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Abstract
Markov processes with discrete time and arbitrary state
spaces are important models in probability theory. They
model the infinite steps of non-terminating programs with
(not just discrete) probabilistic choice and form the basis
for further probabilistic models. Their transition behavior
is described by Markov kernels, i.e. measurable functions
from a state to a distribution of states. Markov kernels can
be composed in a monadic way from distributions (normal,
exponential, Bernoulli, etc.), other Markov kernels, and even
other Markov processes.

In this paper we construct discrete-time Markov pro-
cesses with arbitrary state spaces, given the transition prob-
abilities as a Markov kernel. We show that the Markov pro-
cesses form again Markov kernels. This allows us to prove a
bisimulation argument between two Markov processes and
derive the strong Markov property. We use the existing prob-
ability theory in Isabelle/HOL and extend its capability to
work with Markov kernels.

As application we construct continuous-time Markov
chains (CTMCs). These are constructed as jump & hold
processes, which are discrete-time Markov processes where
the state space is a product of continuous holding times and
discrete states. We prove the Markov property of CTMCs
using the bisimulation argument for discrete-time Markov
processes, and that the transition probability is the solution
of a differential equation.

Categories and Subject Descriptors G.3 [Probability and
Statistics]: Markov Processes
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1. Introduction
Modelling stochastic processes often requires complicated
constructions of probability measures. The Giry monad,
a monad on probability measures, gives us a nice way to
compose and transform probability measures. Discrete-time
Markov processes are a further construction principle, which
allow us to model infinite recursive behavior. In this paper
we present a formalization which provides the components
to model more complex stochastic processes. As stochastic
processes we will present discrete-time Markov processes
and continuous-time Markov chains.

A continuous-time Markov process on a discrete state
space is called a continuous-time Markov chain (A Markov
chain is a Markov process on a discrete state space). They are
applied as models in queuing and reliability theory (Trivedi
2002) as well as resource management (Norris 1997), they
can be used to represent stochastic process algebras (Clark
et al. 2007), or model epidemics or genetic variations in biol-
ogy (Norris 1997). For example in queuing theory, CTMCs
describe the queuing behavior in a server-client architecture.
As state we take the length of the request queue from the
client to the server, and with a rate rc a client submits a new
request and with a rate rs the server responds to a request.

This formalization provides us also the possibility to ver-
ify CTMC model checking algorithms. For this we formal-
ize a core theorem for bounded reachability analysis on
CTMCs: the backward equation (Baier et al. 2003).

Discrete-time Markov processes Discrete-time Markov
processes are a generalization of discrete-time Markov
chains which are models for finite probabilistic automata.
We use a programming oriented way to describe discrete-
time Markov processes: we model their behavior as recur-
sive probabilistic programs. A process proc implements the
following scheme:

proc x = do {
y ← K x
ω ← proc y
return (y·ω)
}

(1)

This is interpreted as follows: for an input parameter x, we
first select a y from the distributionK x, then we recursively



generate a trace ω using proc y, and finally we return y·ω
the trace constructed by prepending y to ω. The trace ω is an
infinite sequence of states.

Let’s take a look at a more concrete example: a bounded
random walk of a slowing particle.

proc (x, σ) = do {
x′ ← Normal (x, σ)
x′ := (if |x′| > 10 then 0 else x′)
ω ← proc (x′, σ/2)
return ((x′, σ/2)·ω)

}

The state of the Markov process contains the current position
x and the variance for the next position σ. This information
will also be stored in the trace. It is important to note that the
distribution of x′ is a continuous distribution: it is the normal
distribution with mean x and variance σ. From this follows
that the state space of all (x, σ) itself is continuous. In
order to measure sets on continuous distributions we need to
enforce that the set of x′ we want to measure is measurable.

Markov kernels Therefore we must state everything in
terms of measurable spaces and measurable functions, e.g. in
Eq. (1): the functional K, the monadic operations, and also
the process proc itself. Luckily, all these fit very nicely in
the framework of measure theory and measurability. The
measurable spaces and measurable functions between them
form a category, i.e. they are closed under composition and
the identity function is measurable. There are measurable
spaces on all involved spaces: on the real numbers, on in-
finite sequences, on countable sets, and also on the set of
probability measures on a fixed measurable space.

The last measurable space is important for Markov ker-
nels (also called stochastic relations (Doberkat 2007)): mea-
surable function from states into probability measures on
states. For each Markov kernel we construct a discrete-time
Markov process proc, fulfilling Eq. (1).

A concept related to Markov kernels is conditional prob-
ability: the conditional probability distribution Pr(·|X = x)
is a Markov kernel in the variable x. Moreover the defining
property of conditional probability distributions is nicely ex-
pressed using the Markov kernel representation. A Makrov
kernel K is a conditional probability of a probability space
P for a random variable X (i.e. K x = Pr(·|X = x)) if

P = do {ω ← P; ω′ ← K (X ω); return ω′}. (2)

We introduce Markov processesM s (where s is the starting
state) which are also conditional probability distributions:

M s = do {ω ←M s; ω′ ←M ωt; return (ω ·t ω′)}.
(3)

This relates to Eq. (2), where the probability space P = M s
and the random variableX ω = ωt. We write ωt for the state
at time t and ω ·t ω′ for the concatenation of the first t states
of ω with ω′.
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Figure 1. Two traces of continuous-time Markov chains

Now, how do we present the Markov property in terms
of Markov kernels? The Markov property for Markov pro-
cesses is usually stated as:

Pr(A | ∀t′ ≤ t. Xt′ = xt′) = Pr(A | Xt = xt). (4)

where 0 ≤ t,X is the sequence of random variables describ-
ing the Markov process, and A observes only Xt′ for t′ ≥ t,
i.e. A is a formula with statements of the form Xt′ ∈ B
where t′ ≥ t. Also Pr(∀t′ ≤ t.Xt′ = xt′) > 0, otherwise
the conditional probabilities are not well-defined. We avoid
the latter condition, by multiplying both sides with that prob-
ability:

Pr(A ∧ ∀t′ ≤ t. Xt′ = xt′) =
Pr(A | Xt = xt) · Pr(∀t′ ≤ t. Xt′ = xt′).

But with a some massaging, this is a specialized form of
Eq. (3). Remember that A only observes Xt for t ≥ t,
hence ω ·t ω′ ∈ A is independent of ω. Hence Eq. (4) is
a specialized form of Eq. (3), and in our formalization we
proof the Markov properties only in form of Eq. (3).

Continuous-time Markov chains As an application of
discrete-time Markov processes we formalize continuous-
time Markov chains (CTMCs). CTMCs are automata where
the transition from a state x to a state y is annotated with a
rate R x y. The rate describes how often a transition is taken
per time unit.

We are not only interested in the transition system, but
also in the trace space, i.e. a probability measure on traces
R → S mapping time to states. For example in the queuing
system we want to know if the queue length converges when
the time goes to infinity. Such traces are described by jump
& hold processes which probabilistically choose a state and
a sojourn time, see Figure 1. The bullets at the beginning of a
jump mean that the trace is in the new state at the time of the
jump. While the lower trace is going to infinity (at least in
the visible part), the upper trace is exploding: its jump times
converge towards a finite value θ.

An alternative model for CTMCs would allow parallel
choices for each y with R x y > 0. Both models are equal:
going from x to y with probability R x y/

∑
y R x y is the



same as starting all transitions in parallel and then choosing
the state with the shortest sojourn time.

The transition function px,y(t) = Prx(X(t) = y) de-
scribes the probability for a Markov chain started in x to
be in y at time t. The transition function p is characterized
by the backward equation, a differential equation depend-
ing on R. The backward equation plays a central role in
analyzing CTMCs, they are at the core of model checking
CTMCs (Baier et al. 2003).

Overview In the next section relate our formalization with
existing work in Isabelle/HOL and other theorem provers.
In Section 3 we will give a short introduction into the ex-
isting measure and probability theory in Isabelle/HOL. In
Section 4 we show how we construct Markov processes, de-
rive their iteration and uniqueness rules, and finally prove
their strong Markov property. For the strong Markov prop-
erty we also introduce stopping times, a special kind of ran-
dom variables. In Section 5 we introduce continuous-time
Markov chains, give an alternative model for their construc-
tion, prove their Markov property, and introduce the transi-
tion function p. We verify that the transition function is a so-
called matrix semi-group and show its backward equation.
Finally, we discuss the formalization in Section 6.

We use the same Isabelle theories as the formalization of
discrete-time Markov chains in (Hölzl 2016). (Hölzl 2016) is
restricted to discrete state spaces, while this paper presents
a general development for arbitrary measurable state spaces.
Both formalizations are in the Markov Models entry in the
AFP (Hölzl and Nipkow 2012a).

2. Related Work
The work presented in this paper is founded on Isabelle’s
measure and probability theory presented in (Hölzl 2013;
Hölzl and Nipkow 2012b,c). The previous work constructs
finite-state Markov chains to verify probabilistic model
checking. This was extended in (Hölzl 2016) to countable
(possibly infinite) discrete state spaces, and further analysis
concepts such as (positive) recurrence, the period of a state
and stationary distributions. While the discrete-time Markov
processes presented in this paper are more general we did
not yet port the existing theories in the AFP (Hölzl and Nip-
kow 2012a) to our new formalization. The formalizations
presented in the preliminaries in Section 3 were already in-
troduced for (Eberl et al. 2015) and (Hölzl 2016). Since the
work in (Hölzl 2016) focuses on Makrov chains (i.e. Makrov
processes with discrete state spaces) the generalization as
presented in Section 4 was not necessary. The Giry monad
was introduced in (Eberl et al. 2015).

(Immler 2012) already proved that for each projec-
tive family the projective limits exist, using the Danielle-
Kolmogorov extension theorem. This is clearly more gen-
eral in the shape of the projective family, but Danielle-
Kolmogorov is restricted to state spaces Mi which are Borel
spaces of Polish spaces. This topological restriction of the

state spaces would also restrict the compositionality of our
Markov processes.

Most other formalizations of measure theory focus either
on analysis, e.g. in PVS (Lester 2007) or in HOL-Light
for the Flyspeck project (Hales et al. 2015), on traces of
discrete spaces, e.g. in HOL (Hurd 2002; Liu et al. 2013), or
on denotational semantics with discrete spaces (Hurd et al.
2005; Cock 2012; Audebaud and Paulin-Mohring 2009).
None of these projects allows the combination of traces and
continuous state spaces.

A formalization of Markov kernels for Isabelle/HOL was
already done in (Backes et al. 2008; Berg 2013). However,
it seams that some theorems requiring measure theory con-
cepts were skipped using sorry (Berg 2013, p. 11).

3. Preliminaries
We will often use product sets Πi∈I Fi = {f :: α⇒ β |
∀i ∈ I. f i ∈ Fi}, which have an explicit index set
I :: α set and for each index i ∈ I a set Fi :: β set. As
the set I is usually not the set of all elements of type α we
sometimes restrict a function to a fixed value outside of I
written f |I= (λi. if i ∈ I then f i else undefined), where
undefined :: β is an unspecified element. We write for the
everywhere undefined function ⊥ = (λ - . undefined).

When modelling the trace spaces of Markov models we
have two different views on them: one is as a function ω ::
nat⇒α, the other one is as a co-datatype ω :: α stream. Here
streams are a co-inductively defined datatype as formalized
in (Blanchette et al. 2014b). Streams have one constructor
with two elements: a head element of type α and another
stream as tail element. While both views are isomorphic, the
stream view gives us a more list-like recursive behavior.

Streams are introduced using Isabelle’s codatatype-
command (Blanchette et al. 2014a):

α stream = SCons α (α stream)

The codatatype-command defines the map function map ::
(α⇒β)⇒α stream⇒β stream. The function to stream ::
(nat⇒ α)⇒ α stream converts sequences to streams, ωn is
the n-th element of ω, and streams S = {ω | ∀i. ωi ∈ S}.

Probability and Measure Theory The measure and prob-
ability theory used in this article was introduced in Is-
abelle/HOL in (Hölzl and Heller 2011), and has since then
been continuously extended (Hölzl and Nipkow 2012c,b;
Hölzl 2013; Avigad et al. 2016; Eberl et al. 2015; Gouezel
2015; Hölzl 2016). It is generic enough to be used for
other applications than Markov processes, as demonstrated
by (Gouezel 2015) and by (Avigad et al. 2016). In this sec-
tion we give a short overview of the existing measure spaces.
A more detailed overview of the theory is given in (Hölzl and
Heller 2011; Hölzl 2013, 2016). A general introduction into
measure theory is found in (Pollard 2002).

In Isabelle/HOL the type of measures α measure con-
tains measurable spaces on the type α, i.e. sets of mea-



surable sets, and measures on these sets. For each element
M :: α measure, we have the following projection func-
tions: space M :: α set is the carrier set, sets M :: α set set
is the set of measurable sets, and measure M :: α set⇒ real
is the measure itself. The measurable sets sets M form a
σ-algebra on spaceM , i.e. setsM is a set of sets which con-
tains the empty set, and which is closed under complement
and countable union. The function measure M is a measure
on sets M , i.e. it is a non-negative and countably-additive
function and satisfies measure M ∅ = 0.

We also use the type α measure to model measurable
spaces, i.e. each measurable space has a measure associated
to it. We abbreviate M A to stand for measure M A. Note
also that in this paper we are only working with probability
measures, i.e. M (space M) = 1. We write set comprehen-
sions modulo space M : {x | P x} = {x ∈ space M | P x}.

A predicate P holds almost-everywhere on M when the
measure of its complement is 0:

AE x in M. P x←→
∃N ∈ setsM. M N = 0 ∧ {x | ¬ P x} ⊆ N.

The measurable space sigma Ω A is the smallest σ-
algebra on the space Ω s.t. all sets in A are measurable.⊔

i∈I Mi is the smallest σ-algebra S s.t. for all i ∈ I the
measurable sets of Mi are also measurable in S.1

We say a measurable space M is generated by G if M =
sigma Ω G. If a measurable space is generated by G and G
is closed under intersection and contains a countable cover
of Ω, then the equality of two finite measures M and N on
this space can be reduced to equality under G:

M = N ←→ ∀A ∈ G. M A = N A.

The product space M ×N is generated by the sets A×B
for A ∈ M and B ∈ N . The indexed product Πi∈I Mi is
generated by the embedded sets {ω | ∀j ∈ J. ω j ∈ Fj}
where J is a finite subset of I and Fj ∈Mj for all j ∈ J .

Measurable functions Measurability is lifted from sets to
functions:

- →m - ::α measure⇒ β measure⇒ (α⇒ β) set
M →m N ={f ∈ space M → space N |

∀A ∈ sets N. {x | f x ∈ A} ∈ sets M}

For f ∈ M →m N , we write that f is N -measurable on
M , omitting either N or M when the reader can infer them
from the context. The arrow notation already indicates it:
measurability is similar to typing. In the rest of the paper
we will often write the measurability statement of a function
instead of its type. It is easy to derive the type from the
measurability statement.

1 We instantiate the complete lattice type class for α measure, with a
lexicographic ordering where we first compare space, then sets, and finally
measure. This allows us to use the usual lattice operators on measurable
spaces and measures.

We write vsigma Ω M f to denote the smallest σ-algebra
on Ω, s.t. f isM -measurable. For the extended non-negative
real numbers ennreal = [0,∞], we define the Borel space
borel = sigma UNIV {S | open S}. All open sets, all closed
sets, and intervals are Borel-measurable. From the definition
follows that every continuous function is measurable. For
many functions used in Isabelle/HOL we provide measura-
bility rules, e.g. assuming f , g, and P are measurable then
f + g, f − g, f ∗ g, if P then f else g, fst, snd, etc. are
measurable. Also (λω. ω i) ∈

(
Πi∈I Mi

)
→m Mi if i ∈ I .

Each measure M gives rise to a non-negative Lebesgue
integral

∫
x
f x dM for a Borel-measurable function f onM .

For measurable functions we prove the usual theorems about
the Lebesgue integral, i.e. that it is monotone and linear and
that dominated and monotone convergence holds. We use the
following notations∫

x∈A f x dM =
∫
x

if x ∈ A then f x else 0 dM and∫
x|P x

f x dM =
∫
x

if P x then f x else 0 dM .

Giry Monad An important construction mechanism for
probabilistic programming language semantics is the Giry
monad (Giry 1982), providing a monadic structure on prob-
ability measures. We introduce prob-algebra, a measurable
space on the set of probability measures. This formalization
is based on (Eberl et al. 2015) where prob-algebra is used
for the denotational semantics of a simple programming lan-
guage. Other formalizations of the Giry monad (Audebaud
and Paulin-Mohring 2009; Hölzl et al. 2015) are restricted
to discrete spaces.

In this paper the Giry monad is used to define Markov
kernels and to express various equations on Markov chains
and processes. Stating these rules in terms of measures, pos-
sible due to the Giry monad, gives less cluttered theorems
and a straightforward method to derive the corresponding
statements about integrals, measures, and the almost every-
where quantifier.

We define the measurable space prob-algebra K of prob-
ability measures on the measurable space K:

prob-algebra :: α measure⇒ α measure measure
prob-algebra K =

⊔
A∈sets K

vsigma {M | sets M = sets K ∧ prob-space M}
borel (λM. M A)

Then, for all measurable setsA ∈ K, the function λM.M A
is measurable. Using prob-algebra we define the operators
for the Giry monad.

map :: (α⇒ β)⇒ α measure⇒ β measure
bind :: α measure⇒ (α⇒ β measure)⇒ β measure
return :: α⇒ α measure

With the notation M >>= f = bind M f and the equation
map f M = M >>= (λx. return (f x)). In Isabelle there
is also an explicit parameter to map f M (distr M N f in



Isabelle) and return x (return N x in Isabelle) for a mea-
surable spaceN . This is necessary asN can not be computed
from f , x, or M . We do not show these measurable spaces
since the user can easily derive them from the context and
they would clutter the presentation.

We have the following measurability rules and defining
equations for the monadic operators. Assuming the func-
tions f ∈ M →m N , A ∈ M →m prob-algebra N ,
(λ(x, y). B x y) ∈ M × N →m prob-algebra L and a
value x ∈M . Also g is assumed to be Borel-measurable.

map f ∈ prob-algebra M →m prob-algebra N∫
x
g x d(map f M) =

∫
x
g (f x) dM

return ∈M →m prob-algebra M∫
x
g x d(return x) = g x

(λx. A x >>= B x) ∈M →m prob-algebra L∫
x
f x d(A >>= B) =

∫
y

(∫
x
g x d(B y)

)
dA

The measurability statement for bind looks quite compli-
cated, it is however necessary to express that bind is mea-
surable in both its parameters. There is no measurable space
of measurable functions, so we state the measurability of B
in an uncurried way using the product space M ×N .

Under similar conditions (i.e. all occurring functions are
measurable, and all occurring values are in the correspond-
ing space), we prove the monadic laws for bind and return:

bind M return = M
bind (return x) f = f x
bind (bind M f) g = bind M (λx. bind (f x) g)

Stream Spaces We introduce the canonical measurable
space on streams, for which all (co)recursively defined func-
tions are measurable. This is isomorphic to the infinite prod-
uct measure Πn::nat M , so we define it as an embedding:

stream-space :: α measure⇒ α stream measure
stream-space M =

vsigma (streams (space M)) (λω i. ωi) (Πn::nat M)

(The definition in Isabelle/HOL is more complicated, as
it assigns also a canonical measure to stream-space M .)
By this definition, the measurable space of stream-space is
the smallest measurable space s.t. projection of elements is
measurable. Hence a function which makes all projections
measurable is also measurable:

(λω. ωi) ∈ stream-space M →m M

∀i. (λx. (f x)i) ∈ N →m M

f ∈ N →m stream-space M

The measurability rules of map, and to stream are easily
derived by these two rules.

Since the stream space is defined as a mapping of the
product space, we know that two measures on the stream

space are equal if they are equal for each cylinder setCn,A =
{ω|∀i < n. ωi ∈ Ai} with Ai ∈ M forall i < n. With this
we derive the following coinduction rule for measures on
stream spaces:

Lemma 1. Given two measures A,B with sets A =
sets B = stream-space M , and a relation R with R A B.
Also given that R is closed under the following assumption:
For eachA andB withRAB exists aK ∈ prob-algebraM ,
andA′, B′ ∈M →m prob-algebra (stream-spaceM), such
that:

AE y in K. R (A′ y) (B′ y) ∨ A′ y = B′ y,
A = do {y ← K;ω ← A′ y; return (y·ω)}, and
B = do {y ← K;ω ← B′ y; return (y·ω)}.

Then A = B.

4. Discrete-Time Markov Processes
In this section we show how to construct discrete-time
Markov processes from a Markov kernel. This construc-
tion fulfills an iteration rule, a bisimulation property and the
strong Markov property. We do this with the following steps:

• We formalize the extension theorem on probability mea-
sures by Ionescu-Tulcea following the presentation in (Pol-
lard 2002). This theorem allow us to construct a probabil-
ity measure for the direct limit of a sequence of random
variables X where each Xi depends on all previous Xj

with j < i. This dependency is described by a Markov
kernel.

• Using the Ionescu-Tulcea extension theorem we con-
struct the discrete-time Markov process into sequences.
We show that this is a Markov kernel in the initial state.

• Finally, we lift the discrete-time Markov process from se-
quences to streams and prove the strong Markov property
using the coinduction property for measures on streams.
For the latter we introduce the concept of stopping times.

Extension theorem by Ionescu-Tulcea We assume a se-
quence of measurable spaces M and a sequence of Markov
kernelsK n ∈ (Πi<n Mi)→m prob-algebraMn. The mea-
surable spaces Mn can be seen as state spaces and K n as
transition functions depending on the n previous states. We
define the function C n m to iterate K from n to n + m,
i.e. given n starting states it computes the next m steps and
then returns a combining distribution on n+m states:

eK n ∈ (Πi<n Mi)→m prob-algebra (Πi<n+1 Mi)
eK n ω = map (λx. ω(n := x)) (K n ω)

C n m ∈ (Πi<n Mi)→m prob-algebra (Πi<n+m Mi)
C n 0 ω = return ω
C n (m+ 1) ω = C n m ω >>= eK (n+m)

From C we construct C’, which is C restricted to a finite
index set I (Max I is the maximal number in I , Max ∅ = 0):

C’ I ∈ prob-algebra (Πi∈I Mi)
C’ I = map (λω. ω|I) (C 0 (Max I + 1) ⊥)



The measures C’ form a projective family in I , i.e. for all
finite sets I and I ′ ⊆ I

map (λω. ω|I′) (C’ I) = C’ I ′ .

We show that C’ has a projective limit: that there exists a
measure L, s.t. L can be projected on C’ I for all finite sets I .

Theorem 1 (Extension theorem by Ionescu-Tulcea). There
exists a probability measure IT M K which is the projective
limit of C’, i.e. IT M K ∈ prob-algebra (Πi Mi) and for
all finite I we have

map (λω. ω|I) (IT M K) = C’ I .

We call this limit IT M K.

Proof. In Isabelle/HOL we formalized the proof as presented
in (Pollard 2002) using Caratheodory’s extension theorem.
Given a sequence of finite subsets In and a sequence of mea-
surable setsXn ∈ Πi∈In Mi, where the sequence of embed-
dings {ω | ω|In∈ Xn} is decreasing and

d
n C’ In Xn > 0.

To finish the proof, we need to construct a ω′, s.t. ω′|In∈ Xn

for all n. Without loss of generality, we assume that In =
{0, . . . , n− 1}, hence

d
n C 0 n ⊥ Xn > 0.

Given j, ω ∈ Πi<j Mi and
d

n C j n ω Xj+n > 0 we
calculate:

0 <
d

n C j n ω Xj+n

≤
d

n C j (n+ 1) ω X(j+1)+n

=
d

n

∫
x

C (j + 1) n (ω(j := x)) X(j+1)+n dK n ω
=

∫
x

d
n C (j + 1) n (ω(j := x)) X(j+1)+n dK n ω

Hence there exists a x, s.t. ω(j := x) ∈ Xj+1 and
l

n

C (j + 1) n ω X(j+1)+n > 0 .

Using dependent choice we construct the sequence ω′,
s.t. ω′|In∈ Xn for all n.

Given a constant Markov kernel K, we get an infinite
product space with the natural numbers as index set. We
can extend this to arbitrary index sets: we only need to
show countable additivity of the product measure on sets
embedded from finite index sets. This allows us to prove the
following corollary:

Corollary 1. Given a (possibly uncountable) infinite set I
and probability measures Mi for i ∈ I , the product proba-
bility measure Πi∈I Mi exists.

So we not only have a measurable space Πi∈I Mi, but
we can now also assign a canonical measure. The infinite
product measure was already formalized in (Hölzl 2013), but
used an ad-hoc proof. The proof of Theorem 1 (including its
constructions) is around ∼ 340 lines. The ad-hoc proof of
Corollary 1 had ∼ 300 lines before and was replace by a
∼ 90 lines proof.

Construct Markov processes on sequences From Ionescu-
Tulcea we construct the Markov process on sequences
procseq. In this section we assume a single state space M ,
and a Markov kernel K ∈ M →m prob-algebra M . The
central definition is procseq:

procseq ∈M →m prob-algebra (Πi M)
procseq x = IT (λ - . M) (λn ω. K ((x·ω)n))

Here Πi M is the measurable space on all sequences intoM ,
but M does not depend on the position i. In Isabelle/HOL,
we first write the equation and prove afterwards the measura-
bility condition. We prove this condition to show that procseq
is well-defined:

Lemma 2 (procseq is a Markov kernel).

procseq ∈M →m prob-algebra (Πi M)

Proof. The measurable space Πi M is generated by all finite
projections. Hence it is enough to show that, given a finite
set I and a measurable set X ∈ Πi∈I M , then

(λx. procseq x {ω | ω|I ∈ X}) ∈M →m borel . (5)

Without loss of generality we assume that there exists a n,
s.t. I = {0, . . . , n}. Then by applying Theorem 1 to Eq. (5),
we have

(λx. Cx 0 n X) ∈M →m borel . (6)

Note that C has now the hidden parameters λ - . M and
λn ω. K ((x·ω)n), so we write it with a subscripted x.
Eq. (6) is finally proved by induction on n, and the mea-
surability of map, bind, and return on measures.

The measurability of procseq is necessary to show our
second important characterizing property of procseq: how to
compute with it. The intuitive understanding is: the process
starts in a state x, calls K x to randomly choose another
state y, and then continue by calling itself with y, while
generating an infinite stream (y·ω). This is now concisely
expressed using the Giry monad:

Theorem 2 (Iteration rule for procseq). For all x ∈M holds

procseq x = do
{
y ← K x;ω ← procseq y; return (y·ω)

}
.

Proof. We prove the equality by showing that both measures
are equal on the sets generating Πi M . As generating sets we
choose the sets Πi∈I F i for all finite sets I and F i ∈ Mi

for i ∈ I . This is a valid set of sets to choose as it generates
Πi M and is closed under intersection. Without loss of
generality we assume there exists an n, s.t. I = {0, . . . , n+
1}. We prove by induction on n that Cx 1 n (y·⊥) =



Cy 0 n ⊥. With this we compute:

procseq x (Πi<n+1 F i)
= Cx 0 (n+ 1) ⊥ (Πi<n+1 F i)
=
∫
y∈F 0

Cx 1 n (y·⊥) (Πi<n F (i+ 1)) dK x

=
∫
y∈F 0

Cy 0 n ⊥ (Πi<n F (i+ 1)) dK x

=
∫
y∈F 0

procseq y (Πi<n F (i+ 1)) dK x

=
∫
y

(
map (λω. y·ω) (procseq y)

)
(Πi<n+1 F i) dK x

= do
{
y ← K x;ω ← procseq y; return (y·ω)

}
(Πi<n+1 F i)

Is procseq unique? Are there other Markov processes on
Πi M with the iteration rule? It turns out that there are no
other Markov processes, that procseq is unique on Πi M .

But, before we prove uniqueness, we want to change the
space we operate in. In the proof of the extension theorem
for Ionescu-Tulcea, and the proofs of the measurability and
iteration rules for procseq we were always reducing to cylin-
der sets, i.e. embeddings X from an index set {0, . . . , n}.
We want to make this more explicit, by using the space on
streams.

Discrete-time Markov processes on streams We define the
process construction on streams as a lifting from processes
on sequences:

procstream ∈M →m prob-algebra (stream-space M)
procstream x = map to stream (procseq x)

The iteration rule looks exactly the same (remember that in
this paper the x·ω notation is used for both types, for nat⇒α
and α stream).

procstream x =

do
{
y ← K x;ω ← procstream y; return (y·ω)

}
.

Using the coinduction rule for stream spaces we also show
uniqueness of this construction.

Theorem 3 (Coinduction rule for procstream). Given a rela-
tion R :: α → α stream measure → bool, a state x ∈ M
and a measure N , where R x N holds. Also assume that
for each x and N for which R x N holds there exists an
N ′ ∈M →m prob-algebra(stream-space M), such that

AE y in K x. R y (N ′ y) ∨ procstream y = N ′ y

and

N = do {y ← K x;ω ← N ′ y; return (y·ω)} .

Under these assumptions procstream x = N holds.

The structure of this rule allows that it can be applied
using Isabelle’s coinduction method (Blanchette et al.
2014a). When applying coinduction on an equality state-
ment it will collect all the occurring variables and assump-
tions and automatically create the relation R.

The strong Markov property The defining property of
Markov processes is that their future behavior only depends
on the current state, i.e. that they do not depend on the his-
tory before it. This is the Markov property, expressed in the
iteration rule which states that the probability of a Markov
process can be split up by first choosing a y from K x and
then continuing in y, ignoring the x before. An extension of
this is the strong Markov property, which tells us that we can
stop the Markov process at an arbitrary time, just remember
the state at this time and continue with that state. To formal-
ize the concept of arbitrary time we need to introduce the
concept of stopping times, measurable functions from our
Markov process into time values.

The following definition of stopping time and filtration
is general in the time domain τ , a linearly ordered second-
countable2 topology. However, the only instance of τ used
here are the extended natural numbers enat = nat ∪ {∞}.

A function F :: τ⇒αmeasure is a filtration F on a space
Ω if F is monotone and the space of F t is Ω for all t, we
write filtration Ω F . Intuitively, the measurable space F t
describes the observations we were able to make until time t.

For a stopping time T with regard to a filtration F the
time value T ω does only depend on the observations up to
this time T ω. This is easily expressed using measurability
with regard to F :

stopping time F T ←→
(
∀t.
{
ω | T ω ≤ t

}
∈ F t

)
Typical stopping times are constant functions, minimum and
maximum of other stopping times, or the first time a set of
states is reached.

For our discrete-time Markov processes we define the
filtration on streams which allows to observe the states up
to time t.

Fstream M n =
⊔

i::nat<n

vsigma (streams M) (λω. ωi) M

Here n is an extended natural number and the bound vari-
able i is a natural number. Hence, Fstream M ∞ will be the
entire trace space of our process. The filtration Fstream M is
also called the filtration adapted to streams, as it is adapted
to the sequence of random variables λω. ωi.

Before we prove the strong Markov property we show
three properties of a stopping time T with regard to the
filtration Fstream M . In the following we assume a state
x ∈ M and a stream ω ∈ streams M . First, the set of states
x for which T (x·ω) returns 0 is measurable:

{x | ∀ω ∈ streams M. T (x·ω) = 0} ∈M (7)

Also, if T (x·ω) > 0 holds, then so does it for all other ω′:

∀ω, ω′ ∈ streams M. T (x·ω) > 0 −→ T (x·ω′) > 0 (8)

2 A second countable topology is a topology generated by a countable
base B, i.e. each open set is the union of a subset of B.



And finally, when T (x·ω) > 0 holds, then a “shifted” T is
also a stopping time:

stopping time (Fstream M) (λω. T (x·ω)− 1) (9)

Now we state and prove the strong Markov property.

Theorem 4 (Strong Markov property). Given a stopping
time T adapted to Fstream M and a state x ∈ M . Then the
following equation holds:

procstream x = do {
ω ← procstream x
case T ω of
| ∞ ⇒ return ω

| n :: nat⇒ ω′ ← procstream ωn

return (ω ·n+1 ω
′)

}

(10)

Where ω ·n ω′ is the stream consisting of the first n elements
of ω and then continuing with ω′.

Proof. Proof by coinduction with Theorem 3, where the rela-
tion R describes that x ∈M and that there exists a stopping
time T . In the rest of the proof we use P T x for the right-
hand side of Eq. (10).

Now, for each x ∈M and stopping time T , we define

T ′ y ω = T (y·ω)− 1

N ′ y =

{
P (T ′ y) y if ∀ω ∈ streams M. T (y·ω) > 0

procstream y otherwise .

We know by Eq. (9) that T ′ is a stopping time in the context
of N ′. Then N ′ is a Markov kernel by Eq. (7), the measur-
ability of procstream, and the measurability of the monadic
operators. From the definition of N ′ follows immediately:

AE y in K x. N ′ y = P (T ′ y) y ∨ procstream y = N ′ y

Finally, to finish the coinduction proof we need to show:

P T x = do {y ← K x;ω ← N ′ y; return (y·ω)} .

Which is solved by the iteration rule on procstream x, the
case distinction in N ′, Eq. (8), as well as rewriting with the
monad laws.

5. Continuous-Time Markov Chains
Before we describe continuous-time Markov chains as stochas-
tic processes, we introduce transition rates. In this section
we assume continuous-time Markov chains are specified as
a function R of transition rates

R :: α⇒ α⇒ real

with the assumptions that it

(R1) is non-negative, 0 ≤ R x y for all x and y,

(R2) has a zero diagonal, R x x = 0 for all x, and

(R3) has finite and positive columns, 0 <
∑

y R x y < ∞
for all x.

R x y is the transition rate to go from state x to state y.
There is no restriction on the type of α, it does not need
to be countable or even finite. From (R3), we derive that
{y | R x y 6= 0} is countable. Note that our usage of
transition rates is different from the often used Q-matrix,
where the diagonal is the negative of the entire column:

Q x x = −
∑

y R x y Q x y = R x y if x 6= y .

A state y is enabled in x if R x y > 0, we write y ∈ I x.
A state y is accessible from x if it is reachable through
finitely many enabled states. From (R3) it follows that the
set of enabled states I x is countable. The escape rate is
the sum over a column: E x =

∑
y R x y. This allows us to

define a discrete measure J (i.e. a probability mass function)
describing the jump behaviour of our Markov chain. We
define the state space S to be the discrete measurable space
on α, i.e. in S all sets are measurable. We define J x by its
behaviour on a single element y:

J ∈ S →m prob-algebra S
J x {y} = R x y/E x

With this we define kernelK for our hold & jump process
modelling the Markov chain. The kernel operates on a pair
of current time and state, and returns a distribution of the
future time and state. The difference between the current
time and the future time is exponentially distributed, the state
is chosen using J . The time is modelled as absolute time,
not as holding time, so we need to map over the exponential
distribution.

K ∈ (borel× S)→m prob-algebra (borel× S)
K (t, x) = (map (+t) (Exp (E x)))× J x (11)

First, it is important to note that the Markov chain is
invariant under the time t with which it starts. If we translate
the start time, the time stored in the traces is also shifted:

Corollary 2. Invariant under time translation

procstream (t+ t′, x) =
map (map (λ(t, x). (t+ t′, x))) (procstream (t, x))

Proof. Follows by Theorem 3

A second question is: is this the right model? Is it okay to
do one step using the escape time? To answer this question
with yes we show an alternative model for the kernel K
based on a choice from independent runs.



The kernel K as choice from independent runs We as-
sume that for each state x we look at the distribution of inde-
pendent runs for each enabled state y ∈ I x. An independent
run is described by the time the event y happens, which is ex-
ponentially distributed with rate R x y. The product over all
these times describes the independent behaviour:

parallel x = Πy∈Ix Exp (R x y)

Our goal is to choose from a sample p of parallel x the
first event, i.e. the y s.t. p y is the shortest time:

first x p y = y ∈ I x ∧ (∀y′ ∈ I x− {y}. p y < p y′)

The definition already ensures that at most one y satisfies
first x p y. To use this definition we will need to show that
such a y exists with probability 1.

Lemma 3 (Parallel choice up to time). Assume y ∈ I x and
a time t, then the probability that y happens first after time
t is the same as choosing t exponentially and independently
choosing y:

parallel x {p | t ≤ p y ∧ first x p y} =
Exp (E x) [t,∞) ∗ J x {y}

Proof. The central idea of this proof is, that a countable
product of exponential distributions indexed by S and pa-
rameterized in r equals an exponential distribution with pa-
rameter

∑
x∈S r x. We provide the following statement in

S, r and t:(
Πx∈S Exp (r x)

) (
Πx∈S [t,∞)

)
= e−t∗

∑
x∈S r x

Now, we prove the theorem by calculation (we abbreviate
P ′ = Πy′∈I x−{y} Exp (R x y′)):

parallel x {p | t ≤ p y ∧ first x p y}
=
∫
t′≥t P

′ {p | ∀y′ ∈ I x− {y}. t′ ≤ p y′}dExp (R x y)

=
∫
t′≥t P

′ (Πy′∈I x−{y} [t′,∞)
)
dExp (R x y)

=
∫
t′≥t e

−t′∗(E x−R x y)dExp (R x y)

= (R x y)/(E x) ∗ Exp (E x) [t,∞)
= J x {y} ∗ Exp (E x) [t,∞)

From this we derive that with probability 1 there is always
exactly one y which happens first. We instantiate Lemma 3
with time 0 and sum up over all y ∈ I x.

Lemma 4. AE p in parallel x. ∃y ∈ I x. first x p y

With this lemma, the following statement is well defined:
The (first x p) is the unique y, s.t. first x p y holds.

Theorem 5 (K as independent runs).

K (t, x) = do {
p← parallel x
y := The (first x p)
return (t+ p y, y)

}

Proof. Proof by uniqueness of measures on the generating
sets [t,∞) × {y} for all y ∈ I x. To cover the entire space
we also need to add all [t,∞) × A for A ∩ I x = ∅ to the
generating sets, obviously these sets have a null measure on
both sides. The proof is finished with Lemma 3.

Markov chain as stochastic process on real time In this
section we assume the Markov kernel K as defined in
Eq. (11) and procstream instantiated by this K.

Usually, stochastic processes are formalized as a family
of random variables X indexed by time t, s.t. Xt ∈ P →m

M where P is the ambient probability space in which the
stochastic process lives and M is the state space. For this we
introduce trace using Isabelle’s partial-function package:

trace x ((t, y)·ω) t′ =

{
trace y ω t′ if t′ ≤ t
x otherwise

Here x is the state which will be returned before the time t
in the first element of ω. There is no implicit assumption that
the time values in ω are strictly increasing. But a state value
is only returned if a time strictly after t′ is found. This results
in a right-continuous step function, i.e. trace is constant on
intervals of the form [t, t′).

A problem with this definition is that continuous-time
Markov chains on infinite state spaces can explode, i.e. they
show a Zeno effect where with a positive probability the
times in a trace converge against a finite limit. This would
require to encode an explosion state in M , or as happens
by the definition with partial-function the arbitrary value
undefined. However, it will turn out that in most cases we
avoid this through other means.

Lemma 5. Given a trace ω, a state x and a time t, if i is the
first point in ω, s.t. t < fst (ωi) then

trace x ω t = (x·map snd ω)i

otherwise if no such i exists trace x ω t = undefined .

Similar to discrete-time Markov processes, we also want
to show the Markov property for continuous-time Markov
chains. For this we need a way to merge two traces of time-
state pairs at a specific time. Since the time stored in the trace
is absolute we do not need to change it, we just need to find
the point when to switch to the other stream.

merge ((t, x)·ω) t′ ω′ =

{
(t, x)·merge ω t′ ω′ if t ≤ t′

ω′ otherwise

Theorem 6 (Markov property for continuous-time Markov
chains). Given a starting state x at time t and a future time
t′′ ≥ t, the following equation holds:

procstream (t, x) = do{
ω ← procstream (t, x)
ω′ ← procstream (t′′, trace (t, x) ω t′′)
return (merge ω t′′ ω′)

}

(12)



What happens if t′′ is beyond the explosion time of ω? In
this case merge ω t′′ ω′ = ω and we can ignore ω′. Note that
this works as procstream (t′′, . . .) is a probability space.

Proof. Proof by coinduction with Theorem 3, where the re-
lation R describes that there is a t′, s.t. t′ ≥ t. For each x, t,
and t′′ with t′′ ≥ t, we define N ′:

N ′ ∈ S →m prob-algebra (stream-space S)

N ′ (t′, x′) =

{
L t′ x′ if t′ ≤ t′′

procstream (t′, x′) otherwise

The probability measure L t x is the abbreviation for the
right-hand side of Eq. (12). For N ′ we show

AE (t′, x′) in K (t, x). N ′ (t′, x′) = L (t′, x′) ∨
N ′ (t′, x′) = procstream (t′, x′)

(13)
and

L t x = do {tx← K (t, x);ω ← N ′ tx; return (tx·ω)} .
(14)

The measurability of N ′ and Eq. (13) are true by definition.
We introduce the abbreviation C, such that L t x =

K (t, x) >>= C (by the iteration rule):

C (t′, x′) = do {
ω ← procstream (t′, x′)
ω′ ← procstream (t′′, trace x ((t′, x′)·ω) t′′)
return (merge ((t′, x′)·ω) t′′ ω′)

}

We show that Eq. (14) holds for all measurable sets A:

(L t x) A
= (K (t, x) >>= C) A
=

∫
(t′,x′)|t′≤t′′(C (t′, x′))A dK (t, x) +∫
(t′,x′)|t′′<t′

(C (t′, x′))A dK (t, x)

=
∫
(t′,x′)|t′≤t′′ map ((t′, x′)·) (N ′ (t′, x′))A dK (t, x) +∫
(t′,x′)|t′′<t′

procstream (t′, x′)A dK (t, x)

The first integral, where t′ ≤ t′′, C (t′, x′) is already
finished, we just need to show that the second integrand
has the same form. For this we use that the exponential
distribution is memory-less.∫

(t′,x′)|t′′<t′
(C (t′, x′))A dK (t, x)

=
∫
(t′,x′)|t′′<t′

(procstream (t′′, x))A dK (t, x)

= procstream (t′′, x) A ∗ Exp (E x) (t′′ − t,∞)
=

∫
(t′,x′)|t′′<t′

map ((t′, x′)·) (N ′ (t′, x′))A dK (t, x)

By combining both integrals and using the integral rule for
the bind operator we proved Eq. (14).

Transition probabilities We introduce transition probabil-
ities p x y t, the probability that the Markov chain when
started in x is at time t in state y. Due to the problem with
explosion, we do not use trace. We introduce the inductively
defined predicate tracein x t y ω stating that when started in
x, the trace ω is at time t in y.

tracein x t y ((t′, y′)·ω) =

{
x = y if t < t′

tracein x t y
′ ω otherwise

p x y t = procstream (0, x) {ω | tracein y t x ω}
For p to be well defined we need to show that tracein is
measurable. This is done by representing it as a fixed point
and showing that its functional is measurable.

If we interpret p x y t as a t indexed matrix with column in
x and row in y, then p forms a matrix semi-group, i.e. p(t) ∗
p(t′) = p(t+ t′) for 0 ≤ t, t′. In Isabelle we state this more
explicitly.

Theorem 7. For 0 ≤ t and 0 ≤ t′ we have

p x y (t+ t′) =
∑

x′∈I x

p x x′ t ∗ p x′ y t′

Proof. The theorem is mostly proved using Theorem 6, how-
ever it requires some work to move the infinite sum through
the occurring integrals.

To analyse the transition probabilities we give the inte-
gration equation for p:

p x y t = bx = yc ∗ e−t∗E x +∫ t

u=0

E x ∗ e(u−t)E x

(∫
x′
p x′ y u dJ x

)
dλ

(15)
Where bx = yc is 1 if x = y otherwise it is 0. The
integral

∫ t

u=0
. . . dλ is the integral on the Lebesgue measure

between 0 and t, i.e. the usual integral known from calculus.
The integral

∫
x′
. . . dJ x integrates over the measure J x,

i.e. over all values in I x times the probability from J x.
The right-hand side of Eq. (15) has the following mean-

ing: the first part of the sum is the probability that it stayed
in x until time t, otherwise the integral integrates over the
time u of the first jump into state x′. The proof is essentially
done by unfolding one step of the jump & hold process and
some calculus. This equation already implies that p x y t is
continuous in t (the Lebesgue integral is continuous in its
boundary if the integrand is also integrable). From Eq. (15)
follows that p x y t is the solution to a differential equation.

Theorem 8 (Backward equation). Given 0 < t then the
derivative p′ x y of p x y in t fulfills the following equation:

p′ x y t =

( ∑
x′∈I x

R x x′ ∗ p x′ y t

)
− E x ∗ p x y t

The equation holds for the right-derivative of p if t = 0.



This proves not yet that a solution to the differential
equation is unique. For finite state spaces this should be easy
to derive from the work on flows of differential equations
by (Immler and Traut 2016).

6. Conclusion and Discussion
We presented the formalization of discrete-time Markov
processes and on top of them continuous-time Markov
chains. The complete formalization has∼ 4300 lines, spread
out over the Isabelle repository and the AFP entry (Hölzl
and Nipkow 2012a). We used Markov kernels to describe
the transition behaviour, and constructed the Markov ker-
nel from the transition rates of a continuous-time Markov
chain. The extension theorem by Ionescu-Tulcea gives us a
straightforward way to show the existence of the Markov
processes. Most proofs, especially Theorem 2, Theorem 4,
and Theorem 6, involved a coinduction step or equality of
measures reduced to generating sets, and then strongly relied
on equational reasoning on probability measures.

Especially the Giry monad allows us to express most
statements about Markov processes as equalities in the cat-
egory of probability measures itself. This can be seen in the
statements of Lemma 1, the construction of the extension
theorem by Ionescu-Tulcea (Theorem 1), and the Theorems
2, 3, and 6. It is obviously possible either to give a more
explicit construction of the involved measures or to express
both sides of the statements as measures under concrete sets.
But the usage of the Giry monad allows us to state these the-
orems and constructions in a concise way, and to manipulate
them with the monad laws. Another part of the Giry monad
is the introduction of measurable space on probability mea-
sures prob-algebra. With this Markov kernels are just mea-
surable functions, hence the constructions and proof meth-
ods for measurable functions are immediately available.

Unfortunately, working with the Giry monad in Isabelle
is not always straightforward. Many rewrite steps were per-
formed manually as it required to instantiate specific mea-
surable spaces only occurring in side conditions. An exam-
ple is the associativity rule: (M >>= f) >>= g = M >>=
(λx. f x >>= g). The rule has as side conditions that f
and g are measurable: f ∈ M →m prob-algebra N and
g ∈ N →m prob-algebra R. The simplifier only accepts
rewrite rules where all variables occur on the left-hand side
of the equation, so N and R are problematic. An option
would be to annotate bind with the result measurable space,
as it is done for the return and map functions.3 But this would
render many statements very unreadable. A solution would
be to represent measurable spaces as type classes (as done
in (Berg 2013)). However this would force exactly one mea-
surable space per type, making the formalization of product
space, filtrations, and stopping times more complicated.

3 These measurable spaces need to be written in Isabelle/HOL, but for
clarity reasons were hidden in this paper.

Another problem in Isabelle/HOL’s measure theory is the
treatment of σ-algebras as measures. Only the type of mea-
sures is used to avoid a duplication when introducing prod-
uct measures, the counting measure and the Lebesgue mea-
sure. However, it turns out that this complicates measurabil-
ity proofs: instead of only applying typing-rules it needs to
bring each measures into a normal form modulo sets.

A helpful tool is the measurability prover, a tool inte-
grated into Isabelle’s simplifier capable of proving many
measurability statements. It employs some simple tools, for
example removing terms of a countable type, i.e. f (g x) x
is reduced to measurability of f n (for all n) and g when the
range of g is countable, bringing measurability statements
into a normal form, special handling for function application
f x i when f x is in a product measurable space. With re-
gard to measurablility, streams also have an advantage com-
pared to sequences: functions on streams have one measur-
able space, while sequences are seen as product types. Mea-
surability in product spaces adds one complication: we need
to check membership of the indices, e.g. for the statement
(λx. xi) ∈ Πi∈I Mi →m Mi we need to prove i ∈ I . This
proof is not necessary on streams.

The construction mechanism for discrete-time Markov
processes provides a powerful tool for constructing stochas-
tic processes. With this mechanism many models can be
built while avoiding invoking a complicated theorem like
Caratheodory’s extension theorem. For the future we want
to build the current discrete-time Markov chains on top of
Markov processes and extend the formalization of stop-
ping times. With broad support for stopping times, we want
to extend Theorem 6 to be a strong Markov property on
continuous-time Markov chains. The proof should work
similarly to the variant for discrete-time Markov processes.
Also, to analyze continuous-time Markov chains with an in-
finite state space, we want to complement Theorem 8 with
the proof that p is the minimal solution to the differential
equation.
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