
Fixed Points for Markov Decision Processes

Johannes Hölzl ∗

TU München
hoelzl@in.tum.de

Abstract
The goal of this paper is to advertise the application of fixed points
and ω-complete partial orders (ω-cpos) in the formalization and
analysis of probabilistic programming languages. The presented
work is formalized in the Isabelle theorem prover.

By applying ω-cpos to the analysis of MDPs we get a nice
theory of fixed points. This allows us to transfer least and greatest
fixed points through expectation on Markov chains and maximal
and minimal expectation on MDPs. One application is to define
the operational semantics of pGCL by MDPs, e.g. relating the
denotational and operational semantics of pGCL is now a matter
of fixed point equations and induction.

1. Introduction
It is standard to use fixed points to describe solutions for proba-
bilistic model checking [2], or to give semantics for probabilistic
programming languages as fixed points [5]. This is similar to the
work by Monniaux [7]. Both are fixed points on complete lattices
(either [0, 1] or R+

, the non-negative reals with ∞). We are con-
cerned with a more general class, namely ω-complete partial orders
(ω-cpos). Here fixed points are only well-defined for continuous
functions. A function F is sup-continuous (and inf-continuous) if
for all increasing (and decreasing) sequences X , the function F
commutes with supremum (and infimum) of X:

F (
⊔
iXi) =

⊔
i F (Xi) and F (

d
iXi) =

d
i F (Xi). (1)

The least (and greatest) fixed point of F is equal to the supremum
(and infimum) of the iterations of F , when F is continuous:

lfp F =
⊔
i F

i(⊥) gfp F =
d
i F

i(>) (2)

Hence for continuous functions F,G, α on ω-cpos we derive a
transfer rule similar to the fusion rule in [4]:

α(⊥) = ⊥ α ◦G = F ◦ α
α(lfp G) = lfp F

(3)

We get a dual rule for greatest fixed points.
We need ω-cpos as they are compatible with measure theory: the

Borel-measurable functionsM
(
A,B

(
R+
))

are not a complete
lattice, but a ω-cpo, for each measurable spaces A. We know that
least (and greatest) fixed points lfp F (and gfp F) are measurable
assuming the functional F is continuous and measurable:

F ∈M
(
A,B

(
R+
))
→M

(
A,B

(
R+
))

(4)

In the rest of this paper we always assume that functions are mea-
surable. From Lebesgue’s monotone convergence theorem follows
that Lebesgue integration is a continuous function. There is a simi-
lar monotone convergence theorem for decreasing sequences. How-
ever, this rules requires that the integral is finite starting at some

∗ Supported by the DFG Projekt NI 491/15-1

point i in the sequenceXi. We derive the following transfer rule on
the Lebesgue integral:

F,G sup-continuous
∀s, f ≤ lfp F.

∫
F f dMs = G (λs.

∫
f dMs)∫

lfp F dMs = lfp G s

(5)

Compared to Rule (3) we provide it with a stronger equation (re-
stricted to f ≤ lfp F), as this is necessary for certain proofs. Also
adding the index s to the family of probability measuresMs will be
very handy when working on the trace spaces of Markov chains and
MDPs. We also assume measurability of F as the one in Rule (4).
The rule for the greatest fixed point is very similar, however it re-
quires that the integral is always finite.

F,G inf-continuous ∀f, s.
∫
F f dMs <∞

∀s, f ≥ gfp F.
∫
F f dMs = G (λs.

∫
f dMs)∫

gfp F dMs = gfp G s

(6)

When solving integrals of fixed points we can now apply
Rule (5) or Rule (6) and then continue with fixed point equations
like rolling, diagonalisation, iteration, or induction [4]. In the fol-
lowing sections we apply these rules on Markov chains, MDPs and
for the semantics of pGCL.

2. Markov chains
A Markov chain is given by its Markov kernel K : A → D (A),
where D (A) is a discrete probability measure on A. Given a
kernel K we construct the trace space Ts (e.g. by the Ionescu-
Tulcea extension theorem [8] or similar) starting in state s with
the iteration property:∫

f d Ts =
∫
t

(∫
ω
f(t·ω)d Tt

)
dKs (7)

Here t·ω prepends t to the sequence ω. Using least and greatest
fixed points we define the usual LTL operators, extending the work
from Blanchette et al. [3], but also first hitting time or cumulated
rewards. For example eventually ♦ and first hitting time h are
defined as follows:

♦(X) = lfp (λF. λ(t·ω). if t ∈ X then 1 else F (ω))
h(X) = lfp (λF. λ(t·ω). if t ∈ X then 0 else 1 + F (ω))

As the functionals in the definitions are continuous and measurable,
it follows that ♦ and h are also measurable functions. With the
transfer rule (3) we get the linear equation system known from
probabilistic model checking [2].

The transfer rules are also used in proofs, for example to prove
fairness (oiginally from [1]) we show that the not fairness set is
expressed as gfp, and bound from above by 0. Similarly, we prove
that hitting time h(X) is finite, assuming a finite Markov chain,
and that the set X is reachable.

3. Markov decision processes
A Markov decision process (MDP) is similarly given as a kernel
K : A → P (D (A)). This time the trace space is parameterized
by a scheduler σ(s) starting in s.∫

f d Tσ(s) =
∫
t

(∫
ω
f(t·ω)d Tσ(s,t)

)
dKσ(s) (8)

Here σ(s, t) is the continuation of the scheduler σ(s) going to t,
and Kσ(s) is a distribution in Ks chosen by the scheduler σ(s).
Now the minimal and maximal expectation is defined as:

Emin
s (f) =

d
σ(s)

∫
f d Tσ(s) Emax

s (f) =
⊔
σ(s)

∫
f d Tσ(s)

(9)
For these we get also iterative rules similar to Rule (7):

Emax
s (f) =

⊔
µ∈K s

∫
t
Emax
t (ω. f(t·ω)) dµ (10)

For Emin we get transfer rule for lfp, and for Emax we get the
transfer rule only when the sets Ks are finite for all s. From this
again we get directly the fixed point we can use to get the linear
equation system used for model checking.

4. pGCL Semantics
The probabilistic guarded command language (pGCL) is a im-
perative language with probabilistic and non-deterministic choice.
Gretz et al. [5] compare the usual (denotational) expectation trans-
former semantics with operational semantics. As operational se-
mantics they define for each pGCL program a MDP. Then finally
they show that the reward of the MDP equals the expectation of
the expectation transformer. The proof works by representing the
expected reward as the sum over all possible paths. In this section
we want to show an alternative proof, representing the reward as a
fixed point. First we present the pGCL semantics similar to [5]:

pgcl := Skip | Abort | Assign (σ → σ)
| Seq pgcl pgcl | Par pgcl pgcl
| If (σ → bool) pgcl pgcl
| Prob [0, 1] pgcl pgcl
| While (σ → bool) pgcl pgcl

The weakest pre-expectation wp c f is an expectation trans-
former recursively computed by the program structure of c:

wp : pgcl →
(
σ → R+

)
→
(
σ → R+

)
wp Skip f = f
wp Abort f = ⊥
wp (Assign u) f = f ◦ u
wp (Seq c1 c2) f = wp c1 (wp c2 f)
wp (Par c1 c2) f = wp c1 f u wp c2 f
wp (If b c1 c2) f =

λs. if b s then wp c1 f s else wp c2 f s
wp (Prob p c1 c2) f =

λs. p · wp c1 f s+ (1− p) · wp c2 f s
wp (While b c) f =

lfp (λX s. if b s then wp c X s else f s)

The operational semantics are K used to construct the MDP:

K : (pgcl × σ)→ P (D (pgcl × σ))
K (Skip, s) = � Skip, s�
K (Abort , s) = � Abort , s�
K (Assign u, s) = � Skip, u s�
K (Seq c1 c2, s) =

[K(c1, s)] (λ(c
′
1, s
′). if c′1 = Skip then c2 else Seq c′1 c2, s

′)
K (Par c1 c2, s) = � c1, s� ∪ � c2, s�
K (If b c1 c2, s) = if b s thenK(c1, s) elseK(c2, s)
K (Prob p c1 c2, s) = {{p 7→ (c1, s), (1− p) 7→ (c2, s))}}
K (While b c, s) =

if b s then � Seq c (While b c), s� else � Skip, s�

Here� c, s � is the singleton set, containing the Dirac distribu-
tion over (c, s). The syntax [K]f maps the elements of K over f ,
i.e. if K has type P (D (A)) and f : A → B, then the result type
is P (D (B)).

Next we define the reward of f on a trace as a least fixed point:

r f = lfp (λF ((c, s)·ω). if c = Skip then f(s) else F (ω))

Using the transfer rule on Emin we get the following equation:

Emin
x (r f) = lfp (λF x.d
µ∈K x

∫
(c,s)

if c = Skip then f(s) else F (c, s) dµ) x

(11)
With this we finally prove:

Emin
(c,s)(r f) = wp c f s (12)

Before we start the proof by induction, we prove the Seq-case:

Emin
(Seq c1 c2,s)(r f) = Emin

(c1,s)

(
r
(
λs′. Emin

(c2,s′)(r f)
))

This is proved by rewriting with Eq. (11) and then applying fixed
point induction in both directions.

Now we prove Eq. (12), by induction over c and generalizing
in s and f . The only interesting case is the (While g c)-case. That
wp is less or equal Emin follows from the fact that Emin fullfills
already the fixed point equation. For the other direction we unroll
the while-loop to the following functional:

w F s =
d
µ∈K x

∫
(d,s)

if d = Skip then if g s then F (c, s)

else f(s) else F (d, s) dµ

We finish withEmax
(While g c,s)(r f) ≤ lfpw (c, s) = wp (While g c) s,

where first part is proved by induction and the second by loop un-
rolling and the diagonal rule for least fixed points.

5. Formalization in Isabelle
The theory presented in this paper is formalized in Isabelle, and
can be found in the AFP entry Markov Models [6]. Compared
to the presentation in this paper, many statements in Isabelle are
more complicated, as we need to explicitly state measurability.
Otherwise, the fixed point theorems on Markov chains and MDPs
simplified the formalization considerable as many ε-proofs are now
reduced to induction on fixed points, or even direct rewriting by
fixed point equations. Proofs like fairness on Markov chains or
finite hitting time on finite Markov chains were quite technical
before and got more concise by using fixed point equations.

References
[1] C. Baier. On the Algorithmic Verification of Probabilistic Systems.

Habilitation, Universität Mannheim, 1998.
[2] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT

Press, Cambridge, Massachusetts, 2008.
[3] J. C. Blanchette, A. Popescu, and D. Traytel. Unified classical logic

completeness. In S. Demri, D. Kapur, and C. Weidenbach, editors,
Automated Reasoning, volume 8562 of LNCS, pages 46–60. 2014.

[4] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, second edition, 2002.

[5] F. Gretz, J. Katoen, and A. McIver. Operational versus weakest pre-
expectation semantics for the probabilistic guarded command language.
Performance Evaluation, 73:110–132, 2014.

[6] J. Hölzl and T. Nipkow. Markov models. The Archive of Formal Proofs,
Jan 2012. http://afp.sf.net/entries/Markov_Models.shtml.

[7] D. Monniaux. Abstract interpretation of programs as Markov decision
processes. In SAS 2003, volume 58 of Science of Computer Program-
ming, pages 179–205. 2005.

[8] D. Pollard. A Users’s Guide to Measure Theoretic Probability. Cam-
bridge Series in Statistical and Probabilistic Mathematics. 2002.

http://afp.sf.net/entries/Markov_Models.shtml

	Introduction
	Markov chains
	Markov decision processes
	pGCL Semantics
	Formalization in Isabelle

