Interactive verification of Markov chains:

Two distributed protocol case studies

Johannes Holzl and Tobias Nipkow

TU Minchen

QFM 2012
28 August 2012

/ 24



Introduction

> In the interactive theorem prover

Isabelle

24



Introduction

> In the interactive theorem prover

Isabelle

» Verified two case studies

N)

24



Introduction

> In the interactive theorem prover

Isabelle

> Verified two case studies
» ZeroConf protocol (IPv4 address allocation)

N)

24



Introduction

> In the interactive theorem prover

Isabelle

» Verified two case studies

» ZeroConf protocol (IPv4 address allocation)
» Crowds protocol (anonymizing service)

)

24



Introduction

> In the interactive theorem prover

Isabelle

» Verified two case studies
» ZeroConf protocol (IPv4 address allocation)
» Crowds protocol (anonymizing service)

» Built on Isabelle’s probability theory and Markov chains
Holzl & Heller (ITP 2011), Holzl & Nipkow (TACAS 2012)
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Too powerful to be fully automatic:
user needs to write proofs
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v

Logic is HOL: functional programming + quantifiers

v

Declarative proof language Isar

v

Small kernel: each proof is reduced to primitive proof steps

\4

Powerful proof methods
(rewrite engine, Sledgehammer, ...)

v

Important theories: datatypes, real analysis, measure theory,
probability theory, Markov chains, ...

5/24
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ZeroConf protocol

» Protocol to allocate an address in a link-local network,
without central authority (RFC 3927)
» We formalized the analysis of Bohnenkamp et al. (2003)

> Address allocation when only one computer is added
> Probability that two hosts end up with the same address
» Expected time until an address is allocated

» Model checking analysis of Kwiatkowska et al. (2006) and
Andova et al. (2003)
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» Fix parameters:

fixes N::Nand pgr E:R

assumes 0<p and p<land O<g and g<1

assumes 0= E and O0<r

» Define state space:

datatype zc-state=S| P N| Ok| Err

Q:{S,Ok,Err}U{Pn | nSN}

» Define the transition function

TS5 Ok
S (PO
7 (Pn) (P(n+1))

T:

l-q
q
if n< N then p else 0
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Defines a Markov chain:
lemma markov-chain Q T

Probability theory gives us:
Prs(w. P w) — the probability that a trace w fulfills P w

Define probability that an error is reached:
Perr s = Prs(w. 3n. w n=Err)

Analyse: Pe,, S=7
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» General result:

_ q-pN+1
1-q-(1-pN*1)

theorem Perr S

» 16 hosts (g =16/65024), 3 probe runs (N =2), p=0.01:

corollary Py S<10713
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» How do we model the expected running time?

» Similar to 7 define the cost function p:
pS Ok = r-(N+1)

eS (PO) = r
p (Pn) (P(n+1)) if n< N then r else 0

v

Define expected cost until Err or Ok is reached:

Ctin s:/ cost-until {Err, Ok} (s-w) dPrg
w

v

16 hosts, 3 probe runs, p=0.01, r =2ms, E =3600s:

theorem Csin $=0.007

13 /24
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Crowds protocol

» Anonymizing protocol
introduced and analysed by Reiter & Rubin (1998)

» Group of nodes establishes a connection by randomly chosing
another node or the final server
> Analysis:
> Probability that original sender contacts a collaborating node

is small
» Information a contacted collaborating node gains is small

15 /24
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assumes 0 < pr and pr<1

assumes N# @ and finite N

assumes Vne N. O<p;j nand Y ,cypi j=1
assumes C#@ and Cc N and Vce C. p; c=0

» Define state space

datatype a c-state=S|/a|Ma|E

a={stu{in | ne N\ Clu{M n ' ne N}pu{E}
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» Define transition function

TS5 (In)  =pin
t(In) (Mn) =1/IN|

T (Mn) (Mn") =p¢/IN
T(Mn)E =1-pr
TE E =1
T =0

» Prove Markov chain property

theorem markov-chain Q T
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» We introduce some random variables:

init the initiating node
last-ncoll  the first node contacting a collaborating node
hit true if a collaborating node is contacted

» Probability that initiating node contacts a collaborating node

theorem Prg(w. init w = last-ncoll w | hit w) =1- —lN\II(\:Ill_l - pf

» Information the collaborating nodes gain when contacted

theorem Ip;(init; last-ncoll) < (1 - |N\”€l||—1 -p,c) -logy IN\ C]
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» Probability space of boolean sequences: N — {0,1}
Hurd (2002), Hasan et al. (2009), Liu et al. (2011)

» Expectation and information theory (discrete, finite spaces)
Coble (2009)

» Formalization of pGCL (prob. & non-det. language)
Hurd et al. (2005), Audebaud & Paulin-Mohring (2009)
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» Compare: ~20,600 lines of theory for probability theory

Future Work:
» More Markov models (MDPs, CTMCs, CTMDPs, PTAs)

» Certification of probabilistic model checker results

» Specification language

Slides available at: http://www.in.tum.de/~hoelzl
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