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Abstract We describe a proof of the Central Limit Theorem that has been for-
mally verified in the Isabelle proof assistant. Our formalization builds upon and ex-
tends Isabelle’s libraries for analysis and measure-theoretic probability. The proof
of the theorem uses characteristic functions, which are a kind of Fourier transform,
to demonstrate that, under suitable hypotheses, sums of random variables con-
verge weakly to the standard normal distribution. We also discuss the libraries
and infrastructure that supported the formalization, and reflect on some of the
lessons we have learned from the effort.
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1 Introduction

If you roll a fair die many times and compute the average number of spots showing,
the result is likely to be close to 3.5, and the odds that the average is far from the
expected value decreases roughly as the area under the familiar bell-shaped curve.
Something similar happens if the measurement is continuous rather than discrete,
such as when you repeatedly toss a needle on the ground and measure the angle
it makes with respect to a fixed reference line. Even if the die is not a fair die or
the geometry of the needle and the ground makes some angles more likely than
others, the distribution of the average still approaches the area under a bell-shaped
curve centered on the expected value. The width of the bell depends on both the
variance of the random measurement and the number of times it is performed.
Made precise, this amounts to a statement of the Central Limit Theorem.

The Central Limit Theorem lies at the heart of modern probability. Many
generalizations and variations have been studied, some of which either relax the
requirement that the repeated measurements are independent of one another and
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identically distributed (cf. in particular, the results of Lyapunov and Lindberg [3]),
while others provide additional information on the rate of convergence.

Here we report on a formalization of the Central Limit Theorem that was car-
ried out in the Isabelle proof assistant. This result is noteworthy for a number
of reasons. Not only is the CLT fundamental to probability theory and the study
of stochastic processes, but so is the machinery developed to prove it, ranging
from ordinary calculus to the properties of real distributions and characteristic
functions. There is a pragmatic need to subject statistical claims made in engi-
neering, risk analysis, and financial computation to formal verification, and our
formalization along with the surrounding infrastructure can support such practical
efforts.

The formalization is also a good test for Isabelle’s libraries, proof language,
and automated reasoning tools. As we will make clear, the proof draws on a very
broad base of facts from analysis, topology, measure theory, and probability theory,
providing a useful evaluation of the robustness and completeness of the supporting
libraries. Moreover, the concepts build on one another. For example, a measure is
a function from a class of sets to the reals, and reasoning about convergence of
measures involves reasoning about sequences of such functions. The operation of
forming the characteristic function is a functional taking a measure to a function
from the reals to the complex numbers, and the convergence of such functionals is
used to deduce convergence of measures. The conceptual underpinnings are thus
as deep as they are broad, and working with them tests Isabelle’s mechanisms for
handling abstract mathematical notions.

In Section 2 we provide an overview of the Central Limit Theorem and the
proof that we formalized, following the textbook presentation of Billingsley [3]. In
Section 3 we describe the Isabelle proof assistant, and the parts of the library that
supported our formalization. In Section 4 we describe the formal proof itself, and
in Section 5 we reflect on what we have learned from the effort.

Our formalization is currently part of the Isabelle library, which can be found
online at https://isabelle.in.tum.de/.! A preliminary, unpublished report on the
formalization can be found on arXiv [1]. Our presentation also draws heavily on
Serafin’s Carnegie Mellon MS thesis [20], which provides additional information.

Acknowledgments. We are grateful to Tobias Nipkow, Lawrence Paulson, Makar-
ius Wenzel, and the entire Isabelle team for the ongoing development of Isabelle.
We are especially grateful to Tobias for steadfast encouragement and support. We
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DMS-1068829, and Avigad’s work has been partially supported by AFOSR grants
FA9550-12-1-0370 and FA9550-15-1-0053. Holzl’s work has been partially sup-
ported by DFG projects Ni 491/15-1 and Ni 491/16-1.

2 Overview of the Central Limit Theorem

For our formalization we followed Billingsley’s textbook, Probability and Measure
[3], which provides an excellent introduction to these topics. Here we provide some

1 The probability library in particular can be found at https://isabelle.in.tum.de/dist/
library/HOL/HOL-Probability/index.html.
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historical background, briefly review the key concepts, give a precise statement of
the Central Limit Theorem, and present an outline of the proof.

2.1 Historical background

In 1733, De Moivre privately circulated a proof that, as n approaches infinity,
the distribution of n flips of a fair coin converges to a normal distribution. This
material was later published in the 1738 second edition of his book The Doctrine
of Chances, the first edition of which was published in 1712. That book is widely
regarded as the first textbook on probability theory. De Moivre also considered
the case of what we would call a biased coin, that is, an event which has value one
with probability p and zero with probability 1 — p for some p € (0,1). He showed
that his convergence theorem continues to hold in that case.

De Moivre’s result was generalized by Laplace in the period between about
1776 and 1812 to sums of random variables with various other distributions, such
as the uniform distribution on an interval. Over the next three decades Laplace
developed conceptual and analytical tools to extend this convergence theorem to
sums of independent and identically distributed random variables with ever more
general distributions, and this work culminated in his treatise Théorie analytique
des probabilités. This included the development of the method of characteristic
functions to study the convergence of sums of random variables, a move which
firmly established the usefulness of analytic methods in probability theory.

Laplace’s theorem later became known as the Central Limit Theorem, a des-
ignation due to Pdlya, stemming from its importance both in the theory and ap-
plications of probability. In modern terms, the theorem states that the normalized
sum of a sequence of independent and identically distributed random variables
with finite, nonzero variance converges to a normal distribution. All of the main
ingredients of the proof of the CLT are present in the work of Laplace, though of
course the theorem was refined and extended as probability underwent the radical
changes necessitated by its move to measure-theoretic foundations in the first half
of the twentieth century.

Gauss was one of the first to recognize the importance of the normal dis-
tribution to the estimation of measurement errors. The usefulness of the normal
distribution in this context is largely a consequence of the Central Limit Theorem,
since errors occurring in practice are frequently the result of many independent
factors which sum to an overall error in a way which can be regarded as approxi-
mated by a sum of independent and identically distributed random variables. The
normal distribution also arose with surprising frequency in a wide variety of em-
pirical contexts, from the heights of men and women to the velocities of molecules
in a gas. This gave the CLT the character of a natural law, as seen in the following
poetic quote from Sir Francis Galton in 1889 [8]:

I know of scarcely anything so apt to impress the imagination as the won-
derful form of cosmic order expressed by the “Law of Frequency of Error.”
The law would have been personified by the Greeks and deified, if they had
known of it. It reigns with serenity and in complete self-effacement, amidst
the wildest confusion. The huger the mob, and the greater the apparent
anarchy, the more perfect is its sway. It is the supreme law of Unreason.
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Whenever a large sample of chaotic elements are taken in hand and mar-
shaled in the order of their magnitude, an unsuspected and most beautiful
form of regularity proves to have been latent all along.

More details on the history of the Central Limit Theorem and its proof can be
found in [7].

2.2 Background from measure theory

A measure space (£2,F) consists of a set 2 and a o-algebra F of subsets of (2, that is,
a collection of subsets of {2 containing the empty set and closed under complements
and countable unions. Think of 2 as the set of possible states of affairs, or possible
outcomes of an action or experiment, and each element E of F as representing the
set of states or outcomes in which some event occurs — for example, that a card
drawn is a face card, or that Spain wins the World Cup. A probability measure y on
this space is a function that assigns a value p(E) in [0, 1] to each event E, subject
to the following conditions:

L pu(0) =0,

2. u(2) =1, and

3. p is countably additive: if (F;) is any sequence of disjoint events in F, then
w(U; Ei) = 32, m(Eq).

Intuitively, pu(E) is the “probability” that E occurs.

The collection B of Borel subsets of the real numbers is the smallest o-algebra
containing all intervals (a,b). A random wvariable X on the measure space (§2,F)
is a measurable function from (2, F) to (R,B). Saying X is measurable means
that for every Borel subset B of the real numbers, the set {w € 2| X(w) € B} is
in F. Think of X as some real-valued measurement that one can perform on the
outcome of the experiment, in which case, the measurability of X means that if we
are given any probability measure p on (£2,F), then for any Borel set B it makes
sense to talk about “the probability that X is in B.” In fact, if X is a random
variable, then any measure p on (2, F) gives rise to a measure v on (R, B), defined
by v(B) = p({w € 2 | X(w) € B}). A probability measure on (R, B) is called a
real distribution, or, more simply, a distribution, and the measure v just described
is called the distribution of X.

If X is a random variable, the mean or expected value of X with respect to a
probability measure p is [ Xdu, the integral of X with respect to p. If m is the
mean, the variance of X is [(X — m)?du, a measure of how far, on average, we
should expect X to be from its mean.

Note that passing from p and X to its distribution v means that instead of
worrying about the probability that some abstract event occurs, we focus more
concretely on the probability that some measurement on the outcome lands in
some set of real numbers. In fact, many theorems of probability theory do not
really depend on the abstract space (2, F) on which X is defined, but rather the
associated distribution on the real numbers. Nonetheless, it is often more intuitive
and convenient to think of the real distribution as being the distribution of a
random variable (and, indeed, any real distribution can be represented that way).

One way to define a real distribution is in terms of a density. For example, in
the case where 2 = {1,2,3,4,5,6}, we can specify a probability on all the subsets
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of 2 by specifying the probability of each of the events {1},{2},...,{6}. More
generally, we can specify a distribution g on R by specifying a function f such
that for every interval (a,b), p((a,b)) = f;f(x) dz. The measure p is then said
to be the real distribution with density f. In particular, the normal distribution
with mean m and variance ¢ is defined to be the real distribution with density

function
_ 1 seem?
f([l?) - U\/ﬂe 2
The graph of f is the bell-shaped curve centered at m. When m = 0 and o = 1,
the associate real distribution is called the standard normal distribution.

Let Xo, X1, X2, ... be any sequence of independent random variables, each with
the same distribution x, mean ¢, and variance o2. Here “independent” means that
the random variables Xo, X1,... are all defined on the same measure space ({2, F),
but they represent independent measurements, in the sense that for any finite
sequence of events Bi, Bo, ..., By and any sequence of distinct indices i1, 12, . .., i,
the probability that X, is in Bj for each j is just the product of the individual
probabilities that X is in Bj. For each n, let S, =}, X; be the sum of the
first n random variables in the sequence. Notice that each Sy, is itself a measurable
function on ({2, F) (which is to say it is a random variable), and so it is natural
to ask how its values are distributed. We can shift the expected value of S, to 0
by subtracting nc, and scale the variance to 1 by dividing by vno2. The Central
Limit Theorem says that the corresponding quantity,

Sn — nc
no? ’
approaches the standard normal distribution as n approaches infinity.

All that remains to do is to make sense of the assertion that a sequence of
distributions uo, g1, u2, ... “approaches” a distribution, u. For distributions that
are defined in terms of densities, the intuition is that over time the graph of the
density should look more and more like the graph of the density of the limit. For
example, if you flip a coin a number of times and graph all the possible values
of the average number of ones, the discrete points plotted over the possibilities
0,1/n,2/n,3/n,...,1 start to look like a bell-shaped curve centered on 1/2. The
notion of weak convergence makes the notion of “starts to look like” precise.

If p is any real distribution, then the function Fj(z) = p((—oo,z]) is called
the cumulative distribution function of p. In words, for every z, F,(x) returns the
likelihood that a real number chosen randomly according to the distribution is at
most z. Clearly Fj,(z) is nondecreasing, and it is not hard to show that F, is right
continuous, approaches 0 as x approaches —oo, and approaches 1 as x approaches
oo. Conversely, one can show that any such function is the cumulative distribution
function of a unique measure. Thus there is a one-to-one correspondence between
functions F satisfying the properties above and real distributions.

The notion of weak convergence can be defined in terms of the cumulative
distribution function:

Definition 1 Let (un) be a sequence of real distributions, and let u be a real
distribution. Then pn converges weakly to p, written pn, = u, if F,, (z) approaches
F.(z) at each point z where F, is continuous.
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To understand why we need to exclude the points of discontinuity of Fj,, con-
sider for each n the probability measure uy that puts all its “weight” on 1/n, which
is to say, for any Borel set B, u(B) = 1 if and only if B contains 1/n. Then F),, is
the function that jumps from 0 to 1 at 1/n. Intuitively, it makes sense to say that
un approaches the real distribution p that puts all its weight at 0. But for every
n, Fu, (0) =0, while F,,(0) = 1, which explains why we want to exclude the point
0 from consideration. Notice that since F}, is a monotone function, it can have at
most countably many points of discontinuity, so we are excluding only countably
many points.

The fact that weak convergence is a robust notion is evidenced by the fact that
it has a number of equivalent characterizations, as discussed in Section 4.1 below.

With this background in place, we can now state the Central Limit Theorem
precisely, as follows:

Theorem 1 Let X, X1, Xo2,... be a sequence of independent random variables with
mean ¢, strictly positive variance o2, and common distribution . Let Sp = Xo+ X1+
...+ Xn—1. Then the distribution of (Sn —nc)/m converges weakly to the standard
normal distribution.

This is Theorem 27.1 in Billingsley’s book [3]. Setting ¢ = 0 in the statement of
the theorem does not result in loss of generality: if each X; has mean ¢, we can
apply Theorem 1 to the shifted sequence (X; — ¢) and use the result to obtain the
more general statement. Our formulation of Theorem 1 in Isabelle is as follows:

theorem (in prob_space) central_limit_theorem:

fixes X :: "mat = ’a = real"
and g :: "real measure"
and o ¢ :: real
and S :: "nat = ’a = real"

assumes X_indep: "indep_vars (Ai. borel) X UNIV"
and X_integrable: "An. integrable M (X n)"
and X_mean: "An. expectation (X n) = c"
and o_pos: "o > 0"
and X_square_integrable: "An. integrable M (A\x. (X n x)2)"
and X_variance: "An. variance (X n) = o2"
and X_distrib: "An. distr M borel (X n) = p"
defines "S n x = ) i<n. X i x"
shows "weak_conv_m (An. distr M borel (Ax. (Sn x - n * ¢) / sqrt (n*xc2)))
std_normal_distribution"

Here, M denotes the underlying probability space. We present a formal proof of the
mean zero case in the appendix to this paper, and then derive the version above
as a corollary.

2.3 An overview of the proof

Contemporary proofs of the Central Limit Theorem rely on the use of characteristic
functions, a powerful method that dates back to Laplace. If u is a real-valued
distribution, its characteristic function o(¢) is defined by

o0 = [ ).

—0o0
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“#Z over the whole real

ite

In words, ¢(t) is the integral of the function f(z) = e
line, with respect to the measure p. Notice that for each ¢ # 0, the function e
is periodic with period 27 /t. It might be helpful to think of e as like a sine
or cosine; indeed, e'® = cos(tx) + isin(tx). Notice that ¢(0) is equal to 1, the
measure of the entire real line. The characteristic function of a real distribution p
is a Fourier transform of the measure p, and when ¢t # 0, ¢(¢) “detects” periodicity
in the way that the real distribution p distributes its “weight” over different parts
of the real line.

A key property of characteristic functions is the fact that if X; and Xo are
independent random variables, then the characteristic function of X; 4+ X5 is the
product of the characteristic function of X; and the characteristic function of Xs.
Of course, this extends to sums with any finite number of terms, and the resulting
products are often convenient to work with.

The Lévy Uniqueness Theorem asserts that if p; and pe have the same charac-
teristic function, then u; = po. In other words, a measure p can be “reconstructed”
from its characteristic function, and the characteristic function of a measure deter-
mines the measure uniquely. Let (un) be a sequence of distributions, where each
un has characteristic function ¢, and let p be a distribution with characteristic
function ¢. The Lévy Continuity Theorem states that p, converges to p weakly if
and only if pn () converges to (t) for every t.

Remember that the CLT asserts that if (X,) is a sequence of random variable
satisfying certain hypotheses, and u, is for each n a certain distribution defined in
terms of X1, ..., Xy, then u, converges weakly to the standard normal distribution.
The Lévy Continuity Theorem provides a straightforward strategy to prove the
theorem: if we let ¢, denote the characteristic function of u, for each n, we need
only show that ¢, approaches the characteristic function of the standard normal
distribution pointwise.

Implementing this strategy requires two key ingredients. First, one needs to
know that the characteristic function of the standard normal distribution is ¢(t) =
e=t/2, Second, one needs to compute the characteristic functions of the distribu-
tions ppn, which are defined in terms of finite sums of the independent random
variables Xo, X1, ..., and show that they have the desired behavior. This is where
the key property of characteristic functions comes into play.

Once all these components were in place, putting the pieces together was not
hard. Given the continuity theorem, the characteristic function of the standard
normal distribution, the result on the characteristic functions of sums of random
variables, and suitable approximations to the complex exponential function, the
proof of the Central Limit Theorem is quite short. In our formalization, it is only
about 120 lines long, and is presented in full in the appendix.

3 Isabelle and its libraries

When we began our project, a good deal of infrastructure was already available
in the Isabelle libraries, but we had to add to it substantially. The formalization
thus provided a stress test, allowing us to fill in gaps in the library and ensure its
practical efficacy. In this section, we will describe those features of Isabelle and its
libraries that were most relevant to the formalization, and indicate some of our
contributions to the latter.
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3.1 The Isabelle proof assistant

The Isabelle proof assistant [17] is based on classical simple type theory [6], with
variables ranging polymorphically over types, and a Hilbert choice operator (SaME)
which returns an indeterminate element satisfying a given predicate, if there is
one. Given a type a and a predicate P on «, one can introduce a new abstract
type representing the elements of « satisfying P, using a typedef command. In ad-
dition to the references given in this section, one should consult the documentation
available on the Isabelle web site for the most up-to-date information.

Isabelle is an LCF-style theorem prover. This means that stating a theorem
amounts to introducing a proof goal, and one can then construct proofs by applying
tactics that reduce that goal to other goals. Layered on top of that, the Isabelle
system includes the Isar proof language [22], which provides a natural, declarative
way of writing structured proofs. Although in some places our proofs resort to
sequences of tactic applications, for the most part we relied on Isar to make our
proofs more robust, and to make them easier to read and maintain.

One attractive feature of Isabelle is the strength of its automation. We relied
extensively on built-in procedures such as its term rewriter (simp), its generic
theorem provers (such as auto), and its procedure for linear arithmetic (arith).
Occasionally we relied on Isabelle’s sledgehammer command [18], which invokes
external theorem provers and then reconstructs the results in Isabelle.

Isabelle has two mechanisms for reasoning algebraically and generically. The
first, axiomatic type classes [21], constitutes a conservative extension of the ax-
iomatic framework. Type variables are allowed to range over types with associated
functions and relations, satisfying specified axioms. Theorems can be proved gener-
ically within a type class, and then instantiated to concrete structures that have
been shown to satisfy the given axioms. This is used, for example, to develop facts
about arithmetic, sums, products, and orderings that are shared among various
number classes, including the natural numbers, integers, rationals, reals, and com-
plex numbers. In the Isabelle library, they are also used to associate a topological
structure to a type. Thus, our reasoning about topological aspects of the reals,
described in Section 3.2 below, made use of the associated type classes. There are
also classes for various types of normed spaces, of which the reals, finite powers of
the reals, and the complex numbers are instances. As described in Section 3.6, we
made use of these structures on the real and complex numbers.

Type classes are limited by the fact that they can only be parameterized by
a single type parameter. An even more serious limitation is that, in simple type
theory, types cannot depend on elements of other types. For example, there is no
way of using type classes to reason about Z.,, the integers modulo a parameter n,
as an instance of a ring. For that purpose, Isabelle has a more flexible mechanism,
locales [2], which, however, cannot take advantage of all of the benefits of the
ambient type theory. Locales do not constitute an axiomatic extension; in terms
of the underlying logic, a locale is nothing more than a predicate on some data.
But Isabelle provides mechanisms for reasoning “in” such a locale, that is, fixing
some data and the locale assumptions, and reasoning on that basis. Locales can
also introduce notation that implicitly depends on the locale parameters. Isabelle
provides mechanisms for instantiating locales, either with fixed types, or on the
fly in a proof: one shows (typically with the help of automation) that some data
satisfy the locale axioms, at which point all the definitions and theorems of the
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locale are made available, pre-instantiated with the relevant data and facts. For
example, once we show that a relation satisfies the axioms of the partial_order
locale, we can use notation and facts about partial orders freely for that relation,
without having to repeatedly cite the fact that the relation is a partial order.

In the measure theory library, as described in Sections 3.3 and 3.5, locales
are used to reason about algebras and o-algebras, for example. Moreover, once
the type of measurable spaces has been introduced, locales are used to introduce
extra hypotheses, for example, the hypothesis that a measure space is finite, or is
a probability space.

3.2 Topology and Limits

Isabelle’s extensive library for topological spaces includes properties of open and
closed sets, limits, compactness, continuity, and so on. The library is described in
detail by Holzl, Immler, and Huffman in [13]. Topological notions interact with
measure-theoretic notions in various ways. For example, a real distribution is a
measure on the real numbers that measures the Borel sets, the smallest o-algebra
containing the open sets. Continuous functions are therefore measurable. Topo-
logical notions come into the statements of many measure-theoretic theorems
described below, notions including the points of continuity of a function or the
boundary of a set. Proving Skorohod’s theorem required showing that the set of
points of continuity of an arbitrary function from reals to reals is Borel; this is done
in a four-line footnote in Billingsley ([3, page 334]), and requires characterizing
the set of discontinuities as a union of an intersection of open sets.

Conventional reasoning about limits was ubiquitous in our formalization. Ev-
eryday mathematics requires one to deal with expressions such as the following:

— limg—q f(z) =0
— limnp—sooan = a
- hmw—)a* f(x) =b
— limg—q f(z) = 0

Here, the source and target spaces can be any topological space, including metric
spaces or the natural numbers with the order topology. One can consider limits as
x approaches a value a, or oo, or —oco. One can also restrict the allowed values for z
and consider the limit as z approaches a within a set s; saying x approaches a from
the left (where = and a are real-valued, for example) is equivalent to saying that
x approaches a within the interval (—oo,a). There is a similar range of variations
on the output: f(z) can approach a value, b, or oo, or —oo; and it can approach
the value from the left, or from the right, or within any subset of the range of
f- Not only does this threaten a combinatorial explosion of definitions, but also
redundancy. For example, assuming f(x) and g(z) converge as = approaches a, we
have the identity lims—a(f(z) + g(z)) = lime—q f(z) + lime—q g(x), but this also
holds under all the variations of convergence in the source.

To handle the many instances of convergence that arose in the formalization,
we used Isabelle’s elegant library for dealing with limits via filters [13]. The idea
is that when dealing with any notion of limit, the relevant notions of convergence
in the source and the target can be represented by filters. A filter over X is a
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nonempty set F C P(X) such that if A C B and A € F, then B € F, and if
A,B € F, then An B € F. The general notion of limit in Isabelle, filterlim f
F1 F2, says, roughly, that the function f converges in the sense of F> as the input
converges in the sense of F;. By specializing F; and F» appropriately, we obtain
all the variations described in the last paragraph, and more. In addition, theorems
can be proved at the appropriate level of generality. For example, we have:

lemma tendsto_add:
fixes f g :: "_ = ’a::topological_monoid_add"
assumes "(f —— a) F" and "(g —— b) F"
shows "((Ax. f x + g x) —— a + b) F"

Here (f — x) F is an abbreviation for filterlim £ F (nhds x), where nhds x
is the filter of topological neighborhoods of xz. This avoids the need to formalize
endless variations of the same theorem; we only need to instantiate the general
version to the relevant filters. Details can be found in [13].

In the Isabelle library, topological facts are found in the standard HOL library,
in files such as Filter, Topological_Spaces, and Limits. Topological notions for
the reals, and vector spaces over the reals, can be found in Real_Vector_Spaces.

3.3 Measure theory and integration

Our formalization required the fundamentals of measure theory and integration,
as described in any introductory textbook on the subject (including Billingsley).
The fundamental development of the subject is well described in the paper “Three
chapters of measure theory” [12]. Therefore we only summarize key features of
this development here, and indicate some of the ways the library has changed as
a result of our formalization.

Measure theory requires the use of the extended nonnegative reals @20, obtained
by restricting the usual reals R to their non-negative part and adding the value oo.
A o-algebra is represented in Isabelle as a record s depending on a type «, which
specifies an underlying subset of «, a set of elements space s, and a collection of
subsets sets S of space S that contains the empty set and is closed under countable
unions and complements. These assumptions are specified as a locale.

A measure space M extends the notion of a o-algebra with a function emeasure M
from subsets of « to the extended nonnegative reals, satisfying the usual axioms:
the measure of the empty set is 0, and the measure of a countable disjoint union
of sets in the underlying o-algebra is equal to sum of the measures of each set
in the union (which might be oo). The underlying o algebra corresponds to the
usual notion of the collection of measurable subsets corresponding to the measure.
In Isabelle, for any type «, the typedef mechanism is used to specify a new type,
measure o, consisting of measure spaces on some subset of «.

If M and N are two measure spaces, a measurable function f from M to N
(written f € M —j; N) is a function between the underlying sets that has the
property that the inverse image of any measurable subset of the codomain is a mea-
surable subset of the domain. Note that, in fact, the property of being measurable
has nothing to do with the measure; it is really a property of the function with
respect to the two associated o-algebras. Given a measurable function f: M — N,
a measure y on M gives rise to a new measure v on N, defined by v(A) = u(f~A).
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This is sometimes called a pushforward measure, but in Isabelle it is denoted distr M
v £, for reasons that are explained in Section 3.5. It is defined formally as follows:

definition

distr :: "’a measure = ’b measure = (’a = ’b) = ’b measure"
where

"distr M N f =

measure_of (space N) (sets N) (MA. emeasure M (f -‘ A N space M))"

Another way to define a measure v in terms of a measure p on M is to take
a measurable function f from M to R>o and define, for every set A, v(4) =

f+ fxa du. This is defined formally in the Isabelle library as follows:

definition
density :: "’a measure => (’a = ennreal) = ’a measure"
where
"density M f =
measure_of (space M) (sets M) (MA. [T x. f x * indicator A x OM)"

The function x 4 is the characteristic function of A, also called the indicator function.
The integral [ + f dp is the nonnegative Lebesgue integral, defined for functions into
Kzo. For measurable functions it has the expected properties: it is closed under
addition, constant multiplication, and monotone convergence. It is monotone even
for non-measurable functions, which simplifies certain proofs, since measurability
is not always easy to prove. Because the nonnegative Lebesgue integral takes values
in Rsq, it is well-defined for all measurable functions, even when the integral is
infinite.

The library includes a construction of the Borel sets in any topology, and the
Carathéodory extension theorem. In Isabelle, the Lebesgue measure on the reals
was initially constructed from the gauge integral, which is discussed in Section 3.6.
After our formalization, however, the construction was replaced by the more com-
mon textbook definition as the o-extension of the measure on finite intervals, as
described in Section 3.8 below. The measure space consisting of the Lebesgue
measure on the Borel subsets of the reals is denoted 1borel in the Isabelle library.

The fundamentals of measure theory are found in the HOL-Probability library,
including Sigma_Algebra, Measure_Space, Caratheodory, and Lebesgue Measure.

3.4 Bochner integration

Our initial formalization of the Central Limit Theorem relied on the theory of
Lebesgue integration, described in [12]. This provides a notion of integration for
suitable functions f : X — R, where X is any space on which a measure is de-
fined. After we completed the proof, however, the second author, Holzl, generalized
the construction to the Bochner integral. This provides a theory of integration for
functions f : X — B, where now B is any second-countable Banach space. In
particular, B can be any of the spaces R", or the complex numbers, C. Our for-
malization made extensive use of integration of functions from R to C, as discussed
in Section 3.6.

Similar to the Lebesgue integral, the Bochner integral approximates a function
f by a sequence of simple functions s. Each simple function has a finite range,
and hence its integral can be expressed by finite summation. When a function
can be approximated by simple functions, its integral is the limit of the integrals
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of those simple functions. Whereas approximations for Lebesgue integration are
taken with respect to the pointwise order on ﬁzo, approximations for Bochner
integration are taken with respect to the L'-norm, defined using the Lebesgue
integral by [|f| = [* |fldu.

More formally, a function s is simple Bochner-integrable if s is Borel-measurable
on M, has a finite range f[M], and a support {z € M | f(z) # 0} with finite
measure. The integral of a simple Bochner function s is a finite sum over the
vectors of the range of s times the measure of their support:

/8 dp= > p (') -y

yefIM]

A Borel-measurable function f is Bochner-integrable if there is a sequence (s;) of
simple Bochner-integrable functions such that:

1. f is the limit of (s;) in the L' norm, i.e. lim; ,o0l|s; — fIl = 0; and
2. the sequence of integrals of the functions s; converges, i.e. lim;_ f s; du exists.

In that case, the Bochner integral, denoted LINT x/M. f x in Isabelle, is defined by

/fd,u— lim /szdu

The notation LINT is a holdover from Lebesgue integration, but since Bochner
integration functions in similar ways, the notation is still a useful mnemonic.

From the definition it follows that each Bochner-integrable function f is Borel-
measurable and has a finite L'-norm. In the other direction we prove that each
Borel-measurable function is approximated pointwise by a sequence of simple
Bochner functions. Then it follows that a function f is Bochner-integrable if and
only if f is measurable and the L'-norm of f is finite (which is equivalent to saying
that f is absolutely integrable).

lemma integrable_iff_bounded:
fixes £ :: "’a = ’b::{banach, second_countable_topology}"
shows "integrable M f <— f € M — s borel A (f"'x, norm (f x) OM) < oo

As one would expect of an integral, the Bochner integral respects scalar multi-
plication and addition. As with the Lebesgue integral, we obtain a version of the
dominated convergence theorem:

lemma dominated_convergence:

fixes £ :: "’a = ’b::{banach, second_countable_topology}"
and w :: "’a = real"

assumes "f € M —)s borel" "Ai. s i € M —); borel" "integrable M w"
and "AE x in M. (Ai. s i x) —— f x"
and "Ai. AE x in M. norm (s i x) < w x"

shows "integrable M f" and "Ai. integrable M (s i)"
and "(Ai. LINT x|M. s i x) —— (LINT x|M. £ x)"

Here the quantifier AE x in M expresses that the subsequent statement holds for
almost every element x of the measure space M, which is to say, the set of exam-
ples where it doesn’t hold has measure zero. We have the monotone convergence
theorem, which applies to sequences of functions taking values in the real numbers.
We also obtain Fubini’s theorem. These are all staples of the theory of integration,
and were used throughout our formalization.



A formally verified proof of the Central Limit Theorem 13

If f: X — B is any measurable function on a space X with measure p, and
S is any measurable set, one can define the integral over the set S by f gfdp=
f fxs dp. Rather than introduce a new definition, we took notation for integration
over sets to be an abbreviation for the definition in terms of indicators, with the
notation LINT x:S/M. f x. But because reasoning about integrals over sets is so
fundamental, we found it helpful to develop a small library to support it. For
example, the following is a consequence of the dominated convergence theorem:

lemma integral_countable_add:
fixes f :: "_ = ’a :: {banach, second_countable_topology}"
assumes "Ai::nat. 4 i € sets M"
and "Ai j. i £ j = AiNA4j=A{}
and "set_integrable M (|Ji. A i) f"
shows "LINT x:({Ji. A i)IM. £ x = (3 i. (LINT x:(A i)[M. £ x))"

The theory of Bochner integration is included in the HOL-Probability library,
in Bochner_Integration and Set_Integral.

3.5 Probability

Modern probability is based on measure theory, although probabilists and statis-
ticians tend to adopt their own distinct terminology. A probability space is simply
a measure space in which the measure of the entire space is equal to 1. You should
think of the space as the space of possible outcomes of a random event. A random
variable on such a space is a measurable function from that space to the reals;
think of it as a real number that depends on the outcome of the random event.
The expectation of a random variable is the integral of the function over the entire
space. Thus talk of probability spaces, random variables, and expectations is really
talk of measure spaces, measurable functions, and integrals in disguise.

The Isabelle library defines a locale for finite measures, which are simply mea-
sures for which the measure of the entire space, emeasure M (space M), is not infinity.
For such spaces, one can work more conveniently with the associated real-valued
function, measure, which casts the value of emeasure to a real. There is also a lo-
cale for probability measures, which are finite measures where the measure of the
entire space is equal to 1. When working with cumulative distribution functions,
as described in Section 3.8, we found it convenient to define a locale for real distri-
butions; a real distribution is a probability space in which the space is the set of
real numbers and the measurable sets consist of exactly the Borel subsets of the
reals. To capture the language of informal probability theory, the library defines
all of the following abbreviations:

locale prob_space =

fixes M :: "’a measure" assumes "emeasure M (space M) = 1"
begin

abbreviation "events = sets M"

abbreviation "prob = measure M"

abbreviation "random_variable M’ X = X € M —p M?"

abbreviation "expectation X = (LINT x[M. X x)"

abbreviation "variance X = (LINT x/M. (X x - expectation X)2)"
end

If X is a random variable on a measure space M with measure u, the distribu-
tion of X, as described in the previous section, has the following interpretation: it
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is the measure v on the Borel sets of R such that for every A, v(A) is the probabil-
ity that X takes a value in A. Even though we think of X as depending on some
underlying source of randomness, represented by M, often we only care about the
induced probability on the real numbers that is given by its distribution. Notice
that the word “distribution” is used in probability theory in at least three distinct
but related ways. In addition to the uses of the term described in this paragraph
and the previous one, one also often speaks of the (cumulative) distribution func-
tion of a real distribution, as described in Section 3.8. Thus, if X is a random
variable, its distribution is a real distribution, which in turn has a distribution
function.

In probability theory, real distributions are often specified as densities, as de-
scribed in the previous section. Thus the normal distribution with mean px and
variance o is defined formally as follows:

definition
normal_density :: "real = real = real = real"
where
"normal_density p o x = 1 / sqrt (2 * pi * 02) * exp (-(x - w2/ (2 * d2))"

abbreviation
std_normal_density :: "real = real"
where
"std_normal_density = normal_density 0 1"
abbreviation
std_normal_distribution :: "real measure"
where
"std_normal_distribution = density lborel std_normal_density"

Various notions of independence are used in probability. Perhaps the most
general is the following: suppose that for every i in some index set I, F; is a
collection of events (measurable sets) from some fixed measure space. Then the
sequence (F;);cr is said to be independent if for every finite subset J C I and every
choice of a set A; € F; for each j, the probability of the intersection ﬂje A,
i.e. the probability that all of the A;’s occur, is the product of the individual
probabilities.

definition (in prob_space)

indep_sets :: "(’1 = ’a set set) = ’i set = bool"
where
"indep_sets F I <—
(Vi€I. F i C events) A
(VJCI. J # {} —> finite J —>
(VAe(Il i€J. F i). prob ((Nj€J. A j) = (J[j€J. prob (A j)I)))"
If now (A;)ier is a sequence of events (rather than collections of events), saying
that the sequence (A;) is independent amounts to saying that the sequence of
singletons ({A;});cr is an independent sequence of collections.
definition (in prob_space) "indep_events A I <—> indep_sets (Ai. {A i}) I"

Finally, if (X;);es is a sequence of random variables with inputs in one measure
space, M, and values in another space, M’ (typically, but not necessarily, the
reals), saying that the sequence X; is independent amounts to saying that the
sequence of collections of measurable sets

({X;'(A) | A is a measurable subset of M’'});c;.

is independent.
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definition (in prob_space)
indep_vars :: "(’i = ’b measure) = (’1 = ’a = ’b) = ’i set = bool"
where
"indep_vars M’ X I <—
(Vi€I. random_variable (M’ i) (X i)) A
indep_sets (Ai. { X i - A N space M | A. A € sets (M’ i)}) I"

In probabilistic terms, this means that given any finite J C I and any finite
sequence Aj ,...,A; of events, the probability that each X; 1is in A; is just
the product of the individual probabilities. Of course, we can say that any two
events, or random variables, or collections of events, are independent by taking
I to be any two-element type, such as the Booleans. Isabelle’s library defines the
binary notions as well, and develops basic properties of independent sets, events,
and random variables.

In the Isabelle 2016 distribution, these developments are in the HOL-Probability
library, including the files Probability Measure, Independent _Family, Convolution,
and Distributions.

3.6 Real analysis and complex-valued functions

Isabelle has an extensive library for real multivariate analysis, which is again well-
described in [13]. In Isabelle, the reals are instantiated as a complete ordered field,
and as a conditionally complete lattice, which means that nonempty bounded sets
have sups and infs. The library also includes definitions of transcendental functions
like the sine, cosine, and exponential functions. In fact, the exponential function
is defined generically for any Banach space, including the complex numbers. Of
course, we have the relation ¢’ = cosz + isinz for real z.

Isabelle’s general notion of the derivative is the Fréchet derivative, which makes
sense for functions f between any two Banach spaces. As with limits, the notion
of Fréchet derivative supports multiple modes of convergence; the expression (f
has_derivative D) F means that the function f has the bounded linear functional
D as derivative “at” the filter F. In practice, F is usually the filter expressing that
D is the derivative at a point z, or that D is the derivative at a point z when
we restrict attention to a subset S of the source. The more familiar notion of the
scalar derivative for functions from the reals to reals (or, more generally, from one
normed field to another) is derived from the Fréchet derivative as a special case.
So is the notion of a vector derivative for functions from R to R™.

The characteristic function of a measure is a function from the reals, R, to the
complex numbers, C. The theory of such functions is much simpler than the theory
of functions from C to C, which is the subject of complex analysis. One can view
a function f : R — C as essentially two functions from R to R, f™ and f'™, the
first returning the real part and the second returning the imaginary part of the
output. Integrals and derivatives of such functions can be understood in terms of
the integrals and derivatives of these two parts.

In fact, for differentiation, we did not have to define a new notion of derivative:
if we view the complex numbers as a two-dimensional real Banach space, the
derivative we need is nothing more than the Fréchet derivative.

For integration, the story is more involved. Isabelle’s library now has two forms
of the integral. The multivariate analysis library generally relies on the gauge
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integral, which is defined for functions from R" to R. When we consider the reals,
R, with the usual Lebesgue measure, the Bochner integral and the gauge integral
agree on finite intervals, but otherwise the gauge integral is slightly more general:
for a function f: R — R to be Bochner-integrable, both the positive and negative
parts of f have to have a finite Bochner integral, whereas the gauge integral can
accommodate some functions whose positive and negative parts cancel each other
out in a suitable fashion. Nonetheless, for the vast majority of applications, the
Bochner integral is quite sufficient. Since our formalization required integration
with general measures and spaces in addition to the usual integration over R" we
used the Bochner integral throughout.

With the Bochner integral, as with the Fréchet derivative, integrating functions
taking values in C is no different from integrating functions taking values in R.
Indeed, this was the primary motivation for generalizing from the Lebesgue integral
to the Bochner integral.

3.7 Calculus

Our formalization required extensive use of calculus at an undergraduate level,
including integration by parts, Taylor series approximations, changes of variable,
and so on. For example, the calculation of moments of the normal distribution
required the following estimate on the complex exponential:

. [Pt 22"
<min | ——, = .
(n+1)I" n!

We followed Billingsley [3, Section 26] in obtaining this using an inductive argu-
ment and integration by parts. Notice that this involves reasoning about functions
from the real to complex numbers; as explained in the previous section, the rele-
vant properties generally follow from the corresponding properties for real-valued
functions, upon splitting functions to the real and imaginary parts. In addition, we
have the general inequality || [, f du|l < [, [Iflds, which allows us to bound the
modulus of a complex integral by bounding the real-valued integral of the norm.
This is an instance of a more general fact about the Bochner integral:

lemma integral_norm_bound:
fixes f :: "_ = ’a :: {banach, second_countable_topology}"
shows "integrable M f = norm (LINT x|M. f x) < (LINT x/M. norm (f x))"

Textbook results from calculus involve integrals f(f f(z) dz over the interval
(a,b). These can be viewed as ordinary integrals over the set (a,b), with the fol-
lowing two caveats:

— Textbooks allow a to be —oo and allow b to be oo, which is to say, a and b should
be taken to be extended real numbers (i.e. the reals extended with +o0).
— It is convenient to adopt the convention that if b < a, then

f: f(z) de=— fba f(z)dz.

We thus defined a notion of “interval integral” along these lines, together with sup-
porting the notation LBINT x=a..b. f x. We could then state the first fundamental
theorem of calculus in the following form, for finite intervals:
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lemma interval_integral FTC_finite:
fixes f F :: "real = ’a::euclidean_space" and a b :: real
assumes f: "continuous_on {min a b..max a b} f"
and F: "Ax. min a b < x = x < max a b =
(F has_vector_derivative (f x)) (at x within {min a b..max a b})"
shows "(LBINT x=a..b. f x) =F b - F a"

The following version, for arbitrary intervals, makes sense when the limits are
infinite:
lemma interval_integral FTC_integrable:
fixes £ F :: "real = ’a::euclidean_space" and a b :: ereal
assumes "a < b"
and "Ax. a < ereal x = ereal x < b —>
(F has_vector_derivative f x) (at x)"
and "Ax. a < ereal x = ereal x < b = continuous (at x) f"
and "set_integrable lborel (einterval a b) f"
and "((F o real_of_ereal) —— A) (at_right a)"
and "((F o real_of_ereal) —— B) (at_left b)"
shows "(LBINT x=a..b. f x) = B - A"

Similarly, we could state the second fundamental theorem of calculus, where the
variable bound to the integral can be before or after the fixed endpoint:

lemma interval_integral FTC2:
fixes a b ¢ x :: real and f :: "real = ’a::euclidean_space"
assumes "a < c¢" "¢ < b" "continuous_on {a..b} f" "a < x" "x < b"
shows "((Au. LBINT y=c..u. f y) has_vector_derivative (f x))
(at x within {a..b})"

The use of such an integral was a mixed blessing. It simplified many of our theorems
and proofs, but at the expense of introducing yet another notion of integral, which
required another library of supporting facts, as well as, at times, translations to
and from the other notions of integral.

Many textbook integration arguments require a change of variable, sometimes
known as “integration by substitution.” It was not hard to prove that if a function
g from R to R has a continuous derivative (and hence is continuous itself) on
a closed interval [a,b], and f is continuous on the image of [a,b] under g, then

S Ha(@)g (x) dw = [4) f(z) da.

lemma interval_integral_substitution_finite:
fixes a b :: real and f :: "real = ’a::euclidean_space"
assumes "a < b" and "Ax. a < x = x < b =
(g has_real_derivative (g’ x)) (at x within {a..b})"
and "continuous_on (g ¢ {a..b}) f" "continuous_on {a..b} g’"
shows "LBINT x=a..b. g’ x *r f (g x) = LBINT y=g a..g b. f y"

Manuel Eberl later generalized this to arbitrary Borel measurable functions f,
but with the added hypothesis that ¢’ is nonnegative on [a,b]. However, we also
needed a version of the theorem for intervals with potentially infinite endpoints.
This requires using either the monotone convergence theorem or the dominated
convergence theorem to pass from finite interval approximations to the full interval.
In fact, we proved two versions. The following one requires showing independently
that both f(z) and f(g(x))g’(z) are integrable over the relevant intervals:
lemma interval_integral_substitution_integrable:

xes :: "rea a::euclidean_space" and a ;! erea
fi f "real = ’ 1id " d b AB 1
assumes "a < b"
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a

< ereal x —» ereal x < b — DERIV g x :> g’ x"

< ereal x = ereal x < b = continuous (at (g x)) f"
< ereal x = ereal x < b = continuous (at x) g’"

< ereal x = ereal x < b — 0 < g’ x"

"((ereal o g o real_of_ereal) —— A) (at_right a)"

"((ereal o g o real_of_ereal) —— B) (at_left b)"
"set_integrable lborel (einterval a b) (M\x. g’ x *p f (g x))"
"set_integrable lborel (einterval A B) (Ax. f x)"

"(LBINT x=A..B. f x) = (LBINT x=a..b. g’ x *p f (g x))"

Another version assumes instead that f is nonnegative, and concludes that f is
therefore integrable.

As an example where various uses of these components came together, consider
the sine integral function. The function sin z/z is undefined at 0, but it can be made
continuous at 0 by giving it the value 1 there. The resulting function is called sinc.
The sine integral function is (confusingly) defined to be the indefinite integral of
the sinc function, starting at 0:

¢
Si(t):/ sinc x dz.
0

The proof of the Lévy inversion formula uses the fact that

A, i)

™

A textbook proof (sketched in [3, Example 18.4]) runs as follows. By the funda-
mental theorem of calculus, we can verify that

¢
/0 e “sinzdr = ﬁ[l — e "(usint 4 cost)]

by taking the derivative of both sides. Calculating, we can also show that

t oo t
/ </ le™ "% sin x| du> dr = / a2~ Y sina| dr < t.
o \Jo 0

The fact that the double-integral on the left is finite means that Fubini’s theorem

may be used to change the order of integration of e~

t [e'e]
dr = / sin x (/ e 4T du) dx
0 0
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Substituting « = tanz in the first term yields

r
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1
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67ut
T (usint + cost) du.
u

(1 +tan®z) do = /2,
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and the change of variable v = ut can be used to show that the second integral
converges to 0 as t — co. Hence

tli>n<[>lo Si(t) = tliglo 0 T 2’
as required.

Proving this result required a tremendous amount of formal machinery: not
only suitable forms of substitution, but also Fubini’s theorem, the fundamental
theorem of calculus, integration by parts, integral comparisons, properties of limits,
and properties of the tangent function. It also required a lot of work, establishing
that the relevant functions were continuous, integrable, and so on. It was somewhat
demoralizing that a small calculus exercise required so much effort, but it is a good
illustration of the infrastructure that is needed to carry out the kinds of calculus
computations that come up routinely in engineering, modeling, and the sciences.
We faced a similar calculus exercise in computing the moments of the normal
distribution, as described in Section 4.2.

In the Isabelle 2016 distribution, the formulation of the fundamental theorem
of calculus that we used and the substitution theorems described above are in
Interval Integral. Eberl’s generalization is in Lebesgue_Integral Substitution.
The calculation concerning Si is in the file Sinc_Integral.

3.8 Distribution functions and the Lebesgue-Stieltjes measure

Every measure on R gives rise to the real-valued function which, at each input =z,
returns the amount of “mass” below that argument:

Definition 2 Let p be a finite measure on R. The cumulative distribution function
F, is defined by Fj(z) = p(—o0, z].

The cumulative distribution function (or cdf) is sometimes also called, more simply,
the distribution function of the measure. In Isabelle, the definition is rendered as
follows:

definition

cdf :: "real measure = real = real"
where

"cdf M = Ax. measure M {..x}"

It is not hard to see that the distribution function F}, of a finite Borel measure
is nondecreasing and right-continuous, and satisfies lim,—, o Fj.(z) = 0.

lemma (in finite_borel_measure) cdf_nondecreasing:
"x <y = cdf Mx < cdf M y"

lemma (in finite_borel_measure) cdf_is_right_cont:
"continuous (at_right a) (cdf M)"

lemma (in finite_borel_measure) cdf_lim_at_bot:
"(cdf M —— 0) at_bot"
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Conversely, it turns out that any function with these properties is the dis-
tribution of a Borel measure on R. The requisite measure p is constructed by
defining p(a,b] = F(b) — F(a) and extending this to the Borel o-algebra us-
ing the Carathéodory extension theorem. To that end, we defined an operation,
interval measure, that generates a measure from a nondecreasing, right-continuous
function. To use the Carathéodory extension theorem, the key property that needs
to be verified is that if a half-open interval (a,b] is written as a disjoint union of
countably many intervals (a;, b;], then b —a = " .(b; — a;). This is trickier than
it sounds. For example, the interval (0,1] can be written as a countable union of
intervals (1/2°%1,1/2%], and any one of those intervals could similarly be replaced
by a countable union. It is not hard to show that the infinite sum 3 ,(b; — a;] is
bounded by b—a. In the other direction, one picks a small €, enlarges each interval
(ai, bi] to a slightly larger interval (a; —e/2%, b; +¢/2%), argues that the union of the
enlargements covers the closed interval [a, b], and then appeals to the compactness
of [a,b]. The measure associated to a right-continuous, nondecreasing function in
this way is called the Lebesgue-Stieltjes measure. When the function F(zx) is the
identity function, we obtain the Lebesgue-Borel measure 1borel, and, in fact, this
now serves as the definition of Lebesgue-Borel measure in the Isabelle library.

In the case of a probability measure, we have the additional property that
limg oo Fu(z) = 1:

lemma (in real_distribution) cdf_lim_at_top_prob: "(cdf M —— 1) at_top"

Conversely, any function F satisfying all four properties is a probability measure:

lemma real_distribution_interval_measure:
fixes F :: "real = real"
assumes "mono F" "/a. continuous (at_right a) F"
and "(F —— 0) at_bot" "(F —— 1) at_top"

shows "real_distribution (interval_measure F)"
Recall that real distribution is the name of the locale for probability measures on
the Borel subsets of the reals. So, for any function F satisfying the four properties
above, interval measure F is the measure whose cdf is exactly F. The use of the
word “the” is justified by the fact that the association is unique, in the sense that
if two real distributions have the same cumulative distribution function, then they
are equal:

lemma cdf_unique:
fixes M1 M2
assumes "real_distribution M1" and "real_distribution M2"
and "cdf M1 = cdf M2"
shows "M1 = M2"
Thus one can pass freely between talk of measures on R and of their distribution
functions, a key fact in the proof of the CLT.

In the Isabelle 2016 distribution, the construction of the Lebesgue measure on
the reals as a Lebesgue-Stieltjes measure is in the theory Lebesgue Measure, and
the correspondence between measures and their distribution functions is developed
in Distributions.

3.9 Automation

To improve automation, Isabelle’s multivariate analysis library provides a large
set of introduction rules, to establish things like openness or closedness of sets
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or continuity of functions. Continuity is nicely reduced by compositionality; if we
know that two functions are continuous, their composition is again continuous.
Applying this as a rule requires matching terms of the form f (g =) where both
f and g are variables. But this is often not the right choice. The straightforward
way to express that functions like multiplication and In are continuous is to write
continuous_on (R X R) (A(x,y). z*y) and continuous_on (0,00) In. The composition
rule is then not sufficient to prove continuity of Az. In(1 4 z * z), because it does
not accommodate binary operations like + and *. In addition, the composition
rule does not allow for the fact that the domain of In has to be restricted to the
positive reals.

A simple solution to these two problems is to state continuity rules precomposed
with arbitrary continuous functions. For example, we can state the following rules
for arbitrary f and g:

continuous_on A f Vee A.O< fz
continuous-on A (Az. In (f z))

continuous_on A f continuous_on A g

continuous_on A (A\z. f z+ g x))

Now, to prove Az. In(1+ z * x), we just apply rules like these. We ultimately end
up with the goal Vz. 0 < 1+ 2 *z, which is proved by the simplifier. This idea goes
back to a paper by Gottliebsen [9], which describes an implementation in PVS.

Rules for establishing openness and closedness of sets are not as important,
but nonetheless helpful. Besides the usual rules for intersections and unions, we
also have rules working on logical connectives and relations in set-comprehension.
For example, the set {z | f © < g =} is open whenever f and g are continuous
functions into real numbers.

Isabelle’s automation for measurability uses precomposed rules in a similar
way. A difference is that measurability is also integrated as a special-purpose sim-
plification procedure (in Isabelle terminology, a simproc), called measurable. To use
the measurability prover, the user needs to annotate all the relevant measurability
assumptions with the [measurable] attribute. This measurability prover then tries
to massage all added assumptions into the right form, and proves measurability
statements by applying them as introduction rules. The massaging also includes
destructions of certain compositions, e.g. the assumption that Az. (f x,g =) is
X x Y-measurable is replaced by the fact that f is X-measurable and g is Y-
measurable. Such destructions are important for higher-order proof steps like in-
duction. As a special case it also allows us to decompose subterms with a countable
range, since the measurability of f (g ) z can be reduced to the measurability of
g and the measurability of f ¢ x for all ¢ in the range of g. It is also important to
add measurability rules for logical connectives, including quantifiers over count-
able sets. As a result, predicates can also be proved measurable, and therefore
expressions that depend on case distinctions.

An example of the power of such rule sets is given by the proof that the
predicate “f is continuous at z” is measurable in z for a function f on metric
spaces. We can express the continuity of f at z in the following way:

1

Vi>0.3j>0. Vyz dz,y) < %/\d(m,z) <% — d(f(9),f(2) < 7 -
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Then the proof that this is measurable is a straightforward application of rules,
as follows: (1) the quantifiers over i and j are countable, hence measurable; (2)
we get into a closed set by eliminating the quantifiers over y and z; (3) for the
implication, the right-hand side is constant, hence closed; and (4) the left-hand
side is open, as it is a strict inequality between two continuous functions.

4 The proof of the Central Limit Theorem
4.1 Weak convergence

Recall from Section 2.2 that if (un) is a sequence of real distributions and p is a real
distribution, then (u,) converges weakly to p, written un = u, if F,,,, (x) approaches
Fu.(z) at each point x where F, is continuous. In Isabelle, this is expressed by the
following two definitions:

definition
weak_conv :: "(nat = (real = real)) = (real = real) = bool"
where
"weak_conv F_seq F =
Vx. continuous (at x) F — (An. F_seq n x) ——— F x"

definition

weak_conv_m :: "(nat => real measure) = real measure => bool"
where

"weak_conv_m M_seq M = weak_conv (An. cdf (M_seq n)) (cdf M)"

In words, a sequence of functions (Fp)nen converges weakly to F if (Fp(z))nen
converges to F(z) for each point z where F is continuous, and the sequence of
measures (pn) converges weakly to p if the corresponding cumulative distribution
functions converge weakly.

That the notion of weak convergence is robust is supported by the fact that
there are a number of equivalent characterizations. The following theorem is some-
times known as the Portmanteau Theorem:

Theorem 2 The following are equivalent:

1. pn = p.

2. ff dun approaches ff du for every bounded function f that is continuous almost
everywhere.

3. ff dpn approaches ff dp for every bounded, continuous function f.

4. If A is any Borel set, OA denotes the topological boundary of A, and u(6A) = 0,
then un(A) approaches p(A).

The theorem is interesting in that it combines measure-theoretic notions (measures
and the integral) with topological notions (continuity and topological boundaries).
The proof from 1 to 2 uses Skorohod’s theorem. This states that if (un) is a se-
quence of real distributions that converges to a real distribution u, there is a
sequence (Y5 ) of random variables and another random variable Y, all defined on
a common probability space, such that each Y, has distribution pn, Y has distri-
bution u, and Y5, converges to Y pointwise. In other words, Skorohod’s theorem
tells us that (un) and p can be represented in a particularly nice way.
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theorem Skorohod:
fixes 1 :: "nat = real measure" and M :: "real measure"
assumes "An. real_distribution (u n)" "real_distribution M"
and "weak_conv_m pu M"
shows
"3 (§2 :: real measure) (Y_seq :: nat = real = real) (Y :: real = real).
prob_space {2 A
(Vn. Y_seq n € 2 —); borel) A
(Vn. distr {2 borel (Y_seq n) = p n) A
Y € 2 —p lborel A
distr {2 borel Y = M A
(Vx € space §2. (An. Y_seqn x) —— Y x)"

Proving Skorohod’s theorem formally presented a number of technical challenges.
One was that we needed to choose a continuity point of an arbitrary probability
measure in an arbitrary open interval, that is, a real number z in an open interval
I such that the measure of {z} is zero. To that end, we showed that the number of
atoms of a measure (that is, points = such that {x} has strictly positive measure)
is countable:

lemma countable_atoms:
"finite_borel_measure M —> countable {x. measure M {x} > O}"

The result then follows from the fact that any open interval in the reals is un-
countable.

The implication from 2 to 3 is immediate. Notice that 1 is equivalent to saying
that for every point z of continuity of the measure p, fx(,oo@] dun approaches
J X(=o0,2] dit, Where x(_oo 47 is the characteristic function of the interval (—oco, z].
The implication from 3 to 1 is obtained by approximating this characteristic func-
tion by continuous step functions whenever z is a point of continuity. The im-
plication from 4 to 1 is easy, noticing that (—oo,x] is a set of the specified type,
whenever z is a point of continuity of p. To complete the proof of the theorem,
it is enough to prove that 2 implies 4. This implication is also not hard, once we
show that the characteristic function y 4 is bounded and continuous at any point
not on the boundary.

The results discussed in this section are found in the theory Weak_Convergence.

4.2 Characteristic functions

Recall that the characteristic function ¢ of a probability measure p on the real line
is defined by

o= [ o).

If X is a random variable, the characteristic function of X is defined to be the
characteristic function of its distribution. In our formalization, the characteristic
function of a measure is defined as follows:

definition

char :: "real measure — real = complex"
where

"char M t = LINT x/M. iexp (t * x)"
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The characteristic function of a random variable x defined on a measure space M is
then written char (distr M borel X), since distr M borel X denotes the distribution
of x with respect to the usual Borel measure on the real numbers.

The characteristic function ¢ of a measure is continuous, and satisfies »(0) = 1
and |p(t)| < 1 for every t:

lemma (in real_distribution) continuous_char: "continuous (at t) (char M)"
lemma (in real_distribution) char_zero: '"char M 0 = 1"

lemma (in real_distribution) cmod_char_le_1: "norm (char M t) < 1"

As noted above, a key property of characteristic functions is this: if X; and X»
are independent random variables, the characteristic function of X; + X5 is the
product of the individual characteristic functions. Because we used the Bochner
integral, which allows us to integrate complex-valued functions directly, our final
proof of this fact is even simpler than the one in Billingsley [3]. The calculation
runs as follows:

x4+, (t) Z/eit(XIJrXZ)dM

:/etiletig dM

() (e

= ¢x, ()ex, ().

Here, X; and X5 are really functions over the underlying probability space M, and
the third equation follows from the independence of X; and Xs. We reproduce our
formal proof in full:

lemma (in prob_space) char_distr_sum:
assumes "indep_var borel X1 borel X2"
shows "char (distr M borel (Aw. X1 w + X2 w)) t =
char (distr M borel X1) t * char (distr M borel X2) t"
proof -
have [measurable]: "random_variable borel X1" "random_variable borel X2"
using assms by (auto dest: indep_var_rvl indep_var_rv2)

have "char (distr M borel (Aw. X1 w + X2 w)) t =
(LINT x|M. iexp (t * (X1 x + X2 x)))"
by (simp add: char_def integral_distr)

also have "... = (LINT x|M. iexp (t * (X1 x)) * iexp (t * (X2 x)))"
by (simp add: field_simps exp_add)
also have "... =

(LINT xIM. iexp (t * (X1 x))) * (LINT x|M. iexp (t * (X2 x)))"
by (auto intro!: indep_var_compose[unfolded comp_def, OF assms]
integrable_iexp indep_var_lebesgue_integral)
also have "... = char (distr M borel X1) t * char (distr M borel X2) t"
by (simp add: char_def integral_distr)
finally show ?thesis .
qed

By induction, we have that for any finite set A and any sequence (X;);ca of

mutually independent random variables,

exax ) =] ex. ().
1EA
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The formal proof is as follows:

lemma (in prob_space) char_distr_setsum:
"indep_vars (Ai. borel) X A —
char (distr M borel (Aw. > i€A. X i w)) t =
([Ti€A. char (distr M borel (X i)) t)"
proof (induct A rule: infinite_finite_induct)
case (insert x F) then show 7case
using indep_vars_subset[of "A_. borel" X "insert x F" F]
by (auto simp add: char_distr_sum indep_vars_sum)
qged (simp_all add: char_def integral_distr prob_space del: distr_const)

(We do not require finiteness of 4: by definition, if 4 is infinite, the sum over 4 is
0 and the product over 4 is 1, and the equation still holds.)

We also needed explicit approximations to the characteristic functions of a
random variable, obtained using the calculation described at the beginning of
Section 3.7. One of the results we used is as follows:

lemma (in prob_space) char_approx3’:

fixes 1 :: "real measure" and X
assumes "random_variable borel X"
and "integrable M X" "integrable M (Ax. (X x)°2)" "expectation X = 0"
and "variance X = o2"
and "p = distr M borel X"
shows "cmod (char p t - (1 - t°2 * 02 / 2)) <
(t"2 / 6) * expectation (Ax. min (6 * (X x)°2) (|t| * |X x|"3))"

Finally, we needed to compute the characteristic function ¢ of the standard
normal distribution, and show ¢(t) = e /2, Establishing this fact took more work
than we thought it would. Many textbook proofs of this invoke facts from complex
analysis that were unavailable to us. Billingsley [3, page 344] sketches an elemen-
tary proof, which required calculating the moments and absolute moments‘of the
standard normal distribution. This is where the calculations of f_oooo zhe=a"/t dz,
mentioned in Section 3.7, were needed. Specifically, we have for even k,

lemma std_normal_moment_even:

"has_bochner_integral lborel (Ax. std_normal_density x * x ~ (2 * k))
(fact (2 * k) / (2°k * fact k))"

and for odd k,

lemma std_normal_moment_odd:
"has_bochner_integral lborel (Ax. std_normal_density x * x~(2 * k + 1)) 0"

A prior calculation by Sudeep Kanav covered the cases k& = 0,1, which provide
the base cases for an inductive proof. Filling in the details involved carrying out
careful computations with integrals and power series approximations to e*.

In the Isabelle 2016 distribution, characteristic functions are defined in the
theory Characteristic_Functions, and the properties cited above are proved there.
The calculation of the moments of the normal distribution is found in the theory
Distributions.

4.3 Lévy Inversion and Uniqueness

In Fourier analysis, an “inversion theorem” says that a function can be recovered
from its Fourier transform, under suitable hypotheses and in a suitable sense. Along
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those lines, the Lévy Inversion and Uniqueness Theorems say that a measure can
be recovered from its characteristic function.
More precisely, the Lévy Inversion Theorem states the following:

Theorem 3 Let pu be a probability measure, and ¢ be the characteristic function of p.
If a and b are continuity points of p and a < b, then

1 T e—itu _ e—itb
pla,b] = lim o /7T Ok

The proof is a long and subtle calculation. Let I(T) denote the expression after
the limit. Expanding the definition of ¢(t) and appealing to Fubini’s theorem to
switch the order of the two integrals, we obtain

oo pT it(z—a) _ _it(z—Db)
I(T) = i/ / 2 _© dt p(dz).
2 Y it

The idea is that as T approaches co, the inner integral approaches a step function
which jumps from 0 to 1 at a and then back down to 0 at b. This is shown by
expanding the complex exponential in terms of sin and cos, using properties of the
sine integral, and manipulating integrals and limits.

It is not hard to show that fixing the values of a measure on intervals (a,b|
as above is enough to determine the measure on all Borel sets. Thus the Inver-
sion Theorem has the following result, known as the Uniqueness Theorem, as an
important corollary:

Theorem 4 If 11 and p2 are probability measures and @, = pu,, then p1 = pa.

In our formalization, this is expressed simply as follows:

theorem Levy_uniqueness:
fixes M1 M2 :: "real measure"
assumes '"real_distribution M1" "real_distribution M2"
and "char M1 = char M2"
shows "M1 = M2"

4.4 The Lévy Continuity Theorem

Let (un) be a sequence of distributions, where each uy has characteristic function
©n, and let u be a distribution with characteristic function . The Lévy Continuity
Theorem states that p, converges to p weakly if and only if ¢, (t) converges to
©(t) for every t. In our formalization, it is expressed as follows:

theorem Levy_continuity:
fixes M :: "nat = real measure" and M’ :: "real measure"
assumes "/An. real_distribution (M n)"
and "real_distribution M’"
and "At. (An. char (M n) t) —— char M’ t"
shows "weak_conv_m M M’"

Proving the “only if” direction is easy, using the Portmanteau Theorem of
Section 4.1, since ¢*** is bounded and continuous. In fact, in our formalization, it
has a one-line proof:
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theorem Levy_continuityl:
"(A\n. real_distribution (M n)) == real_distribution M’ =—>
weak_conv_m M M’ —
(An. char (M n) t) ——— char M’ t"
unfolding char_def by (rule weak_conv_imp_integral_bdd_continuous_conv) auto

The other direction is a lot harder. Here is an outline of the proof:

1. Use a compactness argument to show that every subsequence (pn, ) of (un) has

a weakly convergent subsequence.

2. Suppose, for the sake of contradiction, (pn) does not converge weakly to p.
Then there is a subsequence (un, ) such that no subsequence of that can con-
verge weakly to pu.

By 1, this particular sequence (pn, ) converges weakly to some measure, v.

4. By the “only if” direction, already proved, ¢y, converges pointwise to the

characteristic function of v.

5. Since, by hypothesis, ¢n(t) converges to ¢(t) for every ¢, the characteristic
function of v must be ¢.
6. By the Uniqueness Theorem, this implies that v = pu, contrary to the choice of

(#tny) in 2.

The necessary compactness principle is a consequence of the Helly Selection
Theorem, which we now describe. Although the proof of this theorem and its conse-
quence take up only a page-and-a-half in Billingsley’s textbook, these were among
the most subtle components of our formalization. The theorem states the following:

w

Theorem 5 Let (fn)nen be a uniformly bounded sequence of nondecreasing, right con-
tinuous functions. Then there are a subsequence (fn,)keny and a nondecreasing, right-
continuous function F such that limy, fn, (x) = F(z) at continuity points of F.

In our formalization, this is expressed as follows:

theorem Helly_selection:
fixes f :: "nat = real = real"
assumes "An x. continuous (at_right x) (f n)"
and "An. mono (f n)"
and "An x. |[fn x| < M"
shows "ds. subseq s A
(3F. (Vx. continuous (at_right x) F) A mono F A (Vx. |[Fx| < M) A
(Vx. isCont F x — (An. f (s n) x) —— F x))"
Saying that (fn,) is a subsequence of (fy) really means that the map k — ny is
strictly increasing. The statement is represented formally by explicitly asserting
the existence of the strictly increasing function s : N — N which returns, for each k,
the value n;,. The proof involves a diagonalization argument: for each rational r, we
thin the sequence to guarantee convergence at r, and then take a “diagonal limit”
to construct the required subsequence and limit. To that end, we used a general
framework for such diagonalization arguments, provided by Fabian Immler.

To describe the relevant corollary, we need to introduce a definition. A sequence
(un) of real measures is said to be tight if, for every € > 0, there is a finite interval
(a, b] such that un(a,b] > 1—¢ for all n. Roughly, a sequence of probability measures
is tight if no mass “escapes to infinity”; the sequence (un ), where py, is a unit mass
at n, is an example of a sequence that is not tight. Helly’s theorem can be used
to show that if (un) is a tight sequence of measures, then for every subsequence
(pny,) there is a further subsequence (pin,(;,) and a probability measure p such that
(kny;) converges weakly to u as j approaches infinity.
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theorem tight_imp_convergent_subsubsequence:
assumes p: "tight p" "subseq s
shows "dr M. subseq r A real_distribution M A weak_conv_m (@ o s o r) M"

In the Isabelle 2016 distribution, the Helly Selection Theorem and its corollary
are proved in Helly Selection, and the Lévy Continuity Theorem is proved in
Levy. Immler’s general framework for diagonal arguments can be found in the
theory Diagonal_Sequence in HOL-Library.

4.5 The Central Limit Theorem

Proving the Central Limit Theorem is now just a matter of putting the pieces
together. Let (X,) be a sequence of random variables, all of which have the same
distribution x and finite variance ¢ > 0. Without loss of generality (subtracting
a common offset) we can assume that each X, has mean 0. Let

. or
i<n
be the normalized sums. Our goal is to show that the distributions of S;, converge
weakly to the standard normal distribution.

For each n, let p, be the characteristic function of S;,. By the Lévy continuity
theorem, it suffices to show that ¢, approaches the characteristic function of the
standard normal distribution pointwise. In other words, we need to show that for
every t, pn(t) approaches e t'/2,

Since each X; has the same distribution, all the X;’s have the same charac-
teristic function; call it ¢. By the key property of characteristic functions, the
characteristic function of the sum S, is the product of the characteristic functions
of the components, so

on(t) = H/eitxj/mdu
H (t/Vno?)
(w(t/ﬁ N

Now some of the explicit calculations described in Section 3.7 can be used to show
that ¢ (t) is well approximated by

2
1+z’t/Xdu+%/X2du,

which is equal to 1 — t202/2, since we are assuming X has mean 0 and variance
o2, Plugging t/m in for ¢, we obtain an approximation to ’(/)(t/\/??), and
substituting that in the expression for ¢, (t), we see that oy (t) is approximated
by (1 — %)" This last expression approaches e /2 ag t approaches infinity, as
required.

The Central Limit Theorem is found in the file Central Limit _Theorem. The
formal version of the proof we have just sketched is given in its entirety in the
appendix. (As above, we derive the mean zero case first, and then derive Theorem 1

as a corollary.)
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5 Reflections

We are by no means the first to formalize substantial portions of analysis in an
interactive theorem prover. Both HOL4 and HOL Light have extensive theories
of multivariate real analysis, and HOL Light has a substantial theory of complex
analysis as well [11]. The real analysis library in HOL Light played an important
part in the Flyspeck project formalization of Thomas Hales’ proof of the Kepler
conjecture [10], and Isabelle’s real analysis library has also been used to formalize
properties of dynamical systems [14]. Substantial portions of measure theory and
measure-theoretic probability have been formalized in HOL4 [16,19]. The C-CoRN
and Coquelicot projects [15,4] provide a libraries for real analysis based on depen-
dent type theory for the Coq proof assistant. It would take us too far afield to
discuss all this work and compare all the other approaches to ours, so, instead, we
will focus on our own formalization efforts and try to convey some of the lessons
we learned. We also refer the reader to an article by Boldo, Lelay, and Melquiond
[5], which provides a thoughtful and thorough survey of approaches to formalizing
real analysis.

5.1 Dealing with partial functions

In the logical framework of type theory, where every function is assumed to be
total, one often has to deal with partial functions, such as limits, derivatives, inte-
grals, and so on. One common way of proceeding is to represent partial functions
as relations. For example, in Isabelle one can write f sums 1 to indicate that the
finite partial sums ), . f(i) converge to [ as n approaches infinity. Another option
is to make the function in question total by assigning an arbitrary value at inputs
where it would otherwise be undefined, and use a predicate to pick out the “real”
values. For example, summable f is defined to mean that there exists an 1 such that
f sums 1, and suminf f specifies that value of 1, if it exists, and 0 otherwise. It is
not hard to see that the expression f sums 1 is then equivalent to the conjunction
summable fA suminf f = 1. The expression suminf f allows us to refer to the value of
the infinite sum, as we do when we write Y ;2 f(i) in ordinary mathematics. In
particular, this expression can occur in a more complicated expression; for exam-
ple, we can write suminf f 4 suminf g. But one typically also wants to know that
summable f holds, since otherwise the value of suminf f may be meaningless.

In Isabelle, many partial functions related to analysis, such as limits and deriva-
tives, are represented in this way, with a relation, a predicate asserting the exis-
tence of a value, and a function that returns an arbitrary value when the predicate
fails. An exception is the notion of a measure on a measure space: while the ex-
pression s € sets M expresses that s is a measurable set for the measure ¥, in which
case, measure M s is the measure of s, there is no relation between a set and its
measure.

In the measure theory library, however, integration is handled in the usual way:
we have has_bochner_integral M f x to express that £ has Bochner integral x with
respect to the measure space M, integrable M f to say that f is integrable, and no-
tation integral’ M f for the value of the integral, when it exists (the superscripted
L is a holdover from Lebesgue measure). The library tends to favor the latter rep-
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resentations, however, with one theorem asserting the value of an integral, and
another theorem asserting integrability. For example, we have:

lemma integral_add:
"integrable M f — integrable M g —>
(LINT x|M. f x + g x) = (LINT x|/M. f x) + (LINT x[M. g x)"

lemma integrable_add:
"integrable M f = integrable M g — integrable M (Ax. f x + g x)"

This sometimes got us into trouble. A couple of times, we used theorems in the
library, only to realize that the accompanying integrability assertions were missing;
we then had to revise the library to provide these additional assertions. We often
made the same mistake in our own developments, and in proofs we often found
that we had to carry out parallel calculations: after calculating an integral, we had
to go back and prove that the expression we began with was in fact integrable.
In some cases, Isabelle’s automation could dispel integrability claims for us, but
typically in those cases the calculations could also be carried out automatically.
On the other hand, writing formulas with integrals rather than the has_integral
predicate makes them look much more like the formulas one finds in an ordinary
mathematical textbook.

We do not know the ideal solution to the problem. In a dependent type theory
with propositions as types, one could require integrable f as a “precondition” —
a hidden argument — to an expression integral f. Coq’s constructive C-CoRN
library uses such an approach [15], but the Coquelicot project uses a classical
axiomatization of the real numbers to totalize limits [4]. In simple type theory, it
seems that one has to choose between using a relational version or using a function
together with a definedness predicate. In the latter case, one has to take care to
keep the two pieces of information close together.

5.2 Strategies for limit proofs

It is not always obvious how to carry out limit proofs at the right level of formal
abstraction. With measure theory, it is often advantageous to adopt an order-
theoretic point of view: instead of proving that a function approaches a certain
point in a e-environment, it is sometimes preferable to do this separately for an
upper and lower bound. This is contrary to what is done in Billingsley [3], where
many proofs, like that of the Helly section theorem, are performed by choosing
¢’s. That approach works when the domain is the set of real numbers or at least a
metric space. But we often needed to use the extended real number structures R or
@20, for two reasons: (1) we reason about measures which are not necessarily finite,
and (2) we reason about liminf’s and limsup’s, which are defined on complete
lattices but not on the real numbers. Working with ¢’s typically requires us to
compute differences, which is difficult on R or R>, where subtraction and addition
are not as well behaved as they are on R. For example, if we use metric limits to
prove a property on a neighborhood of f x, we may obtain a £ > 0, but we do not
immediately have the property f x < f x4+ ¢, since this fails for f x = co. Using
the order topology on extended real number structures, however, we still have
limits and filters, but instead of obtaining a e-neighborhood of a specific point, we
get upper and lower bounds on values for which the property still holds. In the
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previous example, using an order-theoretic limit we instead get an upper bound y
with f = < y, and this moreover implies f z < occ.

Even using e-proofs in a metric-space setting can be formally inconvenient.
Many textbook proofs adopt a style whereby various &’s are obtained in the course
of the argument, for example, as diameters of neighborhoods in open sets or neigh-
borhoods in the range of continuous functions. The properties and all these &’s are
combined by computing a minimal e value and proving it correct. Textbooks often
elide such details by taking an e that is “sufficiently small.”

Formally, it is often better to avoid the uses of € values entirely, showing instead
that the required properties give rise to a set in the relevant filter. For example,
suppose that the functions f and g;, for ¢ < n, are continuous at z, and that 1 < f x
and f y < g; y around z. Suppose further that we want to obtain a neighborhood
of z where f is above 1 and below all the g;s. One approach is to obtain ¢ and
€;’s where 1 < f y where f y < g; y in the corresponding balls around z, and then
to compute the minimum of these values, with the special case where n = 0. But
working with these ¢’s is completely auxiliary to our original goal. Instead, we can
easily show that {y |1 < f y} N, {y | f ¥y < gi y} is in the neighborhood filter
at xz, simply using the fact that a filter is closed under finite intersections.

5.3 Strategies for integrals

Measure theory gives us two different integrals on measure spaces, the nonneg-
ative Lebesgue integral and the Bochner integral, as described in Section 3.4.
The distinction is clear: the Lebesgue integral only requires a measurable func-
tion, and handles functions into the nonnegative extended reals Rzo; while the
Bochner integral requires an integrable function, but handles functions into ar-
bitrary second-countable Banach spaces. There are two important advantages to
using the Lebesgue integral: (1) measurability is compositional, supporting dif-
ferent measurable spaces, while this is not the case for integrability, and (2) the
extended nonnegative reals include oo, and so no integrability condition is needed
for the integral to be closed under addition and constant multiplication. The prop-
erty integrable_iff_bounded, which states that a function is integrable if and only
if it is bounded, provides a key way to prove integrability. Similarly, a function is
integrable if it is measurable and has integrable upper and lower bounds.

A small trick that results in more convenient proof rules for the Bochner in-
tegral is to fix the value of integral p f to 0 for a non-integrable function f. In
interactive theorem proving, this is a common trick to totalize a function taking
values in a numeric domain. Exploiting this fact avoids some auxiliary integrabil-
ity rules. For the constant multiplication rules (i.e. multiplication with a real or
complex value, scalar multiplication and the inner vector product) we get a rule
of the form

integral pu (Axz. c*x f x) = c * integral p f

without any assumptions. Also, integrability is invariant under the transformations
distr and density:

integral (distr p v f) g = integral u (go f)

with the assumption that f and g are measurable. Similarly, we allow the affine
transformation under the integral:
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integral lborel f = |c| * integral lborel (Az. f (t+ cxx))

with the only assumption ¢ # 0.

Of course, we still have the problems mentioned in Subsection 5.1, i.e. we need
to prove integrability separately. (Without a proof of integrability, the results may
not mean what we think they mean, and they are generally unusable.) But in
many analytical proofs, integrability is often proved separately anyhow, with a
proof that may have little to do with the calculation of the integral value.

5.4 Cleanup and length

It is impossible to give a meaningful estimate of the time involved in the formal-
ization, as the work was carried out intermittently over a long period of time, and
includes time spent learning to use Isabelle by the third author, Serafin, who was
an undergraduate student at Carnegie Mellon at the time. When we first obtained
a proof of the CLT, we reported that our repository contained about 13,000 lines
[1]. This included all the general infrastructure and additions to Isabelle’s libraries
as well as the core parts of the proof. Since then, we have cleaned up and refactored
most of our proof scripts, and many of them have been shortened considerably.
Subsequently, Holzl implemented the Bochner integral, eliminating the need for a
separate notion of integration for functions from the reals to the complex numbers.
In addition, many of the supporting theorems and facts have been moved to other
parts of the Isabelle libraries.

The proof of the CLT is now part of the Isabelle distribution. One interesting
observation is that, in terms of the number of lines, the majority of effort went
into developing the background and general infrastructure. For example, some of
our longest files involve general facts about integration:

Bochner_Integral: 3,066 lines
Set_Integral: 602 lines
Interval_Integral: 1,123 lines

In addition, the construction of Lebesgue-Stieltjes measure, described in Sec-
tion 3.8, is found in Lebesgue_Measure and requires about 270 lines. Some of the
key background for the formalization is contained in the following files:

Distribution_Functions: 259 lines
Weak_Convergence: 422 lines
Sinc_Integral: 403 lines

Also, general facts about the standard normal distribution take about about 380
lines in Distributions. The core development of characteristic functions and their
properties, and the proof of the CLT, is found in the following files:

Characteristic_Functions: 554 lines

Helly_Selection: 298 lines
Levy: 542 lines
Central_Limit_Theorem: 144 lines

Once all the background information was in place, many of our proofs followed
those in Billingsley quite closely. This allows for some direct comparisons. The
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increases in length are most dramatic in technical proofs where there are one-
step arguments in the text that are indeed straightforward to verify, but nonethe-
less require long and tedious arguments. This includes verifying straightforward
continuity claims, filling in implicit limit arguments, finding explicit choices of ¢
sufficiently small to make a proof go through, and so on. Thus the Helly selec-
tion theorem, only 10 lines in Billingsley’s text, is 127 lines in our formalization.
Billingsley derives two corollaries from that, each with a proof of 9 lines; our for-
mal versions are 102 and 18 lines, respectively. The Lévy inversion theorem runs
only 15 lines in Billingsley, and about 170 lines in our formalization. Billingsley
observes that the uniqueness theorem follows from the inversion theorem with four
lines of proof, which translates to 74 lines in our formal version.

5.5 Future directions

The version of the Central Limit Theorem we proved is not the most general version
that is presented in Billingsley’s book. With some more calculational effort one
could formalize the Lindeberg central limit theorem, which relaxes the requirement
that the random variables that are summed be identically distributed; we only need
to assume that they do not deviate too much in distribution, as made precise by
the Lindeberg condition [3, p. 359]. Even the condition that the variables being
summed are independent can be weakened to a condition of weak dependence, as
outlined in [3, p. 363]. Other generalizations include the CLT for random vectors
[3, p. 385], and various versions of the CLT for martingales [3, pp. 475-478]. There
are many additional refinements and generalizations of the Central Limit Theorem
in the mathematical literature.

Supporting automation can always be improved, and it was at times frustrating
that automated tools would get stuck on seemingly trivial matters like determin-
ing whether an instance of zero should be interpreted as a real or an nonnegative
extended real. As we remarked in Section 3.7, carrying out ordinary calculations
with integrals was often the most painful part of the formalization. It would be es-
pecially useful to have better automated support for such calculations, that either
implement features of computer algebra systems in a proof-producing framework,
or reconstruct formal proofs of such results from suitable certificates.
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Appendix
theorem (in prob_space) central_limit_theorem_zero_mean:
fixes X :: "nat = ’a = real"
and p :: "real measure"
and o :: real
and S :: "nat = ’a = real"

assumes X_indep: "indep_vars (Ai. borel) X UNIV"
and X_integrable: "/An. integrable M (X n)"
and X_mean_0: "/An. expectation (X n) = 0"
and o_pos: "o > 0"
and X_square_integrable: "/An. integrable M (Ax. (X n x)2)"
and X_variance: "An. variance (X n) = 02"
and X_distrib: "An. distr M borel (X n) = p"
defines "Sn = Ax. Y i<n. X i x"
shows "weak_conv_m (An. distr M borel (M\x. S n x / sqrt (n * 02)))
std_normal_distribution"
proof -
let 7S’ = "An x. Sn x / sqrt (real n * ¢2)" and 7m = "Ax. min (6 * x2)"
define ¢ where "¢ n = char (distr M borel (7S’ n))" for n
define ¢y where "¢ n t = char pu (t / sqrt (02 * n))" for n t

have X_rv [simp, measurable]: "/An. random_variable borel (X n)"
using X_indep unfolding indep_vars_def2 by simp
interpret p: real_distribution u
by (subst X_distrib [symmetric, of 0], rule real_distribution_distr, simp)

have p_integrable [simp]: "integrable p (Ax. x)"
and p_mean_integrable [simp]: "p.expectation (Ax. x) = 0"
and p_square_integrable [simp]: "integrable p (Ax. x~2)"
and p_variance [simp]: "u.expectation (Ax. x°2) = o2"
using assms by (simp_all add: X_distrib [symmetric, of 0]
integrable_distr_eq integral_distr)

let 7T = "An t. LINT x/p. ?m x (|t / sqrt (o2 * n)| * |x| =~ 3)"
have main: "V p n in sequentially.
cmod (pnt - (1 + (-(t°2) /2) /mn) < t2/ (6 * %) 7T nt"
for ¢
proof (rule eventually_sequentiallyI)
fix n :: nat
assume "n > nat (ceiling (t°2 / 4))"
hence n: "n > t°2 / 4" by (subst nat_ceiling_le_eq [symmetric])
let 7t = "t / sqrt (o2 * n)"

define 1’ where "¢’ n i = char (distr M borel
(Mx. X i x / sqrt (o2 * n)))" for n i
have *: "An i t. >’ nit=1 nt"
unfolding 1 _def 1 ’_def char_def
by (subst X_distrib [symmetric]) (auto simp: integral_distr)

have "¢ n t = char (distr M borel
(Ax. Y i<n. X i x / sqrt (o2 * real n))) t"

by (auto simp: ¢_def S_def sum_divide_distrib ac_simps)
also have "... = ([[ i <n. ¥’ nit)"

unfolding 1 ’_def

apply (rule char_distr_sum)

apply (rule indep_vars_compose2[where X=X])

apply (rule indep_vars_subset)

apply (rule X_indep)

apply auto
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done
also have "... = (¢ n t)"n"

by (auto simp add: * prod_constant)
finally have p_eq: "¢ nt = (¢ n t)"n" .

have "norm (¢ nt - (1 - 7t°2 * g2 / 2)) < 7t2 /6 * ?I n t"
unfolding _def by (rule p.char_approx3, auto)
also have "?7t°2 * ¢2 = t"2 / n"
using o_pos by (simp add: power_divide)
also have "t"2 /n /2= (t"2/2) / n"
by simp
finally have **: "norm (¢ nt - (1 + (-(t"2) / 2) / n)) <
7t2 /6 x ?7I n t"
by simp

A

have "norm (¢ n t - (complex_of_real (1 + (-(t"2) / 2) / n))"n) <
n * norm (¢ n t - (complex_of_real (1 + (-(t°2) / 2) / n)))"
using n unfolding ¢_eq v _def
by (auto intro!: norm_power_diff p.cmod_char_le_1 abs_lel
simp del: of_real_diff simp: of_real_diff[symmetric] divide_le_eq)

also have "... < n * (7t2 / 6 * ?I n t)"
by (rule mult_left_mono [OF **], simp)
also have "... = (t2 / (6 * ¢2) * ?I n t)"

using o_pos by (simp add: field_simps min_absorb2)
finally show "norm (o nt - (1 + (-(t"2) / 2) / n)°n) <
(t2 / (6 * ¢2) * ?7I n t)"
by simp
qed

show ?thesis
proof (rule levy_continuity)
fix t
have "Ax. (An. ?m x (|t| * |x| ~ 3 / |sqrt (02 * real n)|)) —— 0"
using o_pos
by (auto simp: real_sqrt_mult min_absorb2
intro!: tendsto_min[THEN tendsto_eq_rhs]
sqrt_at_top[THEN filterlim_compose]
filterlim_tendsto_pos_mult_at_top
filterlim_at_top_imp_at_infinity
tendsto_divide_0
filterlim_real_sequentially)
then have "(An. ?I n t) —— (LINT x/p. O)"
by (intro integral_dominated_convergence [where w = "Ax. 6 * x"2"]) auto
then have *: "(An. t2 / (6 * 02) * ?I n t) — 0"
by (simp only: integral_zero tendsto_mult_right_zero)

have "(An. complex_of_real ((1 + (-(t"2) / 2) / n)°n)) —
complex_of_real (exp (-(t"2) / 2))"
by (rule isCont_tendsto_compose [OF _ tendsto_exp_limit_sequentially])
auto
then have "(An. ¢ n t) ——— complex_of_real (exp (-(t"2) / 2))"
by (rule Lim_transform) (rule Lim_null_comparison [OF main *])
then show "(An. char (distr M borel (7S’ n)) t) —
char std_normal_distribution t"
by (simp add: ¢_def char_std_normal_distribution)
qged (auto intro!: real_dist_normal_dist simp: S_def)
qed

theorem (in prob_space) central_limit_theorem:
fixes X :: "nat = ’a = real"
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and p :: "real measure"
and ¢ o :: real
and S :: "nat = ’a = real"

assumes X_indep: "indep_vars (Ai. borel) X UNIV"
and X_integrable: "An. integrable M (X n)"
and X_mean: "An. expectation (X n) = c"
and o_pos: "o > 0"
and X_square_integrable: "An. integrable M (Ax. (X n x)2)"
and X_variance: "An. variance (X n) = 02"
and X_distrib: "An. distr M borel (X n) = p"
defines "Sn x = Y i<n. X i x"

shows "weak_conv_m (An. distr M borel (M\x. (Sn x - n * c) / sqrt (n*c2)))

std_normal_distribution"
proof -
have "weak_conv_m
(An. distr M borel (M\x. (Y i<n. X i x - ¢) / sqrt (n * 02)))
std_normal_distribution"”
proof (intro central_limit_theorem_zero_mean)
show "indep_vars (Ai. borel) (Ai x. X i x - c) UNIV"
using X_indep by (rule indep_vars_compose2) auto
show "integrable M (Ax. X n x - c)"
"expectation (Ax. X n x - ¢) = 0" for n
using X_integrable X_mean by (auto simp: prob_space)
show "o > 0" "integrable M (Ax. (X n x - c)2)"
"variance (MAx. X n x - ¢) = o2" for n

using (0 < o) X_integrable X_mean X_square_integrable X_variance

by (auto simp: prob_space power2_diff)

show "distr M borel (Ax. X n x - ¢) = distr p borel (Ax. x - c)" for n

unfolding X_distrib[of n, symmetric] using X_integrable
by (subst distr_distr) (auto simp: comp_def)
qed
moreover have "() i<n. X i x - c) =Snx-n*c" for n x
by (simp add: sum_subtractf S_def)
ultimately show ?thesis
by simp
qed



