
Proving Inequalities over Reals with
Computation in Isabelle/HOL

Johannes Hölzl ∗

Technische Universität München
hoelzl@in.tum.de

Abstract
When verifying numerical algorithms, it is often necessary to esti-
mate inequalities over reals. Unfortunately, the large amount of nu-
merical computations this requires significantly complicates man-
ual deductive-style proofs.

We present an automatic proof method for inequalities over
reals with bounded variables. The method translates inequalities
into interval arithmetic calculations on floating-point numbers. The
result is then evaluated using the code generator. The translation
and evaluation is verified in Isabelle/HOL. Our main contributions
are the boundary computations for square root, π, sin, cos, arctan,
exp, and ln in Isabelle/HOL. The proof method is included in
Isabelle2009.

Keywords inequalities over reals, interval arithmetic, decision
procedure, Isabelle/HOL, computation

1. Introduction
When verifying a numerical algorithm or a computer system related
to a physical domain, we need to prove many properties about real-
valued formulas. An interesting class of such formulas consists of
inequalities involving trigonometric functions and basic arithmetic
operations with bounded variables.

As an example, [Daumas et al. 2009] cite the following formula
that arose while verifying a flight control system:

3 · π
180

≤ g

v
· tan

„
35 · π
180

«
≤ 3.1 · π

180

v = 128.6 m
s

velocity of the aircraft

g = 9.81 m
s2

gravitational force

They also mention that “a direct proof of this formula is about a
page long and requires the proof of several trigonometric proper-
ties.”

Real-valued inequalities also arise in the verification of numer-
ical libraries. The algorithms provided by such libraries are of-

∗ Supported by the DFG Graduiertenkolleg 1480 (PUMA).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLMMS ’09 August 21, 2009, Munich, Germany.
Copyright c© 2009 ACM [to be supplied]. . . $5.00

ten easy to verify, especially since theorem provers such as Is-
abelle/HOL provide libraries formalizing large parts of real analy-
sis. However, numerical algorithms often rely on approximations of
constants such as π and ln 2 or on tables of precomputed numbers,
which must be verified as well. The formalization of the CORDIC
algorithm in [Harrison 1996] is as example of such a verification.

To verify real-valued inequalities, one option is to check them
using a computer algebra system (CAS) such as Maple and Mathe-
matica. These systems are designed to compute real functions and
are very efficient at it.

However, it is not always possible to use CASs for program ver-
ification, because they are unsound and might define elementary
functions slightly differently than the theorem prover used for the
rest of the verification.1 [Harrison and Théry 1993] give formulas
for which CASs compute wrong results; for example, Maple eval-
uates the integral

R 1

−1

√
x2 dx to 0 instead of 1, and Mathematica

evaluates the undefined integral
R 1

−1
1√
x2 dx to 0.

Hence, we are interested in decision procedures that can be in-
tegrated in a theorem prover. Equalities involving only real num-
bers and basic arithmetic operations are easy to solve. Consider the
equation

2 · 35 − 27/32 = 483

To verify such an equation, we can use rewrite rules to replace
the power operation, the division, and the subtraction, leaving only
sums and products:

2 · 3 · 3 · 3 · 3 · 3 · 3 · 3 = 483 · 3 · 3 + 27

Then we can apply rewrite rules implementing addition and mul-
tiplication. The rewrite rules required by this transformation are
easy to establish. Assuming a binary representation for numerals,
this technique is also fast enough for most purposes.

Unfortunately, this approach does not work when applied di-
rectly to transcendental functions, since they would need infinitely
many basic arithmetic operations, and their result is generally
not finitely representable. Instead, we approximate transcenden-
tal function using finite means. We approximate a real number
by an interval between two floating-point numbers. This requires
defining the approximation functions in Isabelle/HOL and prov-
ing their correctness. To prove an inequality, we approximate both
sides and compare the resulting intervals. If the inequality holds for
all numbers in the respective intervals, the theorem is proved.

The main contributions of the work presented in this paper
[Hölzl 2009] are the following:

1. Formalizing upper-bound and lower-bound approximations of
the most important elementary transcendental functions (sin,
cos, arctan, exp, and ln) and of square root in Isabelle/HOL.

1 For example, x/0 = 0 in Isabelle/HOL. Most CASs implement x/0 as
undefined, which is not possible in Isabelle/HOL.

2. Implementing an evaluation function to approximate the result
of a real arithmetic expression by an interval that contains the
exact result.

3. Implementing a proof method for Isabelle/HOL that automati-
cally verifies inequalities with bounded variables.

These contributions are included in Isabelle2009. The the-
ory file src/HOL/Decision Procs/Approximation.thy in the
Isabelle source code archive implements the approximation
method. The definitions, lemmas, and theorems presented in sec-
tion 3 are directly generated from this sources. The proof for each
lemma and theorem can also be found in this file.

2. Showcase Overview
In this section, we briefly review the implemented proof method by
considering the simple formula arctan 1.5 < 1 and following it
step by step. Each line starting with a lowercase and boldface word
is an Isabelle command. After each proof command we show the
(numbered) subgoals to be proved.

It could seem that our proof method is not needed for this
example, by simply using the identity arctan π

2
= 1 and applying

the strict monotonicity of arc tangent. However, this would require
proving the inequality 2 · 1.5 < π, which is not trivial to do by
hand.

theorem arctan-1-5-less-one: arctan 1.5 < 1

1. arctan 15
10
< 1 (1.5 is internally represented as 15

10
)

Reify: The proof method relies on functions and datatypes defined in the
Isabelle/HOL logic. The first step is to convert the formula into a value of an
appropriate arithmetic expression datatype, a process called reification. The
interpie function evaluates the arithmetic expression, yielding an equivalent
formula. The simplification rules interpret-inequality-equations define the
semantics of our arithmetic.

apply (reify interpret-inequality-equations)

1. interpie
(Less (Arctan (Mult (Num 15) (Inverse (Num 10)))) (Num 1))
[]

Rewrite as approximation: Since interpie maps arithmetic expressions
directly to operations on real numbers, it is generally not executable.
Therefore, the next step is to rewrite the goal so that it uses the approx-
imation function approxie. This is achieved by applying the rule AP-
PROX INEQUALITY (If bounded-by vs bs and approxie prec eq bs then
interpie eq vs.) on the goal.

APPROX INEQUALITY is the central theorem in our work. It simply
states the correctness of our approximation. By applying it to the reified
formula, we obtain a call to approxie, which computes the formula using
floating-point interval arithmetic. When the inequality holds for the bounds
of the intervals, it also holds for the real numbers approximated by the
intervals.

apply (rule approx-inequality[where prec=10 and bs=[]])

1. bounded-by [] []
2. approxie 10

(Less (Arctan (Mult (Num 15) (Inverse (Num 10)))) (Num 1))
[]

Prove bounds: If the formula contains variables, we require each vari-
able to belong to a fixed interval, which is then used as an approximation of
the variable. In this example, no variables are used.

apply simp

1. approxie 10
(Less (Arctan (Mult (Num 15) (Inverse (Num 10)))) (Num 1))
[]

Evaluate: The approxie function can be executed using the ML code
generator of Isabelle/HOL. When the result of the computation is true, the

inequality is proved. Otherwise, all we know is that it cannot be stated
using the given precision parameter (which we passed when instantiating
APPROX INEQUALITY). In these cases, we can try again with a higher
precision.

apply eval
done

Instead of writing the above proof steps, we can use the approx-
imation proof method to perform the same steps automatically. Its
parameter specifies the precision to use.

theorem arctan 1.5 < 1 by (approximation 10)

3. Implementation
3.1 Reification
The first step of the proof method is to reify the inequality to prove,
meaning that we convert it into a value of our arithmetic expression
datatype.

Example AN ARITHMETIC OF ADDITION:
— The arith datatype specifies the syntactic form of our expressions:
datatype arith = Add arith arith | Num nat | Atom nat

— eval is the interpretation function (i.e., the semantics of arith):
fun eval :: arith⇒ nat list⇒ nat where
eval (Add a b) xs = eval a xs + eval b xs |
eval (Num x) xs = x |
eval (Atom n) xs = xs ! n

Using this setup, we can now apply reification to a simple term:

3 + a ≡ eval (Add (Num 3) (Atom 0)) [a]

Next, we would define a function in HOL that analyzes the
supplied arith value and prove the correctness of the function.

The reification step relies on Chaieb’s generic reification mech-
anism [Chaieb 2008]. In this framework, a HOL term of type τ
is converted to a value of a datatype δ applied to an interpretation
function [[]] :: δ ⇒ τ list ⇒ τ . To use the framework, we must
provide rewrite equations for [[]] that specify how τ terms are
mapped to δ values. As rewrite equations, we can normally use the
definitional equations of [[]] . For each type τ , we can specify
as many types δ as we wish, each with its own semantic function
[[]] .

Reification then works as follows. For simplicity, we consider a
single [[]] function for fixed τ and δ. First, we provide equations
for [[]] :

[[C1 x1 . . . xm]]xs = P1 [[x1]]xs . . . [[xm]]xs
[[C2 x1 . . . xm]]xs = P2 [[x1]]xs . . . [[xm]]xs

...
[[Cn x1 . . . xm]]xs = Pn [[x1]]xs . . . [[xm]]xs
[[Atom i]]xs = xs[i]

Here, the xi’s are variables, the Cj’s are constructors of δ, and
the Pk’s are arbitrary terms. The equations specify how the con-
structors are interpreted. The left-hand sides are allowed to over-
lap. The generic reification algorithm tries to match a right-hand
side Pk with the term to reify. When Pk matches, the correspond-
ing constructor Ck is used to build the δ value. The previous step
is then applied recursively to the arguments to Pk. If the term to

reify is a variable x, the last equation is used, and x is added to the
variable list xs.

Reification was introduced by [Moore and Boyer 1981]. A more
detailed overview of reification in Isabelle/HOL is provided by
[Chaieb 2008].

3.2 Syntax and Semantics
Before we can use reification, we must define the datatype into
which the real terms and inequalities are reified. We start with real
terms:
Definition floatarith:
datatype floatarith = Add floatarith floatarith
| Minus floatarith | Mult floatarith floatarith
| Inverse floatarith | Sin floatarith | Cos floatarith
| Arctan floatarith | Abs floatarith
| Max floatarith floatarith | Min floatarith floatarith | Pi
| Sqrt floatarith | Exp floatarith | Ln floatarith
| Power floatarith nat | Atom nat | Num float

The Atom constructor represents a variable by index. The other
constructors describe the arithmetic operations that we support in
our interval arithmetic.

Next, we define interpfa e xs to evaluate the expression e with
the list of variables xs. The nth element of the list xs corresponds
to Atom (n− 1). This essentially establishes the mapping from
floatarith constructors to the arithmetic operations.
Definition interpfa :: floatarith⇒ real list⇒ real:
interpfa (Add a b) vs = interpfa a vs + interpfa b vs
interpfa (Minus a) vs = − interpfa a vs
interpfa (Mult a b) vs = interpfa a vs · interpfa b vs
interpfa (Inverse a) vs = inverse (interpfa a vs)
interpfa (Sin a) vs = sin (interpfa a vs)
interpfa (Cos a) vs = cos (interpfa a vs)
interpfa (Arctan a) vs = arctan (interpfa a vs)
interpfa (Min a b) vs = min (interpfa a vs) (interpfa b vs)
interpfa (Max a b) vs = max (interpfa a vs) (interpfa b vs)
interpfa (Abs a) vs = |interpfa a vs|
interpfa Pi vs = pi
interpfa (Sqrt a) vs = sqrt (interpfa a vs)
interpfa (Exp a) vs = exp (interpfa a vs)
interpfa (Ln a) vs = ln (interpfa a vs)
interpfa (Power a n) vs = (interpfa a vs)

n

interpfa (Num f) vs = f
interpfa (Atom n) vs = vs[n]

We can support additional operations using appropriate lemmas,
assuming they can be expressed in terms of floatarith:
Lemma FLOATARITH-ADDITIONAL-ARITHMETIC:
interpfa (Mult a (Inverse b)) vs =

interpfa a vs

interpfa b vs

interpfa (Add a (Minus b)) vs = interpfa a vs− interpfa b vs
interpfa (Mult (Sin a) (Inverse (Cos a))) vs = tan (interpfa a vs)
interpfa (Exp (Mult b (Ln a))) vs = interpfa a vs powr interpfa b vs
interpfa (Mult (Ln x) (Inverse (Ln b))) vs =
log (interpfa b vs) (interpfa x vs)

Here is an example of how a real term maps to its floatarith
representation:

Example FLOATARITH-EXAMPLES:
1

sin x
− cos y =

interpfa
(Add (Mult (Num 1) (Inverse (Sin (Atom 1))))
(Minus (Cos (Atom 2))))

[x, y]

Next, we introduce a datatype inequality that represents the
syntax of inequalities and a function interpie that defines their
semantics. We distinguish between < and ≤.

Definition inequality:

datatype inequality = Less floatarith floatarith
| LessEqual floatarith floatarith

Definition interpie :: inequality⇒ real list⇒ bool:

interpie (Less a b) vs = (interpfa a vs < interpfa b vs)
interpie (LessEqual a b) vs = (interpfa a vs ≤ interpfa b vs)

With the definitions and lemmas presented in this section, we
can call the reify proof method to rewrite an HOL inequality into an
inequality value. Thanks to Chaieb’s generic reification framework,
everything is done inside the logic without needing any custom ML
code specific to the syntax.

3.3 Interval Arithmetic
Once the formula has been reified into a inequality value, we must
compute both sides. Since the result of transcendental functions
like arc tangent is generally not finitely representable, we approxi-
mate them using floating-point interval arithmetic. At the approxi-
mation level, a real value x is represented by a pair of floating-point
numbers (x, x), which denotes the interval2 {x .. x}.

Instead of floating-point numbers, we could have used rational
numbers, but floating-point numbers are easier to implement effi-
ciently. Another alternative would have been to use exact arithmetic
[Lester and Gowland 2003, Harrison 1996]. In this setting, each
real value x is represented by a function fx(p) that returns an inte-
ger approximating x at precision p: |fx(p)− x · 2p| < 1. However,
this approach requires us to prove the above inequality for each op-
eration, something we avoid by using interval arithmetic.

Comparing intervals works as follows: {x .. x} is less than
{y .. y} if x < y. Ideally, we would like the intervals to be as
small as possible. For example, knowing that sin(x) and cos(x)
belong to the interval {−1 .. 1} would not even suffice to show the
trivial fact sin(0) < cos(0).

The computations are parameterized by a used-specified pre-
cision p that controls the bit width of the floating-point numbers.
For terms involving a single elementary operation, a floating-point
value x = m · 2e is approximated by bounds respecting the con-
straints

x− x ≤ 2e−p

x− x ≤ 2e−p

This guarantee also holds for cos and sin applied to values
belonging to {−π .. π} and {−π/2 .. π/2}, respectively.

3.4 Floating-Point Arithmetic
The floating-point numbers are formalized in the ComputeFloat
theory developed for the Flyspeck II project [Obua 2008]. It repre-
sents floating-point numbers as a mantissa and an exponent, both
of which must be integers:
datatype float = Float int int
Definition mantissa :: float⇒ int: mantissa (Float m e) = m
Definition exponent :: float⇒ int: exponent (Float m e) = e

Isabelle’s integers are mapped to arbitrary precision integers in
ML when compiled by the code generator.

We overload the polymorphic constant real to interpret float
values as real values:
Definition pow2 :: int⇒ real:
pow2 e = (if 0 ≤ e then 2e else inverse 2− e)

2 We use the Isabelle-specific notation with braces rather than the mathe-
matical notation [x, x].

Definition real :: float⇒ real:
real (Float a b) = real a · pow2 b

For the operations on floating-point numbers, we omit the im-
plementation of the operations itself. They obey the following ob-
vious equations:

Lemma FLOAT ADD: real (a + b) = real a + real b
Lemma FLOAT MINUS: real (− a) = − real a

Lemma FLOAT SUB: real (a− b) = real a− real b

Lemma FLOAT MULT: real (a · b) = real a · real b

Lemma FLOAT POWER: real xn = (real x)n

Such an equation is not possible for division, which is imple-
mented by lower-bound and upper-bound functions, parameterized
with the precision:

Lemma FLOAT DIVL: real (float-divl prec x y) ≤ real x
real y

Lemma FLOAT DIVR: real x
real y

≤ real (float-divr prec x y)

These operations are used in the next section to implement the
elementary operations. As a result, the ML code generated from the
Isabelle theories uses our arbitrary-precision float type, rather than
ML’s machine floating-point numbers.

For clarity, the real constant is implicit in the rest of this paper.

3.5 The Approximation Function
The core of our decision procedure is the approxie function, which
returns True if the given inequality holds for the specified variable
bounds and precision; otherwise, it returns False:

Definition
approxie :: nat⇒ inequality⇒ (float × float) list⇒ bool:
approxie prec (Less a b) bs =

(case (approxfa prec a bs, approxfa prec b bs) of
(None, b)⇒ False | (b(l, u)c, None)⇒ False
| (b(l, u)c, b(l ′, u ′)c)⇒ u < l ′)

approxie prec (LessEqual a b) bs =
(case (approxfa prec a bs, approxfa prec b bs) of
(None, b)⇒ False | (b(l, u)c, None)⇒ False
| (b(l, u)c, b(l ′, u ′)c)⇒ u ≤ l ′)

The approxie function relies on

Definition
approxfa :: nat⇒ floatarith⇒ (float × float) list ⇀ float × float:
which approximately evaluates an arithmetic expression. It com-
putes an appropriate interval based on the specified precision if the
expression is defined for the given variable bounds; otherwise, it re-
turns None. The function is defined by cases following the structure
of the floatarith datatype.

approxfa prec (Num f) bs = b(f , f)c
approxfa prec (Atom i) bs = (if i < |bs| then bbs[i]c else None)

The equation for Atom looks up the bounds of the variable in
the list bs.

For the remaining equations, we need the following auxiliary
functions:

approx ′ calls approxfa with an expression and rounds the resulting
interval’s bounds to the supplied precision.

lift-un, lift-un ′, and lift-bin ′ lift the boundary functions to a func-
tion of type (float × float) option. If the result of the previous
operation was None, they return None. lift-bin ′ and lift-un ′ also
pass the result to a b c constructor to get a (float× float) option.

The implementation of approxfa for addition and unary minus
on intervals is based on the equations

(a, a) + (b, b) = (a+ a, a+ b)

−(a, a) = (−a,−a)

Equipped with our auxiliary functions, they are straightforward
to implement:

approxfa prec (Add a b) bs =
lift-bin ′ (approx ′ prec a bs) (approx ′ prec b bs)
(λl1 u1 l2 u2. (l1 + l2, u1 + u2))

approxfa prec (Minus a) bs =
lift-un ′ (approx ′ prec a bs) (λl u. (− u, − l))

The min, max, and | | operators are implemented similarly:

approxfa prec (Min a b) bs =
lift-bin ′ (approx ′ prec a bs) (approx ′ prec b bs)
(λl1 u1 l2 u2. (min l1 l2, min u1 u2))

approxfa prec (Max a b) bs =
lift-bin ′ (approx ′ prec a bs) (approx ′ prec b bs)
(λl1 u1 l2 u2. (max l1 l2, max u1 u2))

approxfa prec (Abs a) bs =
lift-un ′ (approx ′ prec a bs)
(λl u. (if l < 0 ∧ 0 < u then 0 else min |l| |u|, max |l| |u|))

For multiplication, we must perform a case distinction on the
signs of the lower and upper bounds of the operands’ intervals. To
ease this, we introduce two auxiliary functions:

pprt x =
n
x when x ≥ 0
0 otherwise

nprt x =
n
x when x ≤ 0
0 otherwise

They conveniently allow us to write the lower and upper bounds
of the product as a sum that considers all four cases:

approxfa prec (Mult a b) bs =
lift-bin ′ (approx ′ prec a bs) (approx ′ prec b bs)
(λa1 a2 b1 b2.

(nprt a1 · pprt b2 + nprt a2 · nprt b2 +
pprt a1 · pprt b1 + pprt a2 · nprt b1,
pprt a2 · pprt b2 + pprt a1 · nprt b2 +
nprt a2 · pprt b1 + nprt a1 · nprt b1))

Our syntax explicitly supports xk where k is a natural number.
This adds no expressive power since we could rewrite xk into
x · · · · · x (k times), but we can compute xk both more efficiently
and in some cases with a smaller bound interval.

approxfa prec (Power a n) bs =
lift-un ′ (approx ′ prec a bs)
(λl u. if odd n ∨ 0 < l then (ln, un)

else if u < 0 then (un, ln) else (0, (max (− l) u)n))

For 1/x, we first checks if 0 is in x’s interval. If it is, we
return None; otherwise, we compute the lower and upper bounds
of 1/x using float-divl and float-divr, which divide at the specified
precision.

approxfa prec (Inverse a) bs =
lift-un (approx ′ prec a bs)
(λl u. if 0 < l ∨ u < 0

then (bfloat-divl prec 1 uc, bfloat-divr prec 1 lc)
else (None, None))

The remaining constructors of floatarith correspond to sin, cos,
π, arctan,

√
, exp, and ln. For those that are monotonic, we have

separate functions for lower and upper bounds. We will see how to
define them in section 3.7.

approxfa prec (Sin a) bs =
lift-un ′ (approx ′ prec a bs) (bnds-sin prec)

approxfa prec (Cos a) bs =
lift-un ′ (approx ′ prec a bs) (bnds-cos prec)

approxfa prec Pi bs = b(lb-pi prec, ub-pi prec)c
approxfa prec (Arctan a) bs =

lift-un ′ (approx ′ prec a bs)
(λl u. (lb-arctan prec l, ub-arctan prec u))

approxfa prec (Sqrt a) bs =
lift-un (approx ′ prec a bs)
(λl u. (lb-sqrt prec l, ub-sqrt prec u))

approxfa prec (Exp a) bs =
lift-un ′ (approx ′ prec a bs)
(λl u. (lb-exp prec l, ub-exp prec u))

approxfa prec (Ln a) bs =
lift-un (approx ′ prec a bs) (λl u. (lb-ln prec l, ub-ln prec u))

As we have seen in section 3.2, subtraction, division, tan, xy ,
and logx are implemented as rewrite rules in terms of the other
operations. For these, no equations are needed for approxfa.

To use approxfa in a theorem prover, we must show its correct-
ness, which means the following: If the result of approxfa lies in
the interval represented by the pair (l, u), the result of interpfa is
between l and u.

Naturally, this holds only if the input intervals bound the exact
values. This is expressed by the bounded-by vs bs predicate, where
vs are the variables and bs are the corresponding bounds. The proof
method uses the simplifier to prove bounded-by vs bs from the list
of assumptions provided by the user. The predicate bounded-by is
implemented recursively:

Definition bounded-by :: real list⇒ (float × float) list⇒ bool:

bounded-by (v # vs) ((l, u) # bs) =
((l ≤ v ∧ v ≤ u) ∧ bounded-by vs bs)
bounded-by [] [] = True
bounded-by [] (v # va) = False
bounded-by (v # va) [] = False

The correctness theorem for approxfa follows:

Theorem APPROX:
If bounded-by xs vs and b(l, u)c = approxfa prec expr vs then
l ≤ interpfa expr xs ∧ interpfa expr xs ≤ u.

The proof is by straightforward structural induction on expr.
From the correctness of approxfa, it is easy to show the correct-

ness of approxie:

Theorem APPROX INEQUALITY:
If bounded-by vs bs and approxie prec eq bs then interpie eq vs.

3.6 Taylor Series
We compute the lower and upper bounds of transcendental func-
tions using Taylor series. For ln and arctan, we had to prove that
their Isabelle/HOL definitions (which are defined as the inverse of
exp and tan) are equivalent to their Taylor series on their conver-
gence areas. The other functions are already defined as Taylor se-
ries in Isabelle/HOL.

Although series are generally not computable, lower and upper
bounds for a specific precision can often be computed as follows.
Let f be the transcendental function for which we want to compute
lower and upper bounds. The series is defined on an interval Rf ,
which need not be the entire reals:

x ∈ Rf =⇒ f(x) =

∞X
i=0

(−1)i · 1

ai
· xi (1)

For all functions f under consideration, ai is a positive mono-
tonic null sequence. Furthermore,3 we assume that x ∈ {0 .. 1}. In
the next section, we will see how to circumvent this restriction. To
compute the bounds, we consider the partial sums Sn of the Taylor
series:

Sn =

nX
i=0

(−1)i · 1

ai
· xi

For all functions under consideration, the Taylor series is an
alternating power series, and therefore S2n is a lower bound and
S2n+1 is an upper bound.

From (1) we know that limn→∞ Sn = f(x). Since ai is a
monotonic positive null sequence, {S2n+1 .. S2n} forms a se-
quence of nested intervals. Moreover, since limn→∞ Sn = f(x),
we know that f(x) is always in these intervals. Hence, for an even
n, the partial sum Sn is a upper bound, and for an odd n, the partial
sum Sn is a lower bound of f(x). The difference between the two
partial sums is

S2n − S2n+1 =
1

a2n+1
· x2n+1 (2)

The error on the upper bound is S2n − f(x) ≤ (1/a2n+1) ·
x2n+1. This inequality enables us to determine n for the desired
precision p.

For sin, cos, and exp, it can be shown that 1/a2n+1 ≤
1/22n+1. We show that Sp is a upper bound of precision p.

Let p′ be a precision such that 2 · p′ ≥ p. Since x ∈ {0..1}, x
can be written as m · 2e, with 1 ≤ m < 2 and e ≤ 0. Using these
notations and (2), we obtain the following upper bound estimate:

Sp − f(x) ≤ S2p′ − S2p′+1

=
1

a2p′+1

· x2p′+1

≤ 1

22p′+1
· x

≤ 1

2p+1
·m · 2e

≤ 2e−p

The estimation of the lower bound works in a similar way.
To compute the partial sums Sm, we use the Horner scheme.

Let bn = am−n−1, and let h(m,x) be the function defined by the
equations

h(0, x) = 0

h(n+ 1, x) =
1

bn
− x · h(n, x)

Clearly, h(m,x) equals Sm. If h(m,x) is computed as a
floating-point number, it is not possible to compute the coefficients
1/bn exactly. Hence, we must split the computation function into
two parts: one for the lower bound, h, and one for the upper bound,
h. The polynomials computed in the recursive call are subtracted
from the current coefficient. Since subtraction swaps the bounds, h
and h are mutually recursive:

h(0, x) = 0

h(n+ 1, x) = 1/bn − x · h(n, x)
h(0, x) = 0

h(n+ 1, x) = 1/bn − x · h(n, x)

3 Exceptionally, for exp, we must assume x ∈ {−1 .. 0} instead.

3.7 Approximating Transcendental Functions
In section 3.5, we glossed over the implementation of the lower and
upper bounds for transcendental functions. They are formalized as
follows:

Power series The transcendental function is represented as a
power series approximated as a finite polynomial, which in
turn is computed using the Horner scheme. Unfortunately, the
approximation can only be used on a limited convergence area,
as we saw in the previous section.

Constants We use the approximation of the power series to com-
pute π and ln 2.

Bounding functions Trigonometrical identities enable us to com-
pute the transcendental functions on the entire definition range.
To accomplish this, we use the power series and the computed
constants.

To illustrate how to define the bounding functions for transcen-
dental functions, we will restrict our attention to arctan. The other
functions are implemented in a somewhat similar way.

For arctan, we must prove that its definition is equivalent to its
Taylor series on its convergence area:

Lemma ARCTAN SERIES:
If |x| ≤ 1 then arctan x =

∞P
k=0

(− 1)k · 1
k · 2 + 1

·xk · 2 + 1.

To evaluate this series, we introduce an auxiliary function hn(x)
computing its partial sums:

hn(x) =

n−1X
k=0

(−1)k · 1

k · 2 + 1
· xk

The exponent of x does not match the one in the Taylor series,
but by massaging it slightly we can make it comply:

x · hn(x2) =

n−1X
i=0

(−1)k · 1

2 · k + 1
· xk·2+1

The hn(x) function can be computed using the Horner scheme
by mutual recursive lower and upper bound functions. Since the
input value to hn is squared, x is always non-negative.

lb-arctan-horner prec n 1 x computes the lower bound and
ub-arctan-horner prec n 1 x the upper bound of hn(x) to the
precision prec:

Definition ub-arctan-horner :: nat⇒ nat⇒ nat⇒ float⇒ float:

ub-arctan-horner prec 0 k x = 0
ub-arctan-horner prec (n + 1) k x =

rapprox-rat prec 1 k− x · lb-arctan-horner prec n (k + 2) x

Definition lb-arctan-horner :: nat⇒ nat⇒ nat⇒ float⇒ float:

lb-arctan-horner prec 0 k x = 0
lb-arctan-horner prec (n + 1) k x =

lapprox-rat prec 1 k− x · ub-arctan-horner prec n (k + 2) x

Lemma ARCTAN-0-1-BOUNDS:

If 0 ≤ x and x ≤ 1 then
arctan x
∈ {x · lb-arctan-horner prec (get-even n) 1 (x · x) ..

x · ub-arctan-horner prec (get-odd n) 1 (x · x)}.

To approximate arctan for values outside of the power series’s
convergence area, we must calculate π. An easy-to-prove and rea-
sonably fast approach is to use Machin’s formula:

Lemma MACHIN: pi
4

= 4 · arctan 1
5
− arctan 1

239

Since MACHIN only needs arctan in the interval {−1 .. 1},
we can use it together with lb-arctan-horner and ub-arctan-horner
to calculate π. To determine the number of terms needed to ob-
tain the required precision, we observe that (1/5)2 < 2−4 and
(1/239)2 < 2−14; hence, with each computed term we gain 4 bits
for arctan(1/5) and 14 bits for arctan(1/239). Therefore, it suf-
fices to consider prec div 4 + 1 and prec div 14 + 1 terms, respec-
tively:

Definition ub-pi :: nat⇒ float:

ub-pi prec =
let A = rapprox-rat prec 1 5; B = lapprox-rat prec 1 239
in 4 · (4 ·A · ub-arctan-horner prec (get-odd (prec div 4 + 1)) 1 (A ·A)−

B · lb-arctan-horner prec (get-even (prec div 14 + 1)) 1 (B ·B))

Definition lb-pi :: nat⇒ float:

lb-pi prec =
let A = lapprox-rat prec 1 5; B = rapprox-rat prec 1 239
in 4 · (4 ·A · lb-arctan-horner prec (get-even (prec div 4 + 1)) 1 (A ·A)−

B · ub-arctan-horner prec (get-odd (prec div 14 + 1)) 1 (B ·B))

Theorem BNDS-PI: pi ∈ {lb-pi n .. ub-pi n}
Our implementation of arctanx only caters for x ∈ {−1 .. 1}.

Furthermore, since the coefficients of the Taylor series only shrink
linearly, the desired precision is honored only for x ∈ {−1/2 .. 1/2}.
To compute values outside of that interval, we exploit the following
properties of arctan:

Lemma ARCTAN-HALF: arctan x = 2 · arctan x
1 + sqrt (1 + x2)

Lemma ARCTAN-INVERSE: If x 6= 0 then
arctan 1

x
= sgn x · pi

2
− arctan x.

Putting all ingredients together, we obtain the following case
distinction:

arctan(x) =

8>>>>>>>>><>>>>>>>>>:

− arctan(−x) ifx < 0
∞X
n=0

(−1)n · 1

2 · n+ 1
· x2·n+1 if 0 ≤ x ≤ 1

2

2 · arctan

„
x

1 +
√

1 + x2

«
if 1

2
< x ≤ 2

π

2
− arctan

„
1

x

«
otherwise

From this equation, we derive the following lower-bound and
upper-bound computation:

Definition ub-arctan :: nat⇒ float⇒ float:

ub-arctan prec x =
let lb-horner =

λx. x · lb-arctan-horner prec (get-even (prec div 4 + 1)) 1 (x · x);
ub-horner =
λx. x · ub-arctan-horner prec (get-odd (prec div 4 + 1)) 1 (x · x)

in if x < 0 then − lb-arctan prec (− x)
else if x ≤ 1

2
then ub-horner x

else if x ≤ 2
then let x ′= float-divr prec x

(1 + the (lb-sqrt prec (1 + x · x)))
in if 1 < x ′ then ub-pi prec · 1

2
else 2 · ub-horner x ′

else ub-pi prec · 1
2
− lb-horner (float-divl prec 1 x)

Definition lb-arctan :: nat⇒ float⇒ float:

lb-arctan prec x =
let ub-horner =

λx. x · ub-arctan-horner prec (get-odd (prec div 4 + 1)) 1 (x · x);
lb-horner =
λx. x · lb-arctan-horner prec (get-even (prec div 4 + 1)) 1 (x · x)

in if x < 0 then − ub-arctan prec (− x)
else if x ≤ 1

2
then lb-horner x

else if x ≤ 2
then 2 · lb-horner

(float-divl prec x
(1 + the (ub-sqrt prec (1 + x · x))))

else let x ′= float-divr prec 1 x
in if 1 < x ′ then 0 else lb-pi prec · 1

2
− ub-horner x ′

For x < 0, we exploit the identity arctanx = − arctan−x,
which swaps the bounds. For 0 ≤ x ≤ 1/2, we directly call our
power series implementation of arctan. For 1/2 < x ≤ 2, we in-
voke the power series implementation with x′ = x/

`
1 +
√

1 + x2
´
.

Mathematically, x′ ≤ 1, but because float-divr over-approximates
division, we can obtain x′ > 1. In that case, we simply use the
mathematical upper bound π/2 as the upper bound. Finally, for
x > 2, we exploit the identity arctanx = (π/2)− arctan (1/x).

These functions compute correct arctanx bounds for all values
of x:

Theorem BNDS-ARCTAN:
If (l, u) = (lb-arctan prec lx, ub-arctan prec ux) ∧ x ∈ {lx .. ux}
then l ≤ arctan x ∧ arctan x ≤ u.

3.8 Evaluation Using the Code Generator
To evaluate the lower-bound and upper-bound functions, it could
be tempting to use the Isabelle simplifier, which rewrites terms by
applying equations in a left-to-right manner. However, this is slow
and might even fail due to technical details of the implementation
of numerals in Isabelle.

The alternative is to convert the functions to ML and execute
them. Isabelle provides a facility to generate executable code from
HOL specifications [Haftmann and Nipkow 2007]. The code gen-
erator supports a large fragment of HOL that includes datatypes,
inductive predicates, and recursive functions. It turns out that our
entire development fits comfortably within that fragment.

The code generator lets us map HOL constants directly to ML
functions, bypassing their definition. This must be done with great
care, since there is no proof of equivalence between the HOL
constant’s definition and the ML function. Our setup maps natural
numbers and integers to ML’s arbitrary-precision integers. For large
integers (which arise when representing high-precision floating-
point numbers in the format m · 2e), this provides a huge speedup,
especially for the div and mod operators.

The code generator can be used as an oracle, which proves ex-
ecutable theorems by evaluating them in ML. Used in conjunction
with reification, it enables us to develop a decision procedure in
Isabelle/HOL and execute it in ML. Since the code generator cir-
cumvents Isabelle’s LCF kernel, we must explicitly trust the code
generator, the ML environment, and our mapping from HOL inte-
gers and natural numbers to ML arbitrary-precision integers.

This last point must be emphasized. Since Isabelle is imple-
mented in ML, we already trust large parts of the ML environ-
ment. However, normal Isabelle applications do not require inte-
gers larger than 231, which typical ML implementations represent
differently. We cannot exclude the possibility that there is a bug
in, say, the ML implementation of division on large integers that
does not affect the LCF kernel but that nonetheless compromises
the correctness of our decision procedure.

4. Related Work
To our knowledge, the first proof method for approximating tran-
scendental functions in an interactive theorem prover is [Harrison
1996]. The method relied on exact arithmetic to calculate transcen-
dental functions in the HOL theorem prover. In exact arithmetic,
each real value x is represented by a function fx(p) that computes
an integer representing the first p decimal places of the exact real
value. By definition, fx(p) always satisfies |fx(p)− 2px| < 1, so
no interval arithmetic is needed. In addition, all computations are
evaluated in the logic without code generation, with the benefit that
all theorems are completely proved using the LCF kernel.

For the PVS theorem prover, [Muñoz and Lester 2005] imple-
ments the numerical proof method using algorithms very similar to
those used in our work. They also rely on code generation to effi-
ciently compute the results. However, they use rational numbers in-
stead of floating-point numbers. [Daumas et al. 2009] combine this
approach with [Daumas et al. 2005] to implement interval splitting
and Taylor series expansion (described in section 5).

[Melquiond 2008] applied essentially the same technique for
Coq, but using floating-point numbers. Melquiond uses various
techniques to expand the class of theorem that can be proved using
his method, notably interval splitting.

[Akbarpour and Paulson 2008] followed a radically different ap-
proach to the whole problem. They transform the formula involving
transcendental functions and square root into a formula consisting
only of basic arithmetic operations on polynomials. This formula is
then passed to a first-order prover, instead of proved by computa-
tion. Unlike the other approaches, this approach supports formulas
like | exp(x) − 1| ≤ exp(|x|) − 1, where x ranges over all real
numbers. On the other hand, it is inefficient for computing high-
precision numbers.

5. Extensions
The techniques described in this section are not implemented in
Isabelle2009 but are included in the latest development version of
Isabelle.

5.1 Interval Splitting
Often, a formula ϕ(x) could be solved if the interval associated
with the variable xwere split into smaller intervals. This is typically
due to the dependency effect. For example, if x lies in the interval
{0 .. 1}, the result of x2−x using a single interval is {−1 .. 1}. In
contrast, if we split the interval into {0 .. 0.5} and {0.5 .. 1}, we
get {−0.5 .. 0.25} ∪ {−0.75 .. 0.5} = {−0.75 .. 0.5}.

In general, interval splitting [Daumas et al. 2009, Melquiond
2008] works as follows: For an input interval I associated with a
variable x, we generate a set of subintervals {I1, . . . , In} cover-
ing I . The proof method then verifies the formula for each subin-
terval Ii. If each formula can be proved, we know that ∀i. x ∈
Ii =⇒ ϕ(x), hence x ∈ I =⇒ ϕ(x). The proof method must
be extended to accept a list of variables and associated subinterval
counts, from which it automatically generates the desired theorems
and proves them.

5.2 Taylor Series Expansion
We can often mitigate the dependency effect by rewriting the term
so that most variables occur only once. When this does not work
(e.g., for formulas containing trigonometric functions), an alterna-
tive is to use Taylor series expansion. We assume the formula has
the form ∀x ∈ I. f(x) > 0. If f is at least n times differentiable
on I and for a c ∈ I , we know from Taylor’s theorem that

∃t ∈ I. f(x) =

n−1X
i=0

1

i!
· f i(c) · (x− c)i +

1

n!
· fn(t) · (x− c)n

If we use I as the interval representing t, we know that f(x)
is between the lower and upper bound of the right-hand side. In
each term 1

i!
· f i(c) · (x − c)i, the variable x occurs only in the

exponentiation. As a result, x occurs exactly once per exponent,
except for the last term 1

n!
· fn(t) · (x − c)n, since the interval I

represents x and also t. Fortunately, if the nth derivation of f is
small enough, the dependency effect is virtually eliminated.

5.3 Argument Reduction
In the current implementation, the precision for sinx and cosx is
only guaranteed for input values in {−π/2 .. π/2} and {−π .. π},
respectively. For other inputs, the pessimal interval {−1 .. 1} is re-
turned. The Taylor series return correct results for all input values,
but to obtain the desired precision we must compute more terms as
the absolute value of x increases. A better approach would be to
use argument reduction. Since sin and cos are periodic functions,
we may shift any real x by π times an integer k:

x′ = x− k · π =⇒ sinx′ = sinx

To compute k, we can simply divide x by π and cut of all
digits after the decimal point. For interval arithmetic, we must
choose a single k for both the lower and the upper bound. If the
difference between them is greater than π, we can immediately
return {−1 .. 1}. Otherwise, we must determine whether the two
bounds are in the same monotonic interval of the function or there
is an optimum between the two points.

References
Behzad Akbarpour and Lawrence C. Paulson. MetiTarski: an automatic

prover for the elementary functions. In Serge Autexier, John Camp-
bell, Julio Rubio, Volker Sorge, Masakazu Suzuki, and Freek Wiedijk,
editors, AISC/MKM/Calculemus, volume 5144 of Lecture Notes in Com-
puter Science, pages 217–231. Springer, 2008. ISBN 978-3-540-85109-
7. URL http://dblp.uni-trier.de/db/conf/aisc/aisc2008.
html#AkbarpourP08.

Amine Chaieb. Automated methods for formal proofs in simple arithmetics
and algebra. PhD thesis, Technische Universität München, Germany,
April 2008. URL http://www4.in.tum.de/~chaieb/pubs/pdf/
diss.pdf.

Marc Daumas, Guillaume Melquiond, and César Muñoz. Guaranteed
proofs using interval arithmetic. In Proceedings of the 17th IEEE Sym-
posium on Computer Arithmetic, ARITH-17, pages 188–195, Cape Cod,
Massachusetts, 2005. IEEE Computer Society.

Marc Daumas, David R. Lester, and César Muñoz. Verified real number
calculations: A library for interval arithmetic. IEEE Transactions on
Computers, 58(2):226–237, 2009. ISSN 0018-9340. doi: http://doi.
ieeecomputersociety.org/10.1109/TC.2008.213.

Florian Haftmann and Tobias Nipkow. A code generator framework for
Isabelle/HOL. Technical Report 364/07, Department of Computer Sci-
ence, University of Kaiserslautern, August 2007.

John Harrison. Theorem Proving with the Real Numbers. PhD thesis,
University of Cambridge, 1996.

John Harrison and Laurent Théry. Extending the HOL theorem prover with
a computer algebra system to reason about the reals. In Jeffrey J. Joyce
and Carl Seger, editors, Proceedings of the 1993 International Workshop
on the HOL theorem proving system and its applications, volume 780 of
Lecture Notes in Computer Science, pages 174–184, UBC, Vancouver,
Canada, 1993. Springer-Verlag.

Johannes Hölzl. Proving real-valued inequalities by computation in Is-
abelle/HOL. Diploma thesis, Institut für Informatik, Technische Uni-
versität München, 2009.

David R. Lester and Paul Gowland. Using PVS to validate the algorithms
of an exact arithmetic. Theoretical Computer Science, 291:203–218,
January 2003.

Guillaume Melquiond. Proving bounds on real-valued functions with
computations. In Alessandro Armando, Peter Baumgartner, and Gilles
Dowek, editors, Proceedings of the 4th International Joint Conference
on Automated Reasoning, volume 5195 of Lectures Notes in Artificial
Intelligence, pages 2–17, Sydney, Australia, 2008.

J Strother Moore and Robert S. Boyer, editors. Metafunctions: Proving
Them Correct and Using Them Efficiently as New Proof Procedures,
chapter 3, pages 103–213. Academic Press, London, 1981.

César Muñoz and David R. Lester. Real number calculations and theorem
proving. In J. Hurd and T. Melham, editors, Proceedings of the 18th
International Conference on Theorem Proving in Higher Order Logics,
TPHOLs 2005, volume 3603 of Lecture Notes in Computer Science,
pages 195–210, Oxford, UK, 2005. Springer-Verlag.

Steven Obua. Flyspeck II: The Basic Linear Programs. PhD thesis,
Technische Universität München, Germany, 2008. URL http://www4.
in.tum.de/~obua/phd/thesis.pdf.

