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Formalize probabilistic models:

- Discrete infinite state spaces

- Trace space & transition system
- Support non-determinism

- Compare different system types

Approach:

- Coalgebraic view on transition systems

- Fixed points to define queries on trace space
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(b) An infinite birth-death process

* liMpseo Pralwn = G) > limpoeo Pralwn = G) 2

. J fo w dTq =7 -f: first occurence
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Markov Chains — A Coalgebraic View

How to represent Markov chains?
n 0= 0opmf

- Markov kernel: the transitions for each state
o - type of states

o pmf - probability mass functions (discrete distributions)
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Probability Mass Function

Model probabilistic transitions!

zopmf =~ :0=1[0,1, > ux="
~ o measure, 1 U=1, discrete

Similar to Audebaud & Paulin-Mohring [MPC 2006]

© map fu=AX. Z y - Bernoulli
fy=x )
+ set = {x| L x %0} - Uniform
S Z V- vy X * Binomial
- Geometric

1 ifx=x' -+ Poisson
- return x = Ax’. o
0 else - Conditional
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Necessary to define [ d7s (and Prs(P w))

codatatype o stream = o-(o stream) ~N=o

Given K construct 0= o0 stream measure where:

s=do {t+ Ks; w+ T¢; return (t-w)}

Equivalently: for f Borel-measurable:

| fwrar.=| (Jwﬂtw)d t) die

This construction is unique! e
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Construct trace space for Markov chains

- Traditional solution: use Caratheodory's extension theorem

- Generate trace space by {w | w starts with xs}
- Countable additivity of pre-measure on cylinder sets

- Our solution: reuse infinite product of probability spaces
Measure space of decisions

=1111%

n:N s::o

run(s,d-X) = s-run(d s, X)
s = D(run(s,-))

- Future Solution: Theorem by lonescu-Tuclea
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Queries on the trace space

Eventually Oy w = dn. ¢ w,

e w V Oy (tlw)
Always Oy w = Vn. ¢ wy

L hw A O (tlw)
Until w = 3AN. (Vn<N. b wp) Ad wy

e (w/\ U(tlw))\/ w
First hit fo w = LEAST n. & wy
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Queries on the trace space

Eventually ¢: O w = dn. ¢ w,
= w V Oy (tlw)

Always : Oy w = Vn. ¢ wy
L hw A O ()

Until ¢: Upw = 3AN.(Vn< N. D wy) Ad wy
(w/\ u (tlw))\/ w

First hit ¢: fo w = LEAST n. ¢ wy
fp T+f Hlw) if—dw
a {O otherwise
Counting &: ¢y w = .l wn]

1fp T+cy (tlw) ifdw
Cy (tlw) otherwise

1
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Interception: Least/Greatest Fixed Points

Monotone functions f, g

Least fixed point: Ifp f=f (Ifp /) (Wx. fx<x = Ifpf<x)
Rolling rule: g (Ifp (fog)) =lfp (go/)
Iteration rule: Ifp (fof) = Ifp
Nesting rule: Ifp (Ax. Ifp (fx)) = lfp (Ax. fx x)

LI—continuous «, [, g
axl=1 xof=goux

Transfer rule:
a(lfpf)=1lfpg

cxf:deJ\/[ for f Borel-measurable
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Equation for queries under integration

Example (First hitting time ¢ on states)
Define f:

fo LlUfp A f (sw). |~ s] - (1+f w))

‘ (S.w)lg,{wrf w if=¢s

0 otherwise

Prove computation rule by transfer rule:
J fo wdTs =Ifp (?\QS. Jh t]-(1+gt)d 5> S
w t

For finite state space: Ifp is a system of linear equations!
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Proofs employing fixed point reasoning

Lemma (Fairness)

PrS(DOt — DO(tAQt’)) -1 ift' ek

Proof.
Show that gfp (Ag s. (—t) U (t-—t’ - g)) has probability 0. O]

Lemma (Finite hitting time)

J frwdTs < o0 if Prs(Ot) =1and finite state space
Proof size is reduced to ~ 65%!

14



Stationary Distribution

N is a stationary distribution iff (N >= K) =
Or: Kx N= — K as transition matrix

- When support set of IV is essential (bottom SCC):
J fowdTe = —— 1
w S S 5

- When essential and aperiodic:

n—oo

- Stationary distribution for b): N = geometric(%)



DTMC (M :: &« measure) (X znat= a=0) =
prob-space M A (Yn.XneM—="U) A
(3S. countable SAVn. PriXxneS)=1 A

— The stochastic process X is memoryless:
(Wnst.

Pr(vn’<n.Xn"=tn’) #0 —
PriX(n+1) =s|Vn'<n.Xn'=tn')=
PriX(n+1) =s|Xn=tn)) A

— The stochastic process X is time-homogeneous:

(vnn'st.
PriXn=t)A#0APr(Xn' =t) #0 —

PriX(n+1) =s|Xn=t)=Pr(X(n"+1) =s|Xn'=t))

16
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Markov decision process

Probabilistic & non-deterministic transitions

- Kernels (coalgebras) of MDPs:

’ 1 o= o pmf set, S#@‘

- Traditional definition of schedulers:

sc: o list= o pmf, sc(hs)eKs



Configurations

(52, &)

Attention: the configuration includes the entire tree!

19



Configurations on MDPs

codatatype o ¢fg = (fg (state: o) (act: o pmf) (cont: o= o cfg)
where state (contcs) =s

- Induces a Markov chain:

mocfg= o cfg pmf
¢ = map (cont ¢) (act c)

+ Trace space: Tc = MAPpeqasure (MAPstream State) c

- Valid Configuration: act is always compatible with

20



Definition (Minimal Expectation)

] = T

cevalids

fd7e

21



Definition (Minimal Expectation)

E™ [f] = |_| dem;

cevalids

Lemma (Iteration Rule)

s = ] e 0

21



Application: Reachability Problem Example

pis Pr"(S; U S,), n'is PrM"(S, U S,)

22
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Application: Reachability problems on MDPs

Goal: certify solutions to reachability problems in MDPs

= Formalize MDPs and reachability problems
Privn(S,US,y) = Ufp(--+)

= Implement and verify certification algorithm
Currently: v < Pr™in(Ss; U S,) and Proax(S; U S,) <

= Requires proof: 3 optimal memoryless scheduler

= Import results by executing algorithm in Isabelle/HOL

23



Application: pGCL semantics

Present the pGCL semantics similar to [Gretz, Katoen, Mclver (2014)]:

pgcl := Skip
| Abort
| Assign (0 = o)
| Seq pgcl pgcl
| Par pgcl pgcl
| If (0 = bool) pgcl pgcl
| Prob [0,1] pgcl pgcl
|  While (o = bool) pgcl pgcl

24



Weakest pre-expectation transformer

wp : pgcl = (c = Rgo) = (G = R;"O)

wp Skip =
wp Abort = A
vvp (Assign u) = fou

wp ¢ (wp ¢ f)
Par ¢; ¢;) wp ¢ [TTWp ¢

p (Seq 1 &)

p(

p(Ifbcc) As.ifbsthenwpcfselsewpc, fs
p(

p(

Prob p ¢ ) AS.p-wpCifs+(1—p)-wpcyfs
While b ¢) = Ifp(Ags.ifbsthenwpcgselsefs)

25



Operational semantics as MDP

= (pgcl x o) = (pgcl x o) pmf set

(Skip, s) = <« Skip,s >
(Abort, s) = < Abort,s >
(Assign u, s) = <« Skip,u s>
(Seq ¢ ¢, 9) =
/ / H / H
(c1,5) [Mc{,s’). { EiiqS,C; €2, ) ';;#Sk'p H
(Par ¢y ¢,8) = LK,S>UKL0,S>
(If bcicy,s) = ifbsthen K(c,s) else K (¢, )

(Probp i, s) = {{{cr,8) = p,(c2,8) = (1—=p))}
S Whil i
(While g ¢, 5) _ < egc( ilegc),s> ifgs
< Skip, s > else

26



Equate wp and K

Definition (Result of a Trace)
rfw ifc=Skip

S else
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Equate wp and K

Definition (Result of a Trace)
rfw ifc=Skip

S else

rfcs)w) ®

Theorem (Operational semantics equals denotational semantics)

(c,s)(r ):WpC S

27



" i
(cs) (rf) =fp (Ag S. |_| L ){ QS(C,S) ;lgesﬁS ip }d ) (o)
) c,S

Case ¢ =Seq ¢ ¢

(seq & ca5) (M f) = (c) (r (As”. (s (1))
Case c = While b ¢’: white g cr,5)(rf) =lfpws
g (d,t) ifdsSkip
WQS:HJ g(c',t) ifbt d
e @0 |y else

28
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Zoo of Probabilistic System Types

H., Traytel & Lochbihler [ITP 2015]

Ana Sokolva — Coalgebraic Analysis of Probabilistic Systems (2005):

4.4 The hierarchy

f

}

DLT MC

Figure 4.2: Hierarchy of probabilistic system types
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Hierarchy of Probabilistic Systems Types

How to ...
..model system types? Coalgebras
..compare systems of same type? Bisimulation

..compare different system types? Embedding respecting bisimulation

..formalize it in Isabelle/HOL?
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Hierarchy of Probabilistic Systems Types

How to ...
..model system types? Coalgebras
..compare systems of same type? Bisimulation

..compare different system types? Embedding respecting bisimulation

.formalize it in Isabelle/HOL? codatatype +
Probability Mass Func.

31
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Equality :<= Bisimulation

32



Coalgebras as Codatatypes in Isabelle/HOL

Idea: Analyse transition systems modulo bisimulation!

Equality :<= Bisimulation

How to model all F-coalgebras as type?

32



Coalgebras as Codatatypes in Isabelle/HOL

Idea: Analyse transition systems modulo bisimulation!

Equality :<= Bisimulation

How to model all F-coalgebras as type?

codatatype tr = C (1 F)
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Coalgebras as Codatatypes in Isabelle/HOL

Idea: Analyse transition systems modulo bisimulation!

Equality :<= Bisimulation

How to model all F-coalgebras as type?

codatatype tr = C (1 F)

Example (Labeled Markov Chains where F = « x [ pmf):

codatatype = MC (& x pmf)

32



Name

Markov chain
Labeled MC

Labeled MDP

Det. automaton
Non-det. automaton
Reactive system
Generative system
Stratified system
Alternating system
Simple Segala system
Segala system
Bundle system
Pnueli-Zuck system
Most general system

Functor

o pmf

o x o pmf

a« x o pmf set*

o= o option

(x x o) set”

o= o pmf option

(¢ x o) pmf option

o pmf + (« x o) option
opmf+ (x x o) set®
(¢ x 0 pmf) set®

« x o) pmf set®

« x o) set" pmf

« x o) set pmf set*?
x X 0+ 0) set™ pmf set*?

(
(
(
(

System Types

Codatatype

MC

o LMC

o LMDP*
o DLTS
o LTS*

o« React
« Gen

o Str

o Alt*

« SSeg”
« Seg"
o« Bun®
o Pz <
o MGK <2

33



o option Pz <2 o MG %2
K\m/Y Y\KéKz
o option Bun* ‘ « option Seg"®
™~
oy, X Pz \[ « option SSeg®

o Bun

|

« Gen « SSeg” o Alt<

/! )
o LMDP* | « set<x ¢ Str
/! !

o LTS® o LMC o React MC

o sethK\ /
o« DLTS

34



Hierarchy of Probabilistic System Types

Ana Sokolva — Coalgebraic Analysis of Probabilistic Systems (2005):

4.4 The hierarchy

f

Str

t

MC

Figure 4.2: Hierarchy of probabilistic system types
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Related Work

Formalizing probabilistic trace spaces:
- Formal verification of probabilistic algorithms
Hurd [thesis 2002]
- Formal reasoning about classified Markov chains in HOL
Liu, Hasan, Aravantinos, and Tahar [ITP 2013]
Formalizing probabilistic transition systems:
- Probabilistic guarded commands mechanized in HOL
Hurd, Mclver, and Morgan [Theor. Comput. Sci. 2005]

- Proofs of randomized algorithms in Coq
Audebaud and Paulin-Mohring [MPC 2006]

- Verifying probabilistic correctness in Isabelle with pGCL
Cock [SSV 2012]
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Conclusion

- Coalgebraic & Fixed point approach simplified out theory
(also smaller proofs)
- Very usable for our applications
- Probabilistic model checking
- pGCL semantics equivalence
- Small examples on fixed models
- Formalized hierarchy of probabilistic systems types
Found two flaws
- Probability theory also used for:
- Density Compiler [Eberl, H., Nipkow (ESOP 2015)]
- Central Limit Theorem [Avigad, H., Serafin (2014)]
- Future Work:
Average Runtime Analysis, Probabilistic Programming
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