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Probabilistic model checkers like PRISM only check probabilistic systems of a fixed size. To guar-
antee the desired properties for an arbitrary size, mathematical analysis is necessary. We show for
two case studies how this can be done in the interactive proofassistant Isabelle/HOL. The first case
study is a detailed description of how we verified propertiesof the ZeroConf protocol, a decentral ad-
dress allocation protocol. The second case study shows the more involved verification of anonymity
properties of the Crowds protocol, an anonymizing protocol.

1 Introduction

The predominant approach to verification of probabilistic systems is model checking [4], and the most
popular model checker is PRISM [17]. Model checking is automatic, but restricted to fixed finite models.
In this paper we put forward interactive theorem proving as arealistic alternative approach that can deal
with infinite-state systems on an abstract mathematical level of Markov chains. The specific contributions
of this paper are two case studies that illustrate our approach: the ZeroConf protocol for decentralized
address allocation and the anonymizing Crowds protocol. The verifications are carried out in the proof
assistant Isabelle/HOL [21].

The characteristics of the theorem proving approach are:

• It can deal with infinite-state systems, although this paperconsiders only parameterized finite-state
systems.

• It is not restricted to some fixed set of concepts but user-extensible.

• Logical soundness of the system depends only on the soundness of a small fixed and trustworthy
kernel of the theorem prover.

• It requires familiarity with a theorem prover and a problem-dependent amount of work for each
verification.

In a nutshell, it is mathematics, but checked by a computer. These characteristics indicate that the
approach is more suitable for a research environment than a product development environment.

2 Formalization of probability in Isabelle/HOL

To reason about Markov chains, especially about the probability that a path is in a certain set, requires
measure and probability theory. This section gives a short introduction into the formalization of the
theories required by this paper. For a more detailed overview of the measure space formalization see
Hölzl and Heller [11], and for the formalization of Markov chains see Hölzl and Nipkow [12].
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2.1 Isabelle/HOL notation

Isabelle/HOL largely follows ordinary mathematical notation. With a few exceptions, we follow Is-
abelle/HOL notation in this paper, to give the reader a better impression of the look-and-feel of the
work. HOL is based onλ-calculus. Hence functions are usually curried (τ1 → τ2 → τ3 rather than
τ1× τ2 → τ3) and function application is writtenf a rather thanf (a). The lettersα andβ stand for type
variables. TypeB is the type of boolean values. Typeτ set is the type of sets with elements of typeτ.
Notationt :: τ means thatt is a term of typeτ. We regard functions of typeN→ τ as infinite sequences
of elements of typeτ. Prepending an elementa :: τ to a sequenceω :: N→ τ is writtena·ω and means
λi. if i = 0 then a else ω (i−1). The termLEAST n. P n is the least natural numbern such thatP nholds.
If there is no suchn, then the term has some arbitrary (defined!) value, but we do not know which.

2.2 Probability space

In this paper we are only interested in probabilities, hencewe write measures as Prs :: α set→ R, where
s indicates the particular probability measure under consideration. Similarly for the measurable sets we
write As :: α set setand for the entire space we writeΩs :: α set. Hereα is an arbitrary type where we
cut out a spaceΩs. This is necessary as in many cases we are only interested in asubset of the entire
type, e.g.α is the type of natural numbersN and we want to have a distribution on the finite subset
Ωs = {0, . . . ,N}. We usually dropΩs and write{ω | P ω} instead of{ω ∈ Ωs | P ω} and Prs(ω. P ω)
instead ofPrs {ω ∈ Ωs. Pω}.

The measurable setsAs form aσ-algebra, hence they are closed under conjunction, disjunction,
negation and countably bounded universal and existential quantification. We have the defining properties
on the probability measure Prs, as Prs /0= 0, Prs Ωs = 1, it is non-negative: 0≤ Prs A and countably
additive: For a measurable and disjoint familyP :: N→ α→ B

Prs(ω. ∃i. P i ω) = (∑i Prs(ω. P i ω)) .

For a finite probability space measurable sets need only be closed under finite bounded quantifiers,
and the probability needs only be finitely additive, insteadof countably additive. Unfortunately, the
path space on Markov chains is neither finite nor discrete, sowe needσ-algebras and countably additive
probability measures.

We also need conditional probability and define it as usual:

Prs(ω. Pω | Qω) = Prs(ω. Pω∧Qω)/Prs(ω. Qω) .

The AE-quantifier AEsω. P ω on a path measure Prs states that the propertyP holds with probabil-
ity 1. Isabelle/HOL also has a formalization of the Lebesgueintegral on probability spaces, as notation
we use

∫

ω f ω dPrs.

2.3 Markov chains

We introduce Markov chains as probabilistic automata, i.e.as discrete-time time-homogeneous finite-
space Markov processes. A Markov chain is defined by its statespaceS :: α set and an associated
transition matrixτ :: α→ α→ R. We assume no initial distribution or starting state, however when
measuring paths we always provide a starting state. A path ona Markov chain is a functionN→ S, i.e.
an infinite sequence of states visited in the Markov chain.
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markov-chainS τ= finite S∧S 6= /0∧
(

∀s, s′ ∈ S. 0≤ τ s s′
)

∧
(

∀s∈ S.
(

∑
s′∈S

τ s s′
)

= 1
)

For the rest of this section we assume a Markov chain with state spaceS and transition matrixτ. We
write E(s) for the set of all successor states, i.e. alls′ ∈ S with τ s s′ 6= 0. Note that a pathω does not
require thatω (i +1) is a successor ofω i.

We have defined a probability space(N→ S,A,Prs) on the space of all pathsN→ S for a starting
states∈ S. The measurable sets are theσ-algebra generated by all sets{ω ∈ N→ S | ω i = t} where
i ∈ N andt ∈ S. The measure Prs (depending on the starting states∈ S andτ) is defined via an infinite
product and is shown to satisfy the following key property (wheres·ω prependss toω):

∀ω ∈ N→ S, s∈ S,n. Prs {ω′ | ∀i < n. ω′ i = ω i}= ∏i<nτ ((s·ω) i) (ω i)

Note that Prs explicitly carries the starting state and yields the transition probability for the stepss→τ
ω 0→τ ω 1→τ · · · →τ ω (n−1).

We also use Markov reward chains, where we assign a cost or reward to each transitions:

markov-reward-chainS τ ρ= markov-chainS τ∧ (∀s, s′ ∈ S. 0≤ ρ s s′)

This approach allows a very easy definition of a Markov chain given as a transition system. Other
formalizations of Markov chains [13, 19] use the probability spaceN→ B. This requires to provide a
measurable functionX t ω, mapping a sequence of boolean choicesω :: N→ B into a state at timet. In
our approach the set of statesS and the transition matrixτ are enough.

Some models require an arbitrary setI of independent variablesXi with distributionPi. For this case
we provide the product∏I Pi . We use this product space to construct the path space for ourMarkov
chains. Furthermore the probability spaceN → B is just a special instance of the generalized product
space.

2.3.1 Iterative equations

The Markov chain inducesiterative equationson the probability Prs, the Lebesgue integral and the AE-
quantifier, relating properties abouts to properties ofE(s). These equations are often useful in inductive
proofs and already give a hint how to prove concrete properties of probabilities and integrals. IfA, P,
and f are measurable ands∈ S, then the following equations hold:

Prs A = ∑
s′∈E(s)

τ s s′ ∗Prs′(ω. s
′·ω ∈ A)

∫

ω
f ω dPrs = ∑

s′∈E(s)

τ s s′ ∗
∫

ω
f (s′·ω) dPrs′

AEsω. Pω = ∀s′ ∈ E(s). AEs′ω. P (s′·ω)

2.3.2 Reachability

Let Φ be a subset ofS. A states′ is reachablevia Φ starting ins iff there is a non-zero probability to
reachs′ by only going through the specific set of statesΦ. The starting statesand the final states′ need
not be inΦ.

reachableΦ s := {s′ ∈ S | ∃ω ∈ Ω,n. (∀i ≤ n. ω i ∈ E((s·ω) i)) ∧
(∀i < n. ω i ∈ Φ)∧ω n= s′}



20 Interactive verification of Markov chains

Reachability is a purely qualitative property, as it is defined on the graph of non-zero transitions.
The until-operator introduces a similar concept on paths. Its definition does not assume that a state

is a successor state of the previous one, as this is already ensured by Prs.

until Φ Ψ = {ω | ∃n. (∀i < n. ω i ∈ Φ)∧ω n∈ Ψ}

Can we compute Prs(until Φ Ψ) using only reachable? It is easy to show that Prs(until Φ Ψ) = 0
iff (reachableΦ s)∩Ψ = /0. But is there also a way to characterize Prs(until Φ Ψ) = 1 in terms of
reachable?

2.3.3 Fairness

To show thatreachablecan be used to guarantee that states are reached with probability 1, we need state
fairness. A pathω is state fairw.r.t. s andt if s appears only finitely often provided thatt also appears
only finitely often as the successor ofs in ω. The definition and proofs about state fairness are based on
the thesis by Baier [3].

fair s t=
{

ω | finite {n | ω n= s∧ω (n+1) = t} =⇒ finite {n | ω n= s}
}

We show that almost every path is state fair for each state andits successors.

∀s, s′ ∈ S, t′ ∈ E(s′). AEsω. s·ω ∈ fair s′ t′

Using this we prove that starting in a states almost every path fulfillsuntil Φ Ψ if (1) all states
reachable viaΦ are inΦ or Ψ and (2) each state reachable froms has the possibility to reachΨ. This
theorem allows us to prove thatuntil Φ Ψ holds almost everywhere by a reachability analysis on the
graph:

s∈ Φ ∧ Φ ⊆ S ∧ reachable(Φ\Ψ) s⊆ Φ∪Ψ ∧
∀t ∈ (reachable(Φ\Ψ) s∪{s})\Ψ. reachable(Φ\Ψ) t∩Ψ 6= /0
=⇒ AEsω. s·ω ∈ until Φ Ψ

2.3.4 Hitting time

Thehitting timeon a pathω is the first index at which a state from a setΦ occurs:

hitting-timeΦ ω= LEAST i. ω i ∈ Φ

Note that if there is noi such thatω i ∈ Φ, thenhitting-timeΦ ω is some arbitrary, underspecified natural
number. For the computation of rewards it is important to know if the expected hitting time is finite. We
show that the expected hitting time ofΦ for paths starting ins is finite if almost every path starting ins
reachesΦ. If s is in S and AEsω. s·ω ∈ until S Φ then

∫

ω
hitting-timeΦ (s·ω)dPrs 6= ∞

For Markov reward chains we are interested in the transitioncosts until a set of states occurs:

cost-untilΦ ω= if ∃i. ω i ∈ Φ then ∑i<hitting-time Φ ω ρ (ω i) (ω (i +1)) else ∞
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3 Case study: The ZeroConf protocol

Ad-hoc networks usually do not have a central address authority assigning addresses to new nodes in the
network. An example are consumer networks where users want to connect their laptops to exchange data
or attach a network capable printer. When connecting with WiFi these devices use IPv4 and hence need
IPv4 addresses to communicate with each other.

TheZeroConfprotocol [6] is a distributed network protocol which allowsnew hosts in the network
to allocate an unused link-local IPv4 address. A link-localaddress is only valid in the local network, e.g.
a WiFi network. We assume point-to-point communication in our local network, and hence communi-
cate directly with each host identified by a valid address. The problem with IPv4 addresses is that they
are limited, i.e. they are represented by 32-bit numbers, and for the local network the addresses from
169.254.1.0 to 169.254.254.255 are available, hence we can chose from 65024 distinct addresses. Zero-
Conf works by randomly selecting an address from this pool and then probing if the address is already
in use.

Bohnenkampet al. [5] give a formal analysis of the probability that an addresscollision happens, i.e.
two hosts end up with the same address. They also analyse the expected run time until a (not necessaryly
valid) address is chosen. As our first case study we formalizetheir analysis in Isabelle/HOL.

Andovaet al. [1] present a model-checking approach for discrete-time Markov reward chains and
apply it to the ZeroConf protocol as a case study. They support multiple reward structures and can
compute the probability based on multiple constraints on these reward structures. Kwiatkowskaet al.[18]
have modelled this protocol as a probabilistic timed automata in PRISM. Both models include more
features of the actual protocol than the model by Bohnenkampet al. [5] that we follow.

3.1 Description of address allocation

We give a short description of the model used in Bohnenkampet al. [5]. The address allocation in
ZeroConf uses ARP (address resolution protocol) to detect if an address is in use or not. An ARP request
is sent to detect if a specific IPv4 address is already in use. When a host has the requested IPv4 address
it answers with an ARP response. ZeroConf allocates a new address as follows:

1. Select uniformly a random address in the range 169.254.1.0 to 169.254.254.255.

2. Send an ARP request to detect if the address is already in use.

3. When a host responds to the ARP request, the address is already taken and we need to start again
(go back to 1).

4. When no response arrives before a time limitr, we again send an ARP request. This is repeatedN
times.

5. When no response arrived forN requests we assume our address is not in use and are finished.

This probabilistic process depends on two parameters: (1) The probabilityq that the random chosen
address is already taken; this probability depends on the number of hosts in the network and the number
of available addresses. (2) The probabilityp that either the ARP request or response is lost.

The Markov chain shown in Fig. 1 describes the address allocation from a global viewpoint. AtStart
a new host is added to the network, it chooses an address and sends the first ARP request. There are two
alternatives.
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Start Probe0 Probe1 ProbeN Error

Ok

q; r

1−q; r · (N+1)

p; r

1− p; 0

1− p; 0

1− p; 0

p; E

1; 0

1; 0

Figure 1: Markov chain of the ZeroConf protocol. The labels are annotated withP;T: the probabilityP
to take this edge and the elapsed timeT.

• With probability 1−q the host chooses an unused address, the allocation is finished, the Markov
chain directly goes toOk. Of course, the host does not know this, and still sends outN+1 ARP
probes. Hence we associate the time costr · (N+1) with this transition.

• With probability q the host chooses a used address and goes to the probing phase:In theProben
state it sends an ARP request and waits untilr time units have passed, or until it receives an ARP
response from the address owner. With probability 1− p the host receives an ARP response and
needs to choose a new address—we go back toStart. With probability p this exchange fails and
we go to the next probe phase. AfterN+1 probes, the host assumes the chosen address is free. As
two hosts in the network end up with the same address we reached theError state. The time cost
E models the cost to repair the double allocation. This might involve restarting a laptop.

3.2 Formal model of ZeroConf address allocation

The Isabelle/HOL model of the ZeroConf protocol describes the Markov chain in Fig. 1. We set up a
context containing the probe numbers (starting with 0), theprobabilitiesp andq, and the costsr andE:

fixes N :: N and p q r E :: R
assumes 0< p and p< 1 and 0< q and q< 1
assumes 0≤ E and 0≤ r

In the following sections we assume that these fixed variables N, p, q, r, andE fulfill the above assump-
tions of the ZeroConf protocol.

To represent the states in the Markov chain we introduce a newdatatype:

datatype zc-state= Start| ProbeN | Ok | Error

We have the typezc-statewith the distinct objectsStart, Ok, Error, andProben for all n :: N. The valid
statesS :: zc-state setare a restriction of this to only valid probe numbers. This also gives us a finite
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number of states.

S= {Start,Ok,Error}∪{Proben | n≤ N}

The final modeling step is to define the transition matrixτ :: zc-state→ zc-state→R and the cost function
ρ :: zc-state→ zc-state→ R. Both are defined by a case distinction on the current state and return the
zero function0 which is updated at the states with non-zero transition probability or cost.

τ s= case sof Start ⇒ 0(Probe0 := q,Ok := 1−q)
| Proben⇒ if n< N then 0(Probe(n+1) := p,Start:= 1− p)

else 0(Error := p,Start:= 1− p)
| Ok ⇒ 0(Ok := 1)
| Error ⇒ 0(Error := 1)

ρ s= case sof Start ⇒ 0(Probe0 := r,Ok := r ∗ (N+1))
| Proben⇒ if n< N then 0(Probe(n+1) := r) else 0(Error := E)
| Ok ⇒ 0
| Error ⇒ 0

We need to prove that we actually defined a Markov chain: as a consequence, Isabelle/HOL is able to
provide the probabilities PrsA for each statesand path setA. For this we show thatτ is a valid transition
matrix for a Markov chain onS, andρ is a valid cost function:

theorem τ-DTMC: markov-reward-chainS τ ρ

To prove this we need to show thatτ andρ are non-negative for all states inS. And finally we need to
show thatτ s is a distribution for alls in S, which is easy to show by using the helper lemmaS-split:

lemma S-split: ∑
s∈S

f s= f Start+ f Ok+ f Error+ ∑
n≤N

f (Proben)

3.3 Probability of an erroneous allocation

The correctness property we want to verify is that no collision happens, i.e. we want to compute the
probability that a protocol run ends in theError state. The goal of this section is not only to showwhat
we proved, but to showhow we proved it. Most of the proofs are automatic by rewriting and we do
not show the details. But we want to show the necessary lemmasand theorems needed to convince
Isabelle/HOL.

We definePerr :: zc-state→ R to reason about the probability that a traceω ends in theError state
when we started in a states:

Perr s= Prs
(

ω. s·ω ∈ until S {Error}
)

Our final theorem will be to characterizePerr Startonly in terms of the system parametersp, q andN.
The first obvious result is that when we are already inError, we will stay inError, and when we are

in Ok we will never reachError:

lemma Perr-error: Perr Error= 1
lemma Perr-ok: Perr Ok= 0
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Perr-error is proved by rewriting:Error·ω ∈ until S {Error} is always true. TheOk case is proved by
reachable(S\{Error}) Ok⊆ {Ok}. Together with lemmaS-split and these two lemmas we provide an
iterative lemma forPerr:

lemma Perr-iter:
s∈ S =⇒ Perr s= τ sStart∗Perr Start+ τ sError+∑n≤N τ s (Proben)∗Perr (Proben)

However this is a bad rewrite theorem, using it would result in non-termination of the rewrite engine. To
avoid this we derive rules for specific states:

lemma Perr-last-probe: Perr (ProbeN) = p+(1− p)∗Perr Start
lemma Perr-start-iter: Perr Start= q∗Perr (Probe0)

Our next step is to compute the probability to reachError when we are inProben. This is the only
proof which is not done by a simple rewrite step, but it requires induction and two separate rewrite steps.
The induction is done over the numbern of steps until we are inError. To give the reader a better feeling
for what these proofs look like, here is the skeleton of the Isabelle proof:

lemma Perr-probe-iter: n≤ N =⇒ Perr (Probe(N−n)) = pn+1+(1− pn+1)∗Perr Start
proof (inductn)

case (n+1)
have Perr (Probe(N− (n+1))) = p∗ (pn+1+(1− pn+1)∗Perr Start)+ (1− p)∗Perr Start

<proof>
also have · · ·= p(n+1)+1+(1− p(n+1)+1)∗Perr Start

<proof>
finally show Perr (Probe(N− (n+1))) = p(n+1)+1+(1− p(n+1)+1)∗Perr Start.

qed simp – The 0-case is a simple rewriting step withPerr-last-probe.

Together withPerr-start-iter we prove our final theorem:

theorem Perr-start: Perr Start= (q∗ pN+1)/(1−q∗ (1− pN+1))

With typical parameters for the ZeroConf protocol (16 hosts(q= 16/65024), 3 probe runs (N = 2)
and a probability ofp= 0.01 to lose ARP packets) we compute (by rewriting) in Isabelle/HOL that the
probability to reachError is below 1/1013:

theorem Perr Start≤ 1/1013

3.4 Expected running time of an allocation run

Users are not only interested in a very low error probabilitybut also in fast allocation time for network
address. Obviously there are runs which may take very long, but the probability for these runs are near
zero. So we want to verify that the average running time of an allocation run is in the time range of
milliseconds.

The running time of an allocation runCfin :: S → R is modelled as the integral over the sum of all
costsρ for each step in each run. The sum of all steps until eitherOk or Error is reached is simply
cost-until:

Cfin s=
∫

ω
cost-until{Error,Ok} (s·ω) dPrs
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J1

J3

J2

J4

J7

J6
J5

C1

C2

S

Figure 2: The established routeJ1− J4− J2− J7− J4−C1−S

In order to evaluate the integral we first show that it is finite. This is the case ifcost-until{Error,Ok} is
finite almost everywhere. So we first show that almost every path reaches{Error,Ok}:

lemma AE-term: s∈ S =⇒ AEsω. s·ω ∈ until S {Error,Ok}

Using this we show an elementary form ofCfin in a similar way toPerr:

lemma Cfin-start: Cfin Start=
(q∗ (r + pN+1∗E+ r ∗ p∗ (1− pN)/(1− p))+ (1−q)∗ (r ∗N+1))/(1−q+q∗ pN+1)

With typical values (16 hosts, 3 probe runs, a probability ofp= 0.01 to lose ARP packets, 2msfor
an ARP round-trip (r = 0.002) and an error penalty of one hour (E= 3600)) we compute in Isabelle/HOL
that the average time to terminate is less or equal 0.007 s:

theorem Cfin Start≤ 0.007

4 Case study: The Crowds protocol

The Crowdsprotocol described by Reiter and Rubin [22] is an anonymizing protocol. The goal is to
allow users to connect to servers anonymously. Neither the final server should know which user connects
to it, nor attackers collaborating in the network. The Crowds protocol establishes an anonymizing route
through a so called mix network: Each user (Reiter and Rubin name themjondo pronounced “John
Doe”) is itself participating in the mix network. When a jondo establishes a route, it first connects to
another random jondo which then decides based on a coin flip weighted with pf if it should connect to
the final server, or go through a further jondo, and so on. Figure 2 shows an established route through
the jondosJ1− J4− J2− J7− J4−C1−S. There is no global information about a route available to the
participating jondos. For each connection a jondo only knows its immediate neighbours, but no other
previous or following jondo, so it may happen that a route is going through a loop, as seen in Fig. 2.

First, Reiter and Rubin [22] show that the server has no chance to guess the original sender. In
a second step they assume that some jondos collaborate to guess the jondo initiating the route. They
analyse the probability that a collaborating node is the successor of the initiating jondo. This analysis is
affected by the fact that the route may go through the initiating jondo multiple times. An analysis of the
Crowds protocol in PRISM, for specific sizes, has been conducted by Shmatikov [23].

Similar to the ZeroConf case, we only analyse the Markov chain having a global view on the protocol.
We could model the individual behaviour of jondos in Isabelle/HOL and show that this induces our
Markov chain model, but this is not in the scope of this paper.
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Start

Init J1

Init J2

Init J3

Mix J1

Mix J2

Mix J3

End

init J1

init J2

init J3 1

Probabilities:

pf /3

1/3

1− pf

Figure 3: Example Markov chain of the small Crowds network{J1, J2, J3}

4.1 Formalization of route establishment in the Crowds protocol

We concentrate on the probabilistic aspects of route establishment in the Crowds protocol. We assume a
setjondosof an arbitrary typeα (which is just used to uniquely identify jondos), and a strict subsetcolls,
the collaborating attackers. A jondo decides with probability pf if it chooses another jondo as next step,
or if it connects directly to the server. The distribution ofthe initiating jondos is given byinit. Naturally
the initiating jondo is not a collaborating jondo. In Isabelle this is expressed as the following context:

fixes jondos colls:: α setand pf :: R and init :: α→ R

assumes 0< pf and pf < 1
assumes jondos6= /0 and colls 6= /0 and finite jondosand colls⊂ jondos
assumes ∀ j ∈ jondos. 0≤ init j and ∀ j ∈ colls. init j = 0 and ∑ j∈jondosinit j = 1

The Markov chain has four different phases: start, the initial node, and the mixing phase, and finally
the end phase where the server is contacted. See Fig. 3 for a small example. Our formalization of Markov
chains requires a single start node, otherwise we could chooseinit as initial distribution. The type of the
stateα c-statedepends on the type of the jondosα.

datatype α c-state= Start| Init α | Mix α | End

Similar to the ZeroConf protocol not all possible values ofc-stateare necessary. We restrict them further
by only allowing non-collaborating jondos as initial jondos, and only elements fromjondosparticipate
in the mixing phase. With this definition it is easy to show that the set of statesS :: α c-state setis finite.

S= {Start}∪{Init j | j ∈ jondos\colls}∪{Mix j | j ∈ jondos}∪{End}

Often we are interested in the jondo referenced by the current state. We introducejondo-of ::
α c-state→ α returning the jondo if we are in an initial or mixing state:

jondo-of s= case sof Init j ⇒ j | Mix j ⇒ j
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Start Init Mix0 Mix1 Mix2 Mix3 Mix4 End

Figure 4: The established routeJ1− J4− J3− J5− J4−C1−S

The transition matrixτ :: α c-state→ α c-state→ R is defined by a case distinction on all possible
transitions. The probability for steps fromStartare given by the distribution of the initiating jondosinit.
The first routing jondo is arbitrarily chosen, and the probability of going from a mixing state to a mixing
state is the product ofpf to stay in the mixing phase and the probability 1/J for the next jondo. With
probability 1− pf the mixing state is finished and than the Markov chain stays inEnd. Figure 4 shows
an example path through the different phases.

J= |jondos|

H = |jondos\colls|

τ s t= case (s, t) of (Start, Init j) ⇒ init j
| (Init j, Mix j′) ⇒ 1/J
| (Mix j, Mix j′) ⇒ pf /J
| (Mix j, End) ⇒ 1− pf

| (End, End) ⇒ 1
| _ ⇒ 0

This completes the definition of the Markov chain describingthe route establishment in the Crowds
protocol. Finally we show thatS andτ describe a discrete-time Markov chain:

theorem markov-chainS τ

4.2 The jondo contacting the server is independent from the initiating jondo

We define a number of path properties of our Markov chain. The functionslen :: (N→ α c-state)→ N,
first-jondo:: (N→ α c-state)→ α andlast-jondo:: (N→ α c-state)→ α operate on paths not containing
the Startelement.len returns the length of the mixing phase, i.e. how manyMix states are in the path
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until End is reached,first-jondois the initiating jondo, andlast-jondois the jondo contacting the server.

lenω= (LEAST n. ω n= End)−2

first-jondoω= jondo-of(ω 0)

last-jondoω= jondo-of(ω (lenω+1))

The path functionslen, first-jondo and last-jondoare well defined on almost every path. The paths
in our Markov chain do not contain theStart element, so the paths start with anInit state. Hence for
almost every path we know that the first element is an initiating state, then for the nextlen elements we
have mixing states, and finally a tail ofEnd states:

lemma AEStartω. ω ∈ N→ S

lemma AEStartω. ∃ j ∈ jondos\colls. ω 0= Init j

lemma AEStartω. ∀i ≤ lenω. ∃ j ∈ jondos. ω (i +1) = Mix j

lemma AEStartω. ∀i > lenω. ω (i +1) = End

With this we can easily show that the jondo contacting the server is independent from the initiating jondo:

lemma

assumes l ∈ jondosand i ∈ jondos\colls
shows Pr(ω. first-jondoω= i ∧ last-ncollω= l) =

Pr(ω. first-jondoω= i)∗Pr(ω. last-ncollω= l)

4.3 Probability that initiating jondo contacts a collaborator

The attacker model assumes that the collaborators want to detect the initiator of a route. This is obviously
only possible if one of the collaborators is chosen as one of the mixing jondos. We have two goals: (1) If
the numbers of collaborators is small, the probability to contact a collaborator should be near zero. (2) We
want to analyse the probability that the initiating jondo directly contacts a collaborator. When we know
the ratio of collaborators to jondos, how can we adjustpf , so that this probability is less or equal to 1/2?

The random variablehit-colls :: (N → α c-state) → B is true if a collaborator participates in the
mixing phase,first-coll :: (N → α c-state) → N is the mixing phase in which the collaborator is hit,
and last-ncoll :: (N → α c-state) → α is the last non-collaborating jondo, i.e. the jondo contacting a
collaborator.

hit-collsω= ∃n, j ∈ colls. ω n= Mix j

first-collω= (LEAST n. ∃ j ∈ colls. ω n= Mix j)−1

last-ncollω= jondo-of(ω (first-coll ω))

The property we want to check only makes sense if a collaborator participates in the mixing phase.
So we first prove the probability to hit a collaborator:

lemma PrStart(ω. hit-collsω) = (1−H/J)/(1−H/J∗ pf )

We already see that the probability to hit a collaborator goes to 0 if the number of collaborators andpf

stay constant andJ −→ ∞. ThenH/J −→ 1 and hence PrStart(ω. hit-collsω) −→ 0. Thus our first goal
is satisfied.
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Additionally, we want to control the probability that the initiating jondo hits a collaborator. For
this, we compute the probability to have a fixed first and last non-collaborating jondo before we hit a
collaborator:

lemma P-first-jondo-last-ncoll :
assumes l ∈ jondos\collsand i ∈ jondos\colls
shows Pr(ω. first-jondoω= i ∧ last-ncollω= l | hit-collsω) =

init i ∗ (pf /J+(if i = l then 1−H/J∗ pf else 0))

Note that the conditional probability does not divide by 0 because PrStart(ω. hit-colls ω) 6= 0 by the
previous lemma. By summing up over all possible non-collaborating jondos we show the probability
that the last non-collaborating jondo is the initiating jondo:

theorem PrStart(ω. first-jondoω= last-ncollω | hit-collsω) = 1− (H−1)/J∗ pf

With this we can now enforce that the probability that the initiating jondo hits a collaborator is less or
equal to1

2:

lemma H > 1 ∧ J/(2∗ (H−1))≤ pf =⇒

PrStart(ω. first-jondoω= last-ncollω | hit-collsω)≤ 1
2

Reiter and Rubin [22] call this probably innocent. Becausepf < 1 this is only possible if 1/2< (H−1)/J,
i.e. more than half of the jondos are non-collaborating. This meets our second goal.

4.4 Information gained by the collaborators

Obviously, in Isabelle/HOL we are not only restricted to state probabilities or expectations. For example,
for quantitative information flow analysis, similar to the analysis by Malacaria [20], we are interested
in the mutual informationIs(X;Y) between two random variablesX andY. The mutual information is
formalized in Isabelle/HOL using the Radon-Nikodým derivative. However, we know that ifX andY are
simple functions, i.e. functions with a finite range, thenIs(X;Y) can be computed in the known discrete
way:

lemma simple-functions X =⇒ simple-functions Y =⇒
Is(X;Y) = ∑(x,y)∈{(Xx,Yx)|x.x∈Ω} .Prs(ω. X ω= x∧Yω= y)∗

log2

(

Prs(ω. X ω= x∧Y ω= y)/(Prs(ω. X ω= x)∗Prs(ω. Y ω= y))
)

We are only interested in runs which hit a collaborator. To use mutual information with this restriction
we introduce the conditional probability Prhit-colls, with the condition that each run hits a collaborator. Its
characteristic property (we omit the technical definition)is

lemma measurables P =⇒ Prhit-colls(ω. Pω) = PrStart(ω. Pω | hit-collsω)

With this property and lemma P-first-jondo-last-ncoll we can now show an upper bound for the infor-
mation flow:

theorem Ihit-colls(first-jondo; last-ncoll)≤ (1− (H−1)/J∗ pf )∗ log2 H

This supports the intuitive understanding that the information the attackers can gain is restricted by the
probability that the initiating jondo is the jondo directlycontacting a collaborator.
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5 Related Work

There is already some work to verify parametric probabilistic models. Hermannset al. [10] implement
a probabilistic variant of counterexample-guided abstraction refinement (CEGAR). They handle infinite
state spaces by breaking them up into finite partitions. Hahnet al. [8] allows parametric transition
probabilities. The number of states is still fixed, but the transition probabilities are rational functions over
parameter variables. Katoenet al. [16] present a method to generate and use quantitative invariants for
linear probabilistic programs. Their motivation is to use these invariants to augment interactive proofs.

Now we survey other work that models probabilistic systems in an interactive theorem prover.
We build directly on the formalization of Markov chain theory developed for our verification of pCTL

model checking [12], which builds on a formalization of measure theory [11]. Ultimately, all of the work
cited in this section builds on the work of Hurd (see below). However, instead of Hurd’s probability
spaceN→ B we have a probability space on arbitrary functions. This allows for a natural formalization
of Markov chains over arbitrary state spaces and needs no encoding into booleans.

The formalization of probability theory in HOL starts with Hurd’s thesis [13]. He introduces mea-
sure theory, proves Caratheodory’s theorem about the existence of measure spaces and uses it to in-
troduce a probability space on infinite boolean sequences. He defines concrete random variables with
Bernoulli or uniform distribution. Using this work he also analyses a symmetric simple random walk.
Hasanet al.[9] formalize the analysis of continuous random variables on Hurd’s probability space. How-
ever, their work is quite different from ours in that they do not employ Markov chains. Based on Hurd’s
work, Liu et al. [19] define when a stochastic process is a Markov chain. Theirtheory does not provide
everything we need: it is restricted to stochastic processes on Hurd’s probability spaceN→ B and does
not construct the path space of Markov chains defined by transition probabilities. Coble [7] formalizes
information theory on finite probability spaces. He appliesit to a quantitative information flow analysis
of the Dining Cryptographers protocol. Hurdet al. [14] in HOL4 and Audebaud and Paulin-Mohring [2]
in Coq formalize semantics of probabilistic programs. Bothreason about the probability of program
termination and only allow discrete distributions for the result values.

6 Conclusion

The formalizations are available in the Archive of Formal Proofs [15]. For the ZeroConf protocol the
formalization was done in a couple of days and required approx. 260 lines of Isabelle/HOL theory. The
Crowds protocol requires approx. 1060 lines of Isabelle/HOL theory and it took one person a couple of
weeks to verify. The time necessary for the verification includes finding an estimation for the information
gained when a collaborator is hit. The probabilities we verified for the ZeroConf protocol and the Crowds
protocol are expressible as PCTL formulas. However this is not a restriction of Isabelle/HOL. We can
expressω-regular properties or multiple reward structures easily in higher-order logic.

Our future goals include more powerful models like Markov decision processes and continuous-time
models but also the certification of probabilistic model checker runs in Isabelle/HOL.
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