono-
tone systems of nonlinear equations. Journal of the ACM 56(1), 1–66 (2009)

20. Giry, M.: A categorical approach to probability theory. In: Categorical Aspects of Topology
and Analysis, Lecture Notes in Mathematics, vol. 915, pp. 68–85 (1982)

21. Gonthier, G., Norrish, M. (eds.): CPP 2013, LNCS, vol. 8307. Springer (2013)
22. Gouezel, S.: Ergodic theory. The Archive of Formal Proofs (2015). https://www.isa-afp.

org/entries/Ergodic_Theory.shtml, (Formal proof development)
23. Gretz, F., Katoen, J., McIver, A.: Operational versus weakest pre-expectation semantics

for the probabilistic guarded command language. Performance Evaluation 73, 110–132
(2014)

24. Haddad, S., Monmege, B.: Reachability in mdps: Refining convergence of value iteration.
In: Reachability Problems (RP 2014), LNCS, vol. 8762, pp. 125–137. Springer (2014)

25. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Tech. Rep.
SICS/R90013, Swedish Institute of Computer Science (1994)

26. Hölzl, J.: Construction and stochastic applications of measure spaces in higher-order logic.
Ph.D. thesis, Technische Universität München (2013)

27. Hölzl, J.: Formalising semantics for expected running time of probabilistic programs. In:
C.J. Blanchette, S. Merz (eds.) Interactive Theorem Proving (ITP 2016), LNCS, vol. 9807,
pp. 475–482. Springer (2016)

28. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: M.C.J.D. van
Eekelen, H. Geuvers, J. Schmaltz, F. Wiedijk (eds.) Interactive Theorem Proving (ITP
2011), LNCS, vol. 6898, pp. 135–151. Springer (2011)

29. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical analysis in
Isabelle/HOL. In: Blazy et al. [11], pp. 279–294

30. Hölzl, J., Lochbihler, A., Traytel, D.: A formalized hierarchy of probabilistic system types
(proof pearl). In: C. Urban, X. Zhang (eds.) Interactive Theorem Proving (ITP 2015),
LNCS, vol. 9236, pp. 203–220 (2015)

31. Hölzl, J., Nipkow, T.: Interactive verification of Markov chains: Two distributed protocol
case studies. In: U. Fahrenberg, A. Legay, C. Thrane (eds.) Quantities in Formal Methods
(QFM 2012), EPTCS, vol. 103. arXiv (2012)

32. Hölzl, J., Nipkow, T.: Markov models. The Archive of Formal Proofs (2012). https:
//www.isa-afp.org/entries/Markov_Models.shtml, (Formal proof development)

33. Hölzl, J., Nipkow, T.: Verifying pCTL model checking. In: C. Flanagan, B. König (eds.)
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2012), LNCS,
vol. 7214, pp. 347–361 (2012)

34. Huffman, B., Kunčar, O.: Lifting and transfer: A modular design for quotients in Is-
abelle/HOL. In: Gonthier and Norrish [21], pp. 131–146

35. Hurd, J.: Formal verification of probabilistic algorithms. Ph.D. thesis, University of Cam-
bridge (2002)

https://www.isa-afp.org/entries/Ergodic_Theory.shtml
https://www.isa-afp.org/entries/Ergodic_Theory.shtml
https://www.isa-afp.org/entries/Markov_Models.shtml
https://www.isa-afp.org/entries/Markov_Models.shtml

Markov chains and Markov decision processes in Isabelle/HOL 45

36. Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mechanized in HOL.
Theoretical Computer Science 346(1), 96–112 (2005)

37. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of
the probabilistic model checker MRMC. Performance Evaluation 68, 90–104 (2011)

38. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: M. Bernardo,
J. Hillston (eds.) Formal Methods for the Design of Computer, Communication and Soft-
ware Systems: Performance Evaluation (SFM 2007), LNCS, vol. 4486, pp. 220–270 (2007)

39. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-
time systems. In: Computer Aided Verification (CAV 2011), LNCS, vol. 6806, pp. 585–591
(2011)

40. Liu, L., Hasan, O., Aravantinos, V., Tahar, S.: Formal reasoning about classified Markov
chains in HOL. In: Blazy et al. [11], pp. 295–310

41. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher order logic. In:
ESOP, LNCS, vol. 9632, pp. 503–531. Springer (2016)

42. McIver, A., Morgan, C.: Abstraction, Refinement And Proof For Probabilistic Systems.
Monographs in Computer Science. Springer (2004)

43. Monniaux, D.: Abstract interpretation of programs as Markov decision processes. Science
of Computer Programming 58(1-2), 179–205 (2005). Special Issue on the Static Analysis
Symposium (SAS 2003)

44. Paulson, L.C.: A fixedpoint approach to (co)inductive and (co)datatype definitions. In:
G.D. Plotkin, C. Stirling, M. Tofte (eds.) Proof, Language, and Interaction, Essays in
Honour of Robin Milner, pp. 187–212. The MIT Press (2000)

45. Petcher, A., Morrisett, G.: The foundational cryptography framework. In: POST, LNCS,
vol. 9036, pp. 53–72. Springer (2015)

46. Pollard, D.: A Users’s Guide to Measure Theoretic Probability. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press (2002)

47. Popescu, A., Hölzl, J., Nipkow, T.: Formalizing probabilistic noninterference. In: Gonthier
and Norrish [21], pp. 259–275

48. Rand, R., Zdancewic, S.: VPHL: A verified partial-correctness logic for probabilistic pro-
grams. ENTCS 319, 351–367 (2015). DOI 10.1016/j.entcs.2015.12.021

49. Richter, S.: Formalizing integration theory with an application to probabilistic algorithms.
In: TPHOLs, LNCS, vol. 3223, pp. 271–286. Springer (2004)

50. Trivedi, K.S.: Probability & Statistics with Reliability, Queuing, and Computer Science
Applications. Prentice-Hall (1982)

51. Woess, W.: Denumerable Markov Chains. European Mathematical Society (2009)

	1 Introduction
	1.1 Approach
	1.2 Contributions
	1.3 Structure

	2 Foundations
	2.1 Lattices and Fixed Points
	2.2 Measures and Probability Spaces
	2.3 Giry Monad
	2.4 Probability Mass Functions
	2.5 Stream Space
	2.6 Stream Measure

	3 Markov Chains
	3.1 Transition Probabilities
	3.2 Probability and Expectation on Markov Chain Traces
	3.3 Fairness, Reachability, and Hitting Time
	3.4 Product Construction
	3.5 Trace Space as Stochastic Process
	3.6 Classifying Markov Chain States
	3.7 Modelling Example (a) and (b) in Isabelle/HOL

	4 Markov Decision Processes
	4.1 Extremal Probability and Expectation on MDP Traces
	4.2 Reachability Probabilities on MDPs
	4.3 Certifying Model Checking Results

	5 Probabilistic Guarded Command Language (pGCL)
	6 Related Work
	7 Discussion and Conclusion

