Markov chains and Markov decision processes
in Isabelle/HOL

Johannes Holzl
January 2016

TU Mlnchen, Germany

Introduction

Formalize probabilistic models:

- Discrete infinite state spaces

Formalize probabilistic models:

- Discrete infinite state spaces

- Trace space & transition system

Formalize probabilistic models:

- Discrete infinite state spaces
- Trace space & transition system

- Support non-determinism

Formalize probabilistic models:

- Discrete infinite state spaces

- Trace space & transition system
- Support non-determinism

- Compare different system types

Formalize probabilistic models:

- Discrete infinite state spaces

- Trace space & transition system
- Support non-determinism

- Compare different system types

Approach:

- Coalgebraic view on transition systems

Formalize probabilistic models:

- Discrete infinite state spaces

- Trace space & transition system
- Support non-determinism

- Compare different system types

Approach:

- Coalgebraic view on transition systems

- Fixed points to define queries on trace space

Markov chains

(a) A finite process

(a) A finite process

Wl
[SSI1N)

wIN

(b) An infinite birth-death process

- e S
o=

1
L 3

(a) A finite process

c Pra(0G) =7

(b) An infinite birth-death process

- e S
o=

1
L 3

(a) A finite process

c Pra(0G) =7
. PrA(D _‘C3) =7

(b) An infinite birth-death process

(a) A finite process

c Pra(0G) =7
. PrA(D _‘C3) =7
c Pra(@NG, G, Gl =7

(b) An infinite birth-death process

(a) A finite process

c Pra(0G) =7
. PrA(D _‘C3) =7
c Pra(@NG, G, Gl =7

(b) An infinite birth-death process

* liMpseo Pralwn = G) > limpoeo Pralwn = G) 2

(a) A finite process

c Pra(0G) =7
. PrA(D _‘C3) =7
c Pra(@NG, G, Gl =7

(b) An infinite birth-death process

* liMpseo Pralwn = G) > limpoeo Pralwn = G) 2

. J fo w dTq =7 -f: first occurence
w

Markov Chains — A Coalgebraic View

How to represent Markov chains?

Markov Chains — A Coalgebraic View

How to represent Markov chains?

Markov Chains — A Coalgebraic View

How to represent Markov chains?
n 0= 0opmf

- Markov kernel: the transitions for each state
o - type of states

o pmf - probability mass functions (discrete distributions)

Probability Mass Function

Model probabilistic transitions!

= o pmf 0=1[0,1, > ux="1

0 measure, U =1, discrete

~
~
~
~

Similar to Audebaud & Paulin-Mohring [MPC 2006]

Probability Mass Function

Model probabilistic transitions!

zopmf =~ :0=1[0,1, > ux="
~ o measure, 1 U=1, discrete

Similar to Audebaud & Paulin-Mohring [MPC 2006]

© map fu=AX. Z y - Bernoulli
fy=x)
+ set = {x| L x %0} - Uniform
S Z V- vy X * Binomial
- Geometric

1 ifx=x' -+ Poisson
- return x = Ax’. o
0 else - Conditional

Necessary to define [d7s (and Prs(P w))

Necessary to define [d7s (and Prs(P w))

codatatype o stream = o-(o stream) ~N=o

Necessary to define [d7s (and Prs(P w))

codatatype o stream = o-(o stream) ~N=o

Given K construct 0= o0 stream measure where:

s=do {t+ Ks; w+ T¢; return (t-w)}

Equivalently: for f Borel-measurable:

| fwrar.=| (Jwﬂtw)d t) die

Necessary to define [d7s (and Prs(P w))

codatatype o stream = o-(o stream) ~N=o

Given K construct 0= o0 stream measure where:

s=do {t+ Ks; w+ T¢; return (t-w)}

Equivalently: for f Borel-measurable:

| fwrar.=| (Jwﬂtw)d t) die

This construction is unique! e

Construct trace space for Markov chains

- Traditional solution: use Caratheodory's extension theorem

Construct trace space for Markov chains

- Traditional solution: use Caratheodory's extension theorem
- Generate trace space by {w | w starts with xs}

Construct trace space for Markov chains

- Traditional solution: use Caratheodory's extension theorem

- Generate trace space by {w | w starts with xs}
- Countable additivity of pre-measure on cylinder sets

Construct trace space for Markov chains

- Traditional solution: use Caratheodory's extension theorem

- Generate trace space by {w | w starts with xs}
- Countable additivity of pre-measure on cylinder sets

- Our solution: reuse infinite product of probability spaces
Measure space of decisions

=1111%

n:N s::o

run(s,d-X) = s-run(d s, X)

+ = D(run(s,))

Construct trace space for Markov chains

- Traditional solution: use Caratheodory's extension theorem

- Generate trace space by {w | w starts with xs}
- Countable additivity of pre-measure on cylinder sets

- Our solution: reuse infinite product of probability spaces
Measure space of decisions

=1111%

n:N s::o

run(s,d-X) = s-run(d s, X)
s = D(run(s,-))

- Future Solution: Theorem by lonescu-Tuclea

Queries on the trace space

Eventually ¢: O w =
Always o: Oy w =

Until ¢: Upw =
First hit ¢: fo w =

Counting &: ¢4 w =

1

Queries on the trace space

Eventually ¢: O w = dn. ¢ w,
Always o: Oy w =
Until ¢: Upw =
First hit ¢: fo w =

Counting &: ¢4 w =

1

Queries on the trace space

Eventually ¢: O w = dn. ¢ w,
Always : Oy w = Vn. ¢ wy
Until ¢: Upw =
First hit ¢: fo w =

Counting &: ¢4 w =

1

Queries on the trace space

Eventually ¢: O w = dn. ¢ w,
Always : Oy w = Vn. ¢ wy

Until ¢: Upw = 3AN.(Vn< N. D wy) Ad wy
First hit ¢: fo w =

Counting &: ¢4 w =

1

Queries on the trace space

Eventually ¢: O w = dn. ¢ w,
Always : Oy w = Vn. ¢ wy

Until ¢: Upw = 3AN.(Vn< N. D wy) Ad wy
First hit ¢: fo w = LEAST n. ¢ wy

Counting &: ¢4 w =

1

Queries on the trace space

Eventually ¢: O w = dn. ¢ w,
Always : Oy w = Vn. ¢ wy

Until ¢: Upw = 3AN.(Vn< N. D wy) Ad wy
First hit ¢: fo w = LEAST n. ¢ wy

Counting ¢: ¢4 w = .l wn]

1

Queries on the trace space

Eventually ¢: O w = dn. ¢ w,
e w V Oy (tlw)
Always : Oy w = Vn. ¢ wy
Until ¢: Upw = 3AN.(Vn< N. D wy) Ad wy
First hit ¢: fo w = LEAST n. ¢ wy

Counting ¢: ¢4 w = .l wn]

1

Queries on the trace space

Eventually ¢: O w = dn. ¢ w,
e w V Oy (tlw)
Always : Oy w = Vn. ¢ wy

w0 A O, (o)

Until ¢: Upw = 3AN.(Vn< N. D wy) Ad wy

First hit ¢: fo w = LEAST n. ¢ wy

Counting ¢: ¢4 w = .l wn]

1

Queries on the trace space

Eventually ¢: O w = dn. ¢ w,
e w V Oy (tlw)
Always : Oy w = Vn. ¢ wy

w0 A O, (o)

Until ¢: Upw = 3AN.(Vn< N. D wy) Ad wy
(w/\ u (tlw))\/ w

First hit ¢: fo w = LEAST n. ¢ wy

Counting ¢: ¢4 w = .l wn]

1

Queries on the trace space

Eventually Oy w = dn. ¢ w,

e w V Oy (tlw)
Always Oy w = Vn. ¢ wy

L hw A O (tlw)
Until w = 3AN. (Vn<N. b wp) Ad wy

e (w/\ U(tlw))\/ w
First hit fo w = LEAST n. & wy

fp T+f Hlw) if—dw

0 otherwise

Counting Cop W = .l wn]

1

Queries on the trace space

Eventually ¢: O w = dn. ¢ w,
= w V Oy (tlw)

Always : Oy w = Vn. ¢ wy
L hw A O ()

Until ¢: Upw = 3AN.(Vn< N. D wy) Ad wy
(w/\ u (tlw))\/ w

First hit ¢: fo w = LEAST n. ¢ wy
fp T+f Hlw) if—dw
a {O otherwise
Counting &: ¢y w = .l wn]

1fp T+cy (tlw) ifdw
Cy (tlw) otherwise

1

Interception: Least/Greatest Fixed Points

Monotone functions f, g

Least fixed point: Ifp f=f (Ifp /) (Wx. fx<x = Ifpf<x)

(o]

lfp:ooooooooo~--oJ_

Interception: Least/Greatest Fixed Points

Monotone functions f, g

Least fixed point: Ifp f=f (Ifp /) (Wx. fx<x = Ifpf<x)
Rolling rule: g (Ifp (fog)) =lfp (go/)

Interception: Least/Greatest Fixed Points

Monotone functions f, g

Least fixed point: Ifp f=f (Ifp /) (Wx. fx<x = Ifpf<x)
Rolling rule: g (Ifp (fog)) =lfp (go/)

Interception: Least/Greatest Fixed Points

Monotone functions f, g

Least fixed point: Ifp f=f (Ifp /) (Wx. fx<x = Ifpf<x)

Rolling rule: g (Ifp (fog)) =Ifp (gof)
Iteration rule: Ifp (fof) = Ifp

Interception: Least/Greatest Fixed Points

Monotone functions f, g

Least fixed point: Ifp f=f (Ifp /) (Wx. fx<x = Ifpf<x)
Rolling rule: g (Ifp (fog)) =lfp (go/)
Iteration rule: Ifp (fof) = Ifp
Nesting rule: Ifp (Ax. Ifp (fx)) = lfp (Ax. fx x)

Interception: Least/Greatest Fixed Points

VC € N — X. monotone C = [(| ;G;) =i/ G

Least fixed point: Ifp f=f (Ifp /) (Wx. fx<x = Ifpf<x)
Rolling rule: g (Ifp (fog)) - lfp (go/)
Iteration rule: Ifp (fof) = lfy
Nesting rule: Ifp (Ax. Ifp (fx)) = Ifp (Ax. f x x)

LI—continuous «, [, g
xl =1 xof=Qgoux

a(lfpf)=1lfpg

Transfer rule:

a(lfpf) = oofofofofofo---0l

gogogoxofofo---0L
gogogogogo--oal
= Ifpg

Interception: Least/Greatest Fixed Points

Monotone functions f, g

Least fixed point: Ifp f=f (Ifp /) (Wx. fx<x = Ifpf<x)
Rolling rule: g (Ifp (fog)) =lfp (go/)
Iteration rule: Ifp (fof) = Ifp
Nesting rule: Ifp (Ax. Ifp (fx)) = lfp (Ax. fx x)

LI—continuous «, [, g
axl=1 xof=goux

Transfer rule:
a(lfpf)=1lfpg

Interception: Least/Greatest Fixed Points

Monotone functions f, g

Least fixed point: Ifp f=f (Ifp /) (Wx. fx<x = Ifpf<x)
Rolling rule: g (Ifp (fog)) =lfp (go/)
Iteration rule: Ifp (fof) = Ifp
Nesting rule: Ifp (Ax. Ifp (fx)) = lfp (Ax. fx x)

LI—continuous «, [, g
axl=1 xof=goux

Transfer rule:
a(lfpf)=1lfpg

cxf:deJ\/[for f Borel-measurable

Equation for queries under integration

Example (First hitting time ¢ on states)
Define f:

fo LlUfp A f (sw). |~ s] - (1+f w))

Equation for queries under integration

Example (First hitting time ¢ on states)
Define f:

fo LlUfp A f (sw). |~ s] - (1+f w))

‘ (S_w)lg,{wrf w if-ds

0 otherwise

Equation for queries under integration

Example (First hitting time ¢ on states)
Define f:

fo LlUfp A f (sw). |~ s] - (1+f w))

‘ (S.w)lg,{wrf w if=¢s

0 otherwise

Prove computation rule by transfer rule:

Jf w dTs =Ifp (?\QS. Lh tj-(1+gt)ds>s

Equation for queries under integration

Example (First hitting time ¢ on states)
Define f:

fo LlUfp A f (sw). |~ s] - (1+f w))

‘ (S.w)lg,{wrf w if=¢s

0 otherwise

Prove computation rule by transfer rule:
J fo wdTs =Ifp (?\QS. Jh t]-(1+gt)d 5> S
w t

For finite state space: Ifp is a system of linear equations!

Proofs employing fixed point reasoning

Lemma (Fairness)

PrS(DOt — DO(tAQt’)) -1 ift' ek

Proof.
Show that gfp (Ag s. (—t) U (t-—t’ - g)) has probability 0. O]

14

Proofs employing fixed point reasoning

Lemma (Fairness)

PrS(DOt — DO(tAQt’)) -1 ift' ek

Proof.
Show that gfp (Ag s. (—t) U (t-—t’ - g)) has probability 0. O]

Lemma (Finite hitting time)

J frwdTs < o0 if Prs(Ot) =1and finite state space

14

Proofs employing fixed point reasoning

Lemma (Fairness)

PrS(DOt — DO(tAQt’)) -1 ift' ek

Proof.
Show that gfp (Ag s. (—t) U (t-—t’ - g)) has probability 0. O]

Lemma (Finite hitting time)

J frwdTs < o0 if Prs(Ot) =1and finite state space
Proof size is reduced to ~ 65%!

14

Stationary Distribution

N is a stationary distribution iff (N >= K) =
Or: Kx N= — K as transition matrix

- When support set of IV is essential (bottom SCC):
J fowdTe = —— 1
w S S 5

- When essential and aperiodic:

n—oo

- Stationary distribution for b): N = geometric(%)

DTMC (M :: &« measure) (X znat= a=0) =
prob-space M A (Yn.XneM—="U) A
(3S. countable SAVn. PriXxneS)=1 A

— The stochastic process X is memoryless:
(Wnst.

Pr(vn’<n.Xn"=tn’) #0 —
PriX(n+1) =s|Vn'<n.Xn'=tn')=
PriX(n+1) =s|Xn=tn)) A

— The stochastic process X is time-homogeneous:

(vnn'st.
PriXn=t)A#0APr(Xn' =t) #0 —

PriX(n+1) =s|Xn=t)=Pr(X(n"+1) =s|Xn'=t))

16

Markov decision processes

Markov decision process

Probabilistic & non-deterministic transitions

Markov decision process

Probabilistic & non-deterministic transitions

- Kernels (coalgebras) of MDPs:

’ 1 o= o pmf set, S#@‘

Markov decision process

Probabilistic & non-deterministic transitions

- Kernels (coalgebras) of MDPs:

’ 1 o= o pmf set, S#@‘

- Traditional definition of schedulers:

sc: o list= o pmf, sc(hs)eKs

Configurations

(52, &)

Attention: the configuration includes the entire tree!

19

Configurations on MDPs

codatatype o ¢fg = (fg (state: o) (act: o pmf) (cont: o= o cfg)
where state (contcs) =s

- Induces a Markov chain:

mocfg= o cfg pmf
¢ = map (cont ¢) (act c)

+ Trace space: Tc = MAPpeqasure (MAPstream State) c

- Valid Configuration: act is always compatible with

20

Definition (Minimal Expectation)

] = T

cevalids

fd7e

21

Definition (Minimal Expectation)

E™ [f] = |_| dem;

cevalids

Lemma (Iteration Rule)

s =] e 0

21

Application: Reachability Problem Example

pis Pr"(S; U S,), n'is PrM"(S, U S,)

22

Application: Reachability problems on MDPs

Goal: certify solutions to reachability problems in MDPs

23

Application: Reachability problems on MDPs

Goal: certify solutions to reachability problems in MDPs

= Formalize MDPs and reachability problems
Prin s, USy) = Ifp(---)

23

Application: Reachability problems on MDPs

Goal: certify solutions to reachability problems in MDPs

= Formalize MDPs and reachability problems
Privn(S,US,y) = Ufp(--+)

= Implement and verify certification algorithm
Currently: v < Pr™in(Ss; U S,) and Proax(S; U S,) <

23

Application: Reachability problems on MDPs

Goal: certify solutions to reachability problems in MDPs

= Formalize MDPs and reachability problems
Prin s, USy) = Ifp(---)

= Implement and verify certification algorithm
Currently: v < Pr™in(Ss; U S,) and Proax(S; U S,) <

= Requires proof: 3 optimal memoryless scheduler

23

Application: Reachability problems on MDPs

Goal: certify solutions to reachability problems in MDPs

= Formalize MDPs and reachability problems
Privn(S,US,y) = Ufp(--+)

= Implement and verify certification algorithm
Currently: v < Pr™in(Ss; U S,) and Proax(S; U S,) <

= Requires proof: 3 optimal memoryless scheduler

= Import results by executing algorithm in Isabelle/HOL

23

Application: pGCL semantics

Present the pGCL semantics similar to [Gretz, Katoen, Mclver (2014)]:

pgcl := Skip
| Abort
| Assign (0 = o)
| Seq pgcl pgcl
| Par pgcl pgcl
| If (0 = bool) pgcl pgcl
| Prob [0,1] pgcl pgcl
| While (o = bool) pgcl pgcl

24

Weakest pre-expectation transformer

wp : pgcl = (c = Rgo) = (G = R;"O)

wp Skip =
wp Abort = A
vvp (Assign u) = fou

wp ¢ (wp ¢ f)
Par ¢; ¢;) wp ¢ [TTWp ¢

p (Seq 1 &)

p(

p(Ifbcc) As.ifbsthenwpcfselsewpc, fs
p(

p(

Prob p ¢) AS.p-wpCifs+(1—p)-wpcyfs
While b ¢) = Ifp(Ags.ifbsthenwpcgselsefs)

25

Operational semantics as MDP

= (pgcl x o) = (pgcl x o) pmf set

(Skip, s) = <« Skip,s >
(Abort, s) = < Abort,s >
(Assign u, s) = <« Skip,u s>
(Seq ¢ ¢, 9) =
/ / H / H
(c1,5) [Mc{,s’). { EiiqS,C; €2,) ';;#Sk'p H
(Par ¢y ¢,8) = LK,S>UKL0,S>
(If bcicy,s) = ifbsthen K(c,s) else K (¢,)

(Probp i, s) = {{{cr,8) = p,(c2,8) = (1—=p))}
S Whil i
(While g ¢, 5) _ < egc(ilegc),s> ifgs
< Skip, s > else

26

Equate wp and K

Definition (Result of a Trace)
rfw ifc=Skip

S else

27

Equate wp and K

Definition (Result of a Trace)
rfw ifc=Skip

S else

rfcs)w) ®

Theorem (Operational semantics equals denotational semantics)

(c,s)(r):WpC S

27

" i
(cs) (rf) =fp (Ag S. |_| L){ QS(C,S) ;lgesﬁS ip }d) (o)
) c,S

Case ¢ =Seq ¢ ¢

(seq & ca5) (M f) = (c) (r (As”. (s (1))
Case c = While b ¢’: white g cr,5)(rf) =lfpws
g (d,t) ifdsSkip
WQS:HJ g(c',t) ifbt d
e @0 |y else

28

Probabilistic Hierarchy

Zoo of Probabilistic System Types

H., Traytel & Lochbihler [ITP 2015]

Ana Sokolva — Coalgebraic Analysis of Probabilistic Systems (2005):

4.4 The hierarchy

f

}

DLT MC

Figure 4.2: Hierarchy of probabilistic system types

Hierarchy of Probabilistic Systems Types

How to ...

31

Hierarchy of Probabilistic Systems Types

How to ...

..model system types?

31

Hierarchy of Probabilistic Systems Types

How to ...
..model system types?

..compare systems of same type?

31

Hierarchy of Probabilistic Systems Types

How to ...
..model system types?
..compare systems of same type?

..compare different system types?

31

Hierarchy of Probabilistic Systems Types

How to ...
..model system types? Coalgebras
..compare systems of same type?

..compare different system types?

31

Hierarchy of Probabilistic Systems Types

How to ...
..model system types? Coalgebras
..compare systems of same type? Bisimulation

..compare different system types?

31

Hierarchy of Probabilistic Systems Types

How to ...
..model system types? Coalgebras
..compare systems of same type? Bisimulation

..compare different system types? Embedding respecting bisimulation

31

Hierarchy of Probabilistic Systems Types

How to ...
..model system types? Coalgebras
..compare systems of same type? Bisimulation

..compare different system types? Embedding respecting bisimulation

31

Hierarchy of Probabilistic Systems Types

How to ...
..model system types? Coalgebras
..compare systems of same type? Bisimulation

..compare different system types? Embedding respecting bisimulation

..formalize it in Isabelle/HOL?

31

Hierarchy of Probabilistic Systems Types

How to ...
..model system types? Coalgebras
..compare systems of same type? Bisimulation

..compare different system types? Embedding respecting bisimulation

.formalize it in Isabelle/HOL? codatatype +
Probability Mass Func.

31

Coalgebras as Codatatypes in Isabelle/HOL

Idea: Analyse transition systems modulo bisimulation!

Equality :<= Bisimulation

32

Coalgebras as Codatatypes in Isabelle/HOL

Idea: Analyse transition systems modulo bisimulation!

Equality :<= Bisimulation

How to model all F-coalgebras as type?

32

Coalgebras as Codatatypes in Isabelle/HOL

Idea: Analyse transition systems modulo bisimulation!

Equality :<= Bisimulation

How to model all F-coalgebras as type?

codatatype tr = C (1 F)

32

Coalgebras as Codatatypes in Isabelle/HOL

Idea: Analyse transition systems modulo bisimulation!

Equality :<= Bisimulation

How to model all F-coalgebras as type?

codatatype tr = C (1 F)

Example (Labeled Markov Chains where F = « x [pmf):

codatatype = MC (& x pmf)

32

Name

Markov chain
Labeled MC

Labeled MDP

Det. automaton
Non-det. automaton
Reactive system
Generative system
Stratified system
Alternating system
Simple Segala system
Segala system
Bundle system
Pnueli-Zuck system
Most general system

Functor

o pmf

o x o pmf

a« x o pmf set*

o= o option

(x x o) set”

o= o pmf option

(¢ x o) pmf option

o pmf + (« x o) option
opmf+ (x x o) set®
(¢ x 0 pmf) set®

« x o) pmf set®

« x o) set" pmf

« x o) set pmf set*?
x X 0+ 0) set™ pmf set*?

(
(
(
(

System Types

Codatatype

MC

o LMC

o LMDP*
o DLTS
o LTS*

o« React
« Gen

o Str

o Alt*

« SSeg”
« Seg"
o« Bun®
o Pz <
o MGK <2

33

o option Pz <2 o MG %2
K\m/Y Y\KéKz
o option Bun* ‘ « option Seg"®
™~
oy, X Pz \[« option SSeg®

o Bun

|

« Gen « SSeg” o Alt<

/!)
o LMDP* | « set<x ¢ Str
/! !

o LTS® o LMC o React MC

o sethK\ /
o« DLTS

34

Hierarchy of Probabilistic System Types

Ana Sokolva — Coalgebraic Analysis of Probabilistic Systems (2005):

4.4 The hierarchy

f

Str

t

MC

Figure 4.2: Hierarchy of probabilistic system types

Conclusion

Related Work

Formalizing probabilistic trace spaces:
- Formal verification of probabilistic algorithms
Hurd [thesis 2002]
- Formal reasoning about classified Markov chains in HOL
Liu, Hasan, Aravantinos, and Tahar [ITP 2013]
Formalizing probabilistic transition systems:
- Probabilistic guarded commands mechanized in HOL
Hurd, Mclver, and Morgan [Theor. Comput. Sci. 2005]

- Proofs of randomized algorithms in Coq
Audebaud and Paulin-Mohring [MPC 2006]

- Verifying probabilistic correctness in Isabelle with pGCL
Cock [SSV 2012]

37

Conclusion

- Coalgebraic & Fixed point approach simplified out theory
(also smaller proofs)

38

Conclusion

- Coalgebraic & Fixed point approach simplified out theory
(also smaller proofs)

- Very usable for our applications

38

Conclusion

- Coalgebraic & Fixed point approach simplified out theory
(also smaller proofs)

- Very usable for our applications
- Probabilistic model checking

38

Conclusion

- Coalgebraic & Fixed point approach simplified out theory
(also smaller proofs)

- Very usable for our applications

- Probabilistic model checking
- pGCL semantics equivalence

38

Conclusion

- Coalgebraic & Fixed point approach simplified out theory
(also smaller proofs)
- Very usable for our applications

- Probabilistic model checking
- pGCL semantics equivalence
- Small examples on fixed models

38

Conclusion

- Coalgebraic & Fixed point approach simplified out theory
(also smaller proofs)
- Very usable for our applications

- Probabilistic model checking
- pGCL semantics equivalence
- Small examples on fixed models

- Formalized hierarchy of probabilistic systems types
Found two flaws

38

Conclusion

- Coalgebraic & Fixed point approach simplified out theory
(also smaller proofs)

- Very usable for our applications

- Probabilistic model checking
- pGCL semantics equivalence
- Small examples on fixed models

- Formalized hierarchy of probabilistic systems types
Found two flaws

- Probability theory also used for:

38

Conclusion

- Coalgebraic & Fixed point approach simplified out theory
(also smaller proofs)
- Very usable for our applications

- Probabilistic model checking
- pGCL semantics equivalence
- Small examples on fixed models

- Formalized hierarchy of probabilistic systems types
Found two flaws
- Probability theory also used for:
- Density Compiler [Eberl, H., Nipkow (ESOP 2015)]

38

Conclusion

- Coalgebraic & Fixed point approach simplified out theory
(also smaller proofs)
- Very usable for our applications

- Probabilistic model checking
- pGCL semantics equivalence
- Small examples on fixed models

- Formalized hierarchy of probabilistic systems types
Found two flaws
- Probability theory also used for:

- Density Compiler [Eberl, H., Nipkow (ESOP 2015)]
- Central Limit Theorem [Avigad, H., Serafin (2014)]

38

Conclusion

- Coalgebraic & Fixed point approach simplified out theory
(also smaller proofs)
- Very usable for our applications
- Probabilistic model checking
- pGCL semantics equivalence
- Small examples on fixed models
- Formalized hierarchy of probabilistic systems types
Found two flaws
- Probability theory also used for:
- Density Compiler [Eberl, H., Nipkow (ESOP 2015)]
- Central Limit Theorem [Avigad, H., Serafin (2014)]
- Future Work:
Average Runtime Analysis, Probabilistic Programming

38

	Introduction
	Markov chains
	Markov decision processes
	Probabilistic Hierarchy
	Conclusion

