Performant Bounds Checking for 64-Bit WebAssembly

Lukas Dollerer
Technical University of Munich
Munich, Germany
lukas.doellerer@in.tum.de

Abstract

WebAssembly is becoming increasingly popular for various
use cases due to its high portability, strict and easily enforce-
able isolation, and its comparably low run-time overhead.
For determinism and security, WebAssembly guarantees that
accesses to unallocated memory inside the 32-bit address
space produce a trap. Typically, runtimes implement this by
reserving all addressable WebAssembly memory in the host
virtual memory and relying on page faults for out-of-bounds
accesses.

To accommodate programs with higher memory require-
ments, several execution runtimes also implement a 64-bit
address space. However, bounds checking solely relying on
virtual memory protection cannot be easily extended for
64 bits. Thus, popular runtimes resort to traditional bounds
checks in software, which are required frequently and, there-
fore, incur a substantial run-time overhead.

In this paper, we explore different ways to lower the
bounds checking overhead for 64-bit WebAssembly using
virtual memory techniques provided by modern hardware.
In particular, we implement and analyze approaches using a
combination of software checks and virtual memory, using
two-level guard pages, and using unprivileged memory pro-
tection mechanisms like x86-64 memory keys. Our results
show that we can reduce the bounds checking overhead from
more than 100% when using software bounds checks to only
12.7% using two-level guard pages.

CCS Concepts: - Software and its engineering — Run-
time environments; « Information systems — Web ap-
plications.

Keywords: WebAssembly, Bounds Checking, 64-bit, Virtual
Memory, Memory Protection Keys

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

VMIL °24, October 20, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1213-5/24/10
https://doi.org/10.1145/3689490.3690400

Alexis Engelke
Technical University of Munich
Munich, Germany
engelke@in.tum.de

ACM Reference Format:

Lukas Déllerer and Alexis Engelke. 2024. Performant Bounds Check-
ing for 64-Bit WebAssembly. In Proceedings of the 16th ACM SIG-
PLAN International Workshop on Virtual Machines and Intermedi-
ate Languages (VMIL °24), October 20, 2024, Pasadena, CA, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3689490.
3690400

1 Introduction

WebAssembly (Wasm) [14] is a bytecode format that al-
lows efficient, portable, and safe execution of untrusted code
and was originally designed for web browsers. Compute-
intensive parts are written in languages that typically com-
pile to machine code, like C++ or Rust, and are compiled
to Wasm bytecode, which is then distributed alongside the
website. The Wasm runtime in the browser then verifies and
executes the bytecode, very frequently utilizing just-in-time
compilation for higher performance.

The safety and portability of Wasm quickly led to adop-
tion outside web browsers for sandboxed code execution,
e.g., on embedded IoT devices or the blockchain as smart
contracts [5]. Standalone runtimes like Wasmtime [6], Was-
mer [31], and WasmEdge [8] also provide access to operating
system functionality using the WebAssembly System Inter-
face (WASI) [12], enabling the execution of normal programs
without compiling them to native code first. Another appli-
cation are databases [25, 28], where user-defined functions
can be provided as WebAssembly code and, therefore, be
integrated safely and efficiently into the query compilation
process. Umbra [22, 28] even supports writing entire User-
Defined Operators (UDOs) written in Wasm, which can be
integrated into query plans and are deeply integrated into the
compiled query. For performance, Umbra typically optimizes
and compiles Wasm code using LLVM [17].

Wasm provides a single, linear memory that can grow
dynamically and permits byte-granular access with 32-bit ad-
dresses. For safety and deterministic behavior across Wasm
runtimes, memory accesses from Wasm that go beyond the
bounds of the allocated memory region are guaranteed to
terminate the current Wasm thread (trap) [1].

An efficient technique for checking these 32-bit Wasm ad-
dresses on a 64-bit host system is to reserve all addressable
memory with inaccessible guard pages, as shown in Figure 1
and then rely on memory protection features present on all
POSIX-compatible systems to detect invalid accesses to mem-
ory. The original Wasm whitepaper [14] already proposed
this technique.

https://orcid.org/0000-0003-0135-9288
https://orcid.org/0000-0003-1900-1292
https://doi.org/10.1145/3689490.3690400
https://doi.org/10.1145/3689490.3690400
https://doi.org/10.1145/3689490.3690400
https://creativecommons.org/licenses/by/4.0/

VMIL 24, October 20, 2024, Pasadena, CA, USA

Guard
Region

. WebAssembly
Memory

Figure 1. Memory layout for 3 GiB of accessible Wasm mem-
ory. The hatched region represents inaccessible memory,
protected from illegal accesses using guard pages.

However, 4 GiB of addressable Wasm memory do not suf-
fice for programs with high memory requirements, leading to
a proposal to add 64-bit wide addresses [29], which is already
implemented by several Wasm runtimes. Consequentially,
the technique to reserve all addressable Wasm memory is
no longer possible on 64-bit host systems. Therefore, con-
forming Wasm runtimes implementing this feature currently
resort to software bounds checks for every memory access.
Even after using static optimization passes to eliminate un-
necessary checks, such checks are still required frequently
and significantly increase execution time.

In this paper, we propose multiple bounds checking meth-
ods based on virtual memory techniques for 64-bit Wasm run-
times for efficient detection of out-of-bounds accesses. Our
main approach is based on traditional guard pages combined
with an additional macro guard region, enabling branchless
access checks. Furthermore, we also evaluate the usage of
memory protection keys, an architectural feature present
on x86-64 processors. We implemented our approaches in
Umbra’s Wasm runtime. Our results show that the use of two-
level guard pages allows for bounds checks with an average
overhead of 12.7%. Additionally, all presented approaches
have a lower overhead than software bounds checks, which
have 109.8% run-time overhead compared to execution with-
out bounds checking. Memory protection keys of x86-64
platforms turned out to be not practical for deterministically
catching all out-of-bounds accesses.

In summary, the main contributions of this paper are:

e An approach extending guard pages to more than 32-
bits involving explicit software checks to ensure that
high address bits are clear.

e An approach adding a second level of macro guard
pages to traditional (micro-) guard pages to implement
two-level guard pages.

e An analysis of why x86-64 memory protection keys
are not usable for performant Wasm bounds checking.

2 Background

To utilize hardware features for efficient Wasm out-of-
bounds access detection, we use signals to receive the
information about detected invalid accesses and C++
exceptions for safe handling of a fault condition in our
Wasm runtime.

24

Lukas Déllerer and Alexis Engelke

2.1 POSIX Signals

Memory references that violate memory protection settings
typically cause a hardware exception on the CPU core
that currently executes the offending instruction. A
POSIX-compliant operating system translates this exception
into a SIGSEGV signal' that is delivered synchronously to
the currently executed thread.

If the thread’s process has previously registered a signal
handling function, this function is invoked with information
about the signal’s origin.

2.2 C++ Exceptions

C++ exceptions are objects that escape normal control flow
by unwinding through the current function’s call stack un-
til they encounter a try block with a suitable catch clause
that handles the thrown exception object type. If the excep-
tion reaches the end of the call stack without being handled,
std: :terminate is executed. There exist multiple possibil-
ities for implementing C++ exception handling. Typically,
these are either assisted by the operating system, as in Struc-
tured Exception Handling on Windows or use runtime sup-
port that reconstructs the call frame by parsing source code
annotations, typically in the form of DWARF Call Frame
Information (CFI).

On non-Windows systems, DWARF CFI-based approaches
are the most popular because they allow for near-zero over-
head C++ exception implementations. When the program
throws an exception, it activates the unwinder to deliver the
exception to the suitable catch clause. To have the exception
bubble up the call stack, the unwinder needs to identify the
stack frames of function calls in the call stack. This is only
possible if all required unwind information was generated
and stored in the executable by the compiler.

Besides delivering C++ exception objects to catch clauses,
the unwinder also executes cleanup code for functions in
the call stack whose frame is discarded, because they are
terminated preemptively by the exception. This is extremely
relevant for C++ code that defines non-trivial destructors,
like std: :unique_ptr or std: :lock_guard. [19]

2.3 WebAssembly Memory

The Wasm memory is a linear array of bytes, accessed
through load and store instructions. These calculate the
target address by adding a 32-bit integer operand from the
stack and a 32-bit integer immediate, which is encoded in
the instruction itself. The resulting 33-bit address with a
maximum value of (232 — 1) + (232 - 1) = 2% — 2 describes
the starting position of the target bytes in the linear memory
array, starting with 0 for the first byte.

IFor certain invalid memory references, a SIGBUS signal may be generated.
We refer to both signals when talking about the SIGSEGV signal in the
following paragraphs.

Performant Bounds Checking for 64-Bit WebAssembly

Similarly, with the memory64 proposal, Wasm memory
can be accessed using 65-bit addresses, consisting of a 64-bit
address integer from the stack and an encoded 64-bit offset.

The current, non-standardized memory64 feature proposal
defines bounds checking for 65-bit addresses to be handled
similarly to 33-bit addresses [29]. This implies that 65-bit
addresses are neither truncated nor wrapped to fit into 64-bit
CPU registers. While this replicates the behavior of 33-bit
addresses, it does not seem practical. Therefore, this paper
assumes that 65-bit addresses are wrapped to 64-bit addresses
according to unsigned integer overflow mechanics.

If the current memory64 proposal is standardized without
changes to this behavior, a possible mitigation would be
to trap on overflows during address calculation. This is a
valid approach because any access to an address greater than
264 — 1 is always out of bounds [29].

The Wasm memory’s initial bounds are set in its decla-
ration. During run-time, the memory . grow n instruction in-
creases the memory’s upper bound by n Wasm pages, each
having a size of 64 kiB. Every memory access out of the
current Wasm memory bounds is guaranteed to result in
a Wasm trap, meaning the immediate termination of the
current Wasm runtime thread. [1]

The Wasm specification defines 32-bit, 64-bit, and 128-bit
types, which take up 4, 8, and 16 bytes of memory, respec-
tively. Therefore, a memory access to the 128-bit vector type
at address a accesses all bytes in the range [a; a + 15]. While
explicitly checking the bounds of the last byte is possible,
this can be avoided by always mapping a guard page behind
the last accessible Wasm page to catch partial out-of-bounds
accesses.

3 Signal-Based WebAssembly Trap
Detection

The general idea of using signals to catch out-of-bounds
memory accesses is to reserve all possibly reachable regions
of virtual memory but deny access (i.e., map it with PROT_-
NONE). As these page-level protections are enforced for every
access by the CPU, using this technique comes at no run-time
overhead. We want to rely on such hardware mechanisms
as much as possible to optimize for the overwhelmingly
common case that an access is in-bounds. On POSIX systems,
such violations can be caught using a custom SIGSEGV signal
handler. The handler first validates that the faulting memory
access was indeed caused by accessing one of the reserved
memory regions. For debugging, we also verify that the code
that caused the memory access, i.e., the instruction address
in the signal frame, is part of the compiled Wasm code.
After successful validation, the signal handler has to stop
the Wasm execution and hand over control to the runtime
environment, which can then report the trap. One standard
approach is to use siglongjmp inside the signal handler to
jump to a function higher up in the stack frame, skipping

25

VMIL 24, October 20, 2024, Pasadena, CA, USA

1 (func $wasm_entry
2 call runtime_call_with_lock)

1 void runtime_call_with_lock() {

2 // acquire lock

: const std::lock_guard lock(global_mutex);

1 // call wasm code with the lock being held

5 wasm_use_locked_object();

6 // destructor of std::lock_guard releases lock

1 (func $wasm_use_locked_object

2 ;; Because of some error,

3 ;5 this function causes a Wasm trap
4 trap)

Figure 2. Combination of Wasm and C++ code that could
lead to leaked resources. Without stack unwinding, the lock
is not released on a trap.

all Wasm frames in between. Discarding Wasm stack frames
like this is generally unproblematic. First, the specification
explicitly states that if a memory access causes a trap, the
current thread is terminated without any further changes
to the runtime state. Second, all resources managed by the
Wasm module, e.g., memory, are typically stored in a central
place in the runtime state and can easily be discarded from
there.

However, this is problematic for systems with a deeper
integration of Wasm like Umbra. The Wasm code might call
a runtime function which, e.g., acquires a lock or allocates
some memory and then calls back to another Wasm function
that causes a trap — Figure 2 shows an example. If we exit
the signal handler with a siglongjmp, destructors and other
cleanup code of runtime functions will not get executed,
causing memory leaks or deadlocks.

C++ exceptions provide a mechanism to unwind the stack
while also calling destructors and other cleanup functions
along the way. Throwing a C++ exception from a signal han-
dler is not generally safe. However, we ensure the signal
is caused by compiled Wasm code. C++ code can only be
encountered by the unwinder higher up in the stack frame
at function call boundaries, where the compiler expects pos-
sible exceptions. Furthermore, while signal handlers are no
ordinary function calls but have a special signal frame cre-
ated by the kernel, unwinders are in many cases able to
detect these and unwind through the signal frame, either
by detecting the sigreturn instruction sequence at the re-
turn address (e.g., on AArch64) or by having a custom signal
restorer that is annotated with proper unwind information
(e.g., on x86-64).

Thus, to simplify integration, we use C++ exceptions in
our implementation. Nonetheless, we note that the standard-
ized approach using sigsetjmp/siglongjmp should work

VMIL 24, October 20, 2024, Pasadena, CA, USA

equally well but requires explicit setup before each entry to
compiled wasm code, leading to a run-time overhead.

4 Guard Pages

A simple and straightforward extension of the guard page
approach beyond the 32-bit address space is to simply in-
crease the guard-paged allocation to 2" for some suitable n,
e.g., a 34-bit address space. Prior to every memory access,
we now check in software whether the address is < 27, i.e.,
whether any bits above bit n are set. If this is the case, we
know that the address points to a byte in memory outside
of our mapped region, an out-of-bounds access that should
raise a Wasm trap. Otherwise, we can execute the Wasm
memory access normally, as an invalid memory reference
now is guaranteed to hit a guard page and, therefore, cause
a SIGSEGV.

A Wasm memory.grow instruction now behaves almost
identically to how it behaves with 32-bit guard pages: it
unprotects the requested pages from the start of the guard
region. However, it disallows grow operations beyond the
maximum memory size.

This concept is similar to software bounds checks; how-
ever, with our approach of fixing a maximum memory size,
we do not need to use the exact current memory size be-
cause this dynamically changing size is implicitly modeled
through the changes in memory protection settings of the
guard region. This is especially relevant in a multi-threaded
Wasm environment where the current memory size has to
be reloaded for software-only bounds checking every check.

On x86-64, however, an immediate operand that tests
the upper bits cannot be encoded. There are multiple
options to implement this: (a) shift the address to the
right and test whether the result is zero (mov tmpreg,
addrreg; shr tmpreg, 34; jnz trap); (b) load the
mask into a register and then use a test instruction (mov
tmpreg, Oxfffffffcoo000000; test tmpreg, addrreg;
jnz trap); (c) store the large immediate in memory and
perform a test with a memory operand (test addrreg,
[mask_addr]; jnz trap). Note that all but the last code
sequences require an extra temporary register, which is
then unavailable for other code. Although the last option
performs an extra memory access, this is almost always
a cache hit and does not stall the following (speculative)
execution on modern out-of-order processors. We verified
this assumption also with micro-benchmarks and the LLVM
MCA static code analyzer. This approach also allows us to
dynamically grow our maximum Wasm memory size by
adjusting the mask stored in memory.

Some other architectures like AArch64 support specifying
the address mask as an immediate to the tst instruction, re-
moving the need for an additional memory access or register
per bounds check. In this implementation, dynamic resizing

26

Lukas Déllerer and Alexis Engelke

of the maximum Wasm memory requires recompilation of
all compiled code.

5 Two-Level Guard Pages

The approach of larger guard page regions still requires
explicit branches to detect out-of-range accesses. To avoid
these compare-and-branch code sequences, we instead want
to rely on hardware exceptions by adding an extra load in-
struction that accesses a different memory region based on
the upper bits of the address.

Therefore, we add an extra memory region, which we will
refer to as the macro guard region. This region consists of one
4 kiB host page per 1 GiB of Wasm 64-bit Wasm-addressable
memory. A page in the macro guard region is mapped as
read-only memory if the corresponding 1 GiB Wasm mem-
ory region is allocated in the address space (as a combination
of accessible memory and possible micro guard pages). Oth-
erwise, it is mapped as protected and acts as a macro guard
page. We refer to this also as compression, because several
micro guard pages are compressed into a larger macro guard
page at a different position in memory.

To avoid using an extra register for the macro guard re-
gion’s base address, we place the macro guard region imme-
diately before the actual Wasm memory. Further, we arrange
the macro guard pages in reverse order to avoid adding a
large constant displacement that cannot be encoded as an
immediate operand. Figure 3 illustrates the memory layout.

5.1 Bounds Checking

In this scheme, every memory access first performs a load
from the macro guard region. This load will trigger an excep-
tion if the accessed macro guard page is protected, indicating
an out-of-bounds access. If the load succeeds, the actual mem-
ory access will either hit accessible memory or a micro guard
page.

For 4kiB host pages (2!2) and 1 GiB Wasm memory (23°)
per macro guard page, the macro guard page address is com-
puted as follows:

macroGuardPage = membase — (addr >> (30 — 12)) — 1

To save an instruction on some architectures, the —1 at the
end can be avoided by reserving an extra 256 kiB (2!%) of
guard pages at the end of the Wasm memory.

Figure 4 shows the resulting code. This adds four instruc-
tions per memory access on x86-64. However, these have
no branches and subsequent code has no dependencies, en-
abling out-of-order execution to mostly hide this overhead.
On AArché4, this causes just two additional instructions due
to the availability of three-address instruction formats and
an integrated shift in arithmetic instructions.

5.2 Growing Memory

Growing memory within the 1 GiB chunks is no different
from standard guard page approaches: the corresponding

Performant Bounds Checking for 64-Bit WebAssembly

VMIL 24, October 20, 2024, Pasadena, CA, USA

Micro
432|110 0 1 2 3 16384 Guard
Pages
/ 0 64 KiB 128 KiB 192 KiB 1 GiB 2 GiB
4 KiB AL U

Macro Guard Region

WebAssembly Memory

Micro Guard Region

Figure 3. Two-Level Guard Pages with Micro Guard Pages implementation (not to scale). Hatched blocks represent protected

memory, unhatched blocks are accessible memory.

1 ; rdi = addr, rbx = membase
2 mov rax, rdi

3 shr rax, 18

1 not rax ;o —x=1 == ~x

macro guard page probe:
byte ptr [rbx + rax]

5
6 movzx eax,
7 ; actual load:

g mov eax, dword ptr [rbx + rdi]

1 ; X9 = addr, x28 = membase

2 sub x@, x28, x9, lsr #18

3 1ldrb wo, [x0] ; macro guard page probe
i 1dr wo, [x28, x9] ; actual load

Figure 4. x86-64 and AArch64 assembly code showing a
32-bit load with the two-level guard page bounds checking
scheme.

host pages are mapped as accessible. However, when growing
across 1 GiB boundaries, the runtime must allocate micro
guard pages for the entire 1 GiB segment before changing
the macro guard page from protected to read-only with a
call to mprotect.

5.3 Memory Consumption

The result of the macro guard page load is not used, and we do
not store any data on our macro guard pages. Therefore, the
macro guard region does not consume any actual memory
because the mapped pages will be backed by the shared
zero-page provided by the kernel.

For virtual memory, in our previously stated configuration
with 1 GiB memory per macro guard page, the macro guard
region has a size of 64 TiB on a host with 4kiB page size
(% -212; there are 2% 1 GiB segments, which need one macro
guard page of 4kiB each).

The compression factor can be changed to reduce the vir-
tual memory consumption — this is particularly important

27

for Wasm runtimes that support multiple memories. How-
ever, while a larger compression results in a reduced macro
guard region size, it also results in an increased virtual mem-
ory usage for the uncompressed micro guard pages. For 4 kiB
host pages, the configuration with the smallest total virtual
memory consumption is a compression size of 256 GiB (2°8;
256 GiB macro guard region size + 256 GiB for the first range
of micro guard pages). Generally, the compression size for the
lowest virtual memory consumption is /2% - pagesize. We
note that the compression size only impacts virtual memory
use but not performance.

5.4 Macro Guard Region Allocation

As macro guard pages will never hold any data and, therefore,
will never occupy physical memory space, we map them with
the MAP_NORESERVE flag. Nonetheless, this approach relies on
overcommitting, which is typically allowed by the Linux ker-
nel. However, the kernel can also be configured to disallow
overcommitting over a certain limit entirely, even for unre-
served mappings with the system setting vm.overcommit_-
memory=2. In this case, a possible workaround for such con-
figurations is to create a file-backed mapping that maps the
/dev/zero file as shared memory. No swap space will be
reserved for the mapping, meaning this method does not
require overcommitting at all.

6 Using x86 Memory Protection Keys

The previously described approaches require changes to the
compiled Wasm code to enforce memory isolation and, there-
fore, necessarily have a performance overhead. A different
approach is to completely rely on hardware to perform access
checks by rendering all non-Wasm memory as inaccessible
whenever compiled Wasm code tries to access it. The x86-64
platform provides a feature named Memory Protection Keys
(PKeys), which allow restricting access to certain memory
regions by writing to a user-space register.

VMIL 24, October 20, 2024, Pasadena, CA, USA

Every page is assigned a PKey (0-15), defaulting to key 0.
After an initial setup, read and write access to a page pro-
tected by a specific PKey can be inhibited by configuring
the user space PKRU register appropriately with the instruc-
tion wrpkru [15, 24, 30]. Writing to this register is several
magnitudes faster than an mprotect system call.?

To utilize PKeys for Wasm bounds checking, we need to
mark all Wasm accessible pages with one PKey a and all
non-accessible pages with a different PKey b. Switching to
execution of compiled Wasm code therefore involves remov-
ing access rights to all pages marked with PKey b through
the wrpkru instruction.

However, this poses the problem that memory sections
like the stack or storage of the runtime system need to be
accessed frequently during Wasm execution but must not
be accessible directly from compiled Wasm code. This is the
case because the Wasm specification guarantees the user that
any memory accesses outside the bounds of the allocated
Wasm memory region result in a trap. This is not efficiently
possible for an approach using PKeys, making such an ap-
proach inherently non-compliant. Even when accepting this,
while the instruction wrpkru is substantially faster than a
system call, it has a very high execution time and incurs a
memory barrier inside the CPU, severely impacting perfor-
mance when the instruction is executed regularly. Thus, we
deem the x86 PKeys feature unusable for implementing or
supplementing Wasm bounds checking and do not consider
this approach for our evaluation.

7 Experiments

We aim to increase the speed of 64-bit Wasm execution
through faster bounds checking methods. Therefore, we
implemented all of our approaches in the general purpose
Wasm runtime of the Umbra database system [22, 28]. This
runtime was initially designed for sandboxed evaluation of
user-defined operators during query processing but also of-
fers standalone execution of Wasm code.

7.1 Validation

To assert the valid behavior of our Umbra Wasm runtime
implementation, we utilize the official Wasm specification
test files. All proposed approaches pass all memory- and
trap-related tests and, therefore, fulfill all of the Wasm speci-
fication’s requirements for memory safety and security.

7.2 Performance

When testing the performance of program execution and
compilation, a commonly used benchmark suite is SPEC
CPU2017 [4]. While these benchmarks are commonly used

2A synthetic benchmark executed on our test system showed that an
mprotect system call is at least 30 times slower than a write operation to a
PKey. Additionally, an mprotect system call may lead to a TLB-shootdown,
degrading the performance of the entire process.

28

Lukas Déllerer and Alexis Engelke

and well-known, they are built for native code execution and
compilation by full-featured compilers. Therefore, compil-
ing the SPEC CPU2017 benchmarks to Wasm proved to be
difficult, given the limited feature set of the available Wasm
C and C++ compiler toolchains and limitations enforced by
the Wasm specification. Problems in particular include miss-
ing setjmp/longjmp, C++ exceptions, inability to fork and
execute child processes, and the unavailability of a Fortran
compiler. Nevertheless, we present the compilable subset
of the SPEC CPU2017 benchmarks: 505.mcf_r, 508.namd_r,
519.lbm_r and 557.xz_r. With some modifications to source
code and compiler toolchains, more of the benchmarks could
be made executable; however, this is out of the scope of this
work.

The build and execution challenges of the SPEC CPU2017
benchmarks for Wasm, in addition to the licensing cost, led
open source projects like Wasmtime [6] and Emscripten [34]
to adopt different, non-standardized benchmark suites [11].
Meanwhile, official Wasm benchmarks primarily test the per-
formance of Wasm in a browser environment with JavaScript
interaction®, which is undesired for measuring standalone ex-
ecution performance. Therefore, we use our four compiling,
standardized SPEC CPU2017 benchmarks.

Additionally, we use a 2D k-Means algorithm [18] bench-
mark on 10,000 to 20,000,000 data points, implemented by
Sichert [28]. It was initially built to compare the execution
speed of UDOs in Umbra with other database systems.

7.2.1 Setup. Our benchmarking system uses a single
socket, 12-core x86-64 AMD Ryzen 9 7900X CPU, running
with a peak frequency of 5.7 GHz. It has 61 GiB of Memory
and runs a Linux kernel version 6.2.0-32-generic, built for
the Ubuntu 23.04. Benchmarks were compiled using the
wasi-sdk-21 toolchain and executed 20 times; the results
presented were averaged. Wasm code execution speed highly
depends on the host system and architecture. Therefore, it
should be noted that the presented measurements are only
intended for relative comparisons between the proposed
bounds checking methods. Absolute execution times vary
between different host machines.

7.2.2 Results. The measured execution times with all
bounds checking methods are normalized to execution
without bounds checking, denoted as None. 32-bit Guard
Pages refers to the standard guard page approach that does
not need code changes, 64-bit Guard Pages refers to the
approach described in section 4. 2-Ivl Guard Pages refers to
two-level guard page approach (section 5), and Soft Bounds
Check to software bounds checks as a baseline.

Figure 5 shows that software bounds checks introduce
a run-time overhead of up to 242% of the execution time
without bounds checks.

3E.g. ‘webassembly/benchmarks’, the official Wasm benchmark repository:
https://github.com/WebAssembly/benchmarks (accessed 2024-01-26)

https://github.com/WebAssembly/benchmarks

Performant Bounds Checking for 64-Bit WebAssembly

[None
I 32-bit Guard Pages
[64-bit Guard Pages

[2-Ivl Guard Pages
[Soft Bounds Check

2.5 1

g
o
1

—_
ot
1

—_
o
|

Normalized Mean Execution Time

e
o
1

0.0 -

Figure 5. Normalized mean execution times of the com-
piled SPEC CPU2017 benchmarks and the 2D k-Means algo-
rithm [18]. The results are normalized to the execution time
without bounds checks enabled (None). Code generation and
execution were performed using the Umbra LLVM backend
and the Umbra Wasm runtime. (Lower is better)

Guard Pages for 32-bit Wasm execution only add addi-
tional unwind information and no executed instructions,
leading to a similar execution time as if bounds checks were
disabled completely. Their 64-bit equivalent additionally ex-
ecutes a test/jne instruction pair, including an additional
memory access, making it just slightly faster than the soft-
ware bounds checking method in most benchmarks with a
run-time overhead between 76% and 142% of the baseline
execution time.

While 64-bit guard pages only perform slightly better in
most benchmarks, the two-level guard page approach consis-
tently outperforms software bounds checks. This shows that
while the two-level guard pages approach executes more
instructions than a software bounds check, eliminating the

29

VMIL ’24, October 20, 2024, Pasadena, CA, USA

conditional branch and memory size load substantially low-
ers the overhead incurred by bounds validation. With a max-
imum overhead of 17.3%, this approach proves to be a very
beneficial strategy, also for larger and more complex appli-
cations.

8 Related Work

In order to get an overview of existing methods to decrease
the overhead of bounds checking in Wasm execution, we
analyzed popular standalone runtimes, like Wasmtime [6],
Wasm3 [27], Wasmer [31], WasmEdge [8] and the three ma-
jor browser runtimes in the JavaScript engines JavaScript-
Core [2], V8 [13] and SpiderMonkey [20].

Most open-source Wasm runtimes adopted the Guard
Pages bounds checking method for their 32-bit execution
modes. A notable exception are SpiderMonkey, Wasm3, and
WasmEdge, which always emit software bounds checks.

The memory64 feature proposal introduces larger
Wasm memory sizes that require indexing using 64-bit
addresses [29]. Therefore, 32-bit Guard pages can no
longer be used for out-of-bounds detection. Wasm3,
Wasmer, WasmFEdge, and JavaScriptCore do not support the
memory64 feature proposal or implement bounds checking
for 64-bit addresses [33]. All other analyzed Wasm runtimes
always emit software bounds checks [9]. However, the V8
team is currently evaluating alternative methods for future
versions of their engine.*

8.1 Other Methods for Out-Of-Bounds Access
Detection

Memory-unsafe programming languages like C and C++ al-
low programmers to access unallocated memory, leading to
vulnerable and error-prone code. Therefore, other research
groups already invented various tools to reliably detect un-
intended out-of-bounds accesses. Address Sanitizers track
allocated memory regions through binary instrumentation,
compiler support, or specialized memory allocator imple-
mentations [26]. Depending on the utilized method, they can
detect various kinds of invalid memory accesses, often with
a granularity of up to a single Byte over bounds. This pre-
ciseness typically leads to a high run-time overhead because
every load and store operation requires a manual lookup of
the accessed address, making the software solutions imprac-
tical for production use in a DBMS.

Modern Instruction Set Architecture (ISA) extensions are
introduced to reduce the run-time overhead of these ap-
proaches by allowing programs to encode additional origin
information into memory pointers or facilitate pointer val-
idation in hardware. Existing extensions are, for example,

4No official information about this is available at the time of writing. The
only information source is the following e-mail from the v8-dev mailing
list: https://www.mail-archive.com/v8-dev@googlegroups.com/msg161691.
html (accessed 2024-01-30)

https://www.mail-archive.com/v8-dev@googlegroups.com/msg161691.html
https://www.mail-archive.com/v8-dev@googlegroups.com/msg161691.html

VMIL 24, October 20, 2024, Pasadena, CA, USA

SPARC ADI [23], ARM’s Memory Tagging Extension for
AArch64 [3], Intel’s Linear Address Masking (LAM) [16]
and CHERI, Capability Hardware Enhanced RISC Instruc-
tions [32]. However, these extensions may not be available
for the host system. Especially for x86-64 systems, the LAM
extension only enables the encoding of additional informa-
tion into pointers without providing hardware support for
validating pointers. Approaches like the ARMv8.5 Memory
Tagging Extensions are especially promising for efficient,
hardware accelerated bounds checking, as shown by Fink
et al. [10], but are also not widely implemented in available
processors.

Narayan et al. [21] introduce a custom ISA extension,
which implements many of the isolation principles that
Wasm provides in software, in hardware. They introduce,
among other things, regions as an abstraction of Wasm mem-
ories at the hardware level with native bounds checking.
While their ISA extension solves many of the performance
problems related to software-based isolation, it is not yet
incorporated into any available processors.

x86-64 CPUs feature debug registers for debuggers to store
breakpoint conditions that are automatically checked in hard-
ware. Four of the available eight registers can store addresses
that are matched against operands of memory instructions.
When an instruction’s operand matches the register content,
a debug exception is generated by the CPU [15]. Chiueh
[7] use this hardware feature to detect out-of-array-bounds
accesses in loops. However, the accessed out-of-bounds ad-
dress must perfectly match the register content, meaning
only 4 Bytes of virtual memory can be protected using the
debug registers.

9 Conclusion

Out-of-bounds access detection in WebAssembly runtimes is
required for safe and secure execution but poses a significant
challenge for efficient code execution. Hardware memory
protection mechanisms help to reduce the runtime overhead
of bounds checks and can even eliminate any speed penalty
for 32-bit Wasm execution.

For the most efficient execution of Wasm code with 64-
bit addresses, our approach to use two-level guard pages
for coarse-grained access checking and micro guard pages
for fine-grained, Wasm page-level access control leads to
a comparably low overhead of 12.7% on average, which is
a substantial improvement from the overhead of software
bounds checking of more than 100%.

References

[1] [n.d.]. WebAssembly Core Specification.
Report. W3C. https://www.w3.0rg/TR/wasm-core-2/
https://webassembly.github.io/spec/core/_download/WebAssem-
bly.pdf.

[2] Apple Inc. 2024. JavaScriptCore.
20Dive/JSC/JavaScriptCore.html

Technical

https://docs.webkit.org/Deep%

30

Lukas Déllerer and Alexis Engelke

[3] Arm Limited. 2024. Armv8.5-A Memory Tagging Extension Whitepaper.
Technical Report. Arm Limited. https://developer.arm.com/-
/media/Arm%20Developer%20Community/PDF/Arm_Memory_
Tagging_Extension_Whitepaper.pdf

[4] James Bucek, Klaus-Dieter Lange, and Jéakim V. Kistowski. 2018. SPEC

CPU2017: Next-Generation Compute Benchmark. In Companion of

the 2018 ACM/SPEC International Conference on Performance Engineer-

ing. ACM, Berlin Germany, 41-42. https://doi.org/10.1145/3185768.

3185771

Bytecode Alliance. 2023. WebAssembly Micro Runtime.

bytecodealliance.github.io/wamr.dev/

Bytecode Alliance. 2024. Wasmtime. https://wasmtime.dev/

Tzi-cker Chiueh. 2008. Fast Bounds Checking Using Debug Regis-

ter. In High Performance Embedded Architectures and Compilers, Per

Stenstrém, Michel Dubois, Manolis Katevenis, Rajiv Gupta, and Theo

Ungerer (Eds.). Vol. 4917. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 99-113. https://doi.org/10.1007/978-3-540-77560-7_8

Cloud Native Computing Foundation. 2024. WasmEdge.

//wasmedge.org/

Alex Crichton. 2023. Architecture - Wasmtime. https://docs.wasmtime.

dev/contributing-architecture.html#linear-memory

Martin Fink, Dimitrios Stavrakakis, Dennis Sprokholt, Soham

Chakraborty, Jan-Erik Ekberg, and Pramod Bhatotia. 2024. Cage:

Hardware-Accelerated Safe WebAssembly. https://doi.org/10.48550/

arXiv.2408.11456

Nick Fitzgerald. 2021. rfcs/accepted/benchmark-suite.md - bytecodeal-

liance/rfcs. https://github.com/bytecodealliance/rfcs/blob/main/

accepted/benchmark-suite.md

Dan Gohman. 2019. wasmtime/docs/WASI-overview.md at main -

bytecodealliance/wasmtime. https://github.com/bytecodealliance/

wasmtime/blob/main/docs/WASI-overview.md

Google. 2024. V8 JavaScript Engine. https://v8.dev/

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,

Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF

Bastien. 2017. Bringing the Web up to Speed with WebAssembly.

In Proceedings of the 38th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI 2017). Association

for Computing Machinery, New York, NY, USA, 185-200. https:

//doi.org/10.1145/3062341.3062363

Intel Corporation. 2023. Intel 64 and IA-32 Architectures Software

Developer’s Manual. Intel Corporation, 2200 Mission College Blvd.

Santa Clara, CA 95054-1549 USA. https://www.intel.com/content/

www/us/en/developer/articles/technical/intel-sdm.html

Intel Corporation. 2023. Intel Architecture Instruction Set Extensions and

Future Features. 2200 Mission College Blvd. Santa Clara, CA 95054-1549

USA. https://cdrdv2.intel.com/v1/dl/getContent/671368

C. Lattner and V. Adve. 2004. LLVM: A Compilation Framework

for Lifelong Program Analysis & Transformation. In International

Symposium on Code Generation and Optimization, 2004. CGO 2004. IEEE,

San Jose, CA, USA, 75-86. https://doi.org/10.1109/CG0.2004.1281665

S. Lloyd. 1982. Least Squares Quantization in PCM. IEEE Transactions

on Information Theory 28, 2 (March 1982), 129-137. https://doi.org/10.

1109/T1T.1982.1056489

[19] John McCall, Richard Smith, Jason Merrill, and Tom Honermann. 2012.

C++ ABI for Itanium: Exception Handling. https://itanium-cxx-abi.

github.io/cxx-abi/abi-eh.html

Mozilla Corporation. 2024. SpiderMonkey JavaScript/WebAssembly

Engine. https://spidermonkey.dev/

Shravan Narayan, Tal Garfinkel, Mohammadkazem Taram, Joey

Rudek, Daniel Moghimi, Evan Johnson, Chris Fallin, Anjo Vahldiek-

Oberwagner, Michael LeMay, Ravi Sahita, Dean Tullsen, and Deian

Stefan. 2023. Going beyond the Limits of SFI: Flexible and Secure

Hardware-Assisted In-Process Isolation with HFL In Proceedings of the

https://

8

—

https:

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[20]

[21]

https://www.w3.org/TR/wasm-core-2/
https://docs.webkit.org/Deep%20Dive/JSC/JavaScriptCore.html
https://docs.webkit.org/Deep%20Dive/JSC/JavaScriptCore.html
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3185768.3185771
https://bytecodealliance.github.io/wamr.dev/
https://bytecodealliance.github.io/wamr.dev/
https://wasmtime.dev/
https://doi.org/10.1007/978-3-540-77560-7_8
https://wasmedge.org/
https://wasmedge.org/
https://docs.wasmtime.dev/contributing-architecture.html#linear-memory
https://docs.wasmtime.dev/contributing-architecture.html#linear-memory
https://doi.org/10.48550/arXiv.2408.11456
https://doi.org/10.48550/arXiv.2408.11456
https://github.com/bytecodealliance/rfcs/blob/main/accepted/benchmark-suite.md
https://github.com/bytecodealliance/rfcs/blob/main/accepted/benchmark-suite.md
https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-overview.md
https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-overview.md
https://v8.dev/
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://cdrdv2.intel.com/v1/dl/getContent/671368
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html
https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html
https://spidermonkey.dev/

Performant Bounds Checking for 64-Bit WebAssembly

[22

[23

[24

[25

[26

[27

]

]

]

—

]

—

28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 3 (Vancouver, BC,
Canada) (ASPLOS 2023). Association for Computing Machinery, New
York, NY, USA, 266-281. https://doi.org/10.1145/3582016.3582023
Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based
System with In-Memory Performance. In 10th Conference on Innovative
Data Systems Research, CIDR 2020, Amsterdam, the Netherlands, January
12-15, 2020, Online Proceedings. www.cidrdb.org. http://cidrdb.org/
cidr2020/papers/p29-neumann-cidr20.pdf

Oracle. 2022. Adi - Man Pages Section 7: Standards, Environments,
Macros, Character Sets, and Miscellany. Technical Report. https:
//docs.oracle.com/cd/E88353_01/html/E37853/adi-7.html

Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim.
2019. Libmpk: Software Abstraction for Intel Memory Protection Keys
(Intel MPK). In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). USENIX Association, Renton, WA, 241-254. https://www.
usenix.org/conference/atc19/presentation/park-soyeon

Piotr Sarna. 2022. Wasmtime: Supporting UDFs in ScyllaDB with
WebAssembly. https://www.scylladb.com/2022/04/14/wasmtime/
Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. 2012. AddressSanitizer: A Fast Address Sanity
Checker. In 2012 USENIX Annual Technical Conference (USENIX ATC
12). USENIX Association, Boston, MA, 309-318. https://www.usenix.
org/conference/atc12/technical-sessions/presentation/serebryany
Volodymyr Shymanskyy and Steven Massey. 2024. Wasm3. Wasm3
Labs. https://github.com/wasm3/wasm3

31

[28]

[29]

[30]

[31]
[32]

[33]

[34]

VMIL ’24, October 20, 2024, Pasadena, CA, USA

Moritz-Felipe Sichert. 2024. Efficient and Safe Integration of User-
Defined Operators into Modern Database Systems. Ph. D. Dissertation.
Technische Universitiat Miinchen, Munich. https://nbn-resolving.de/
urn/resolver.pl?urn:nbn:de:bvb:91-diss-20240111-1713746-1-4
Ben Smith and Andreas Rossberg. 2020.
ory64/proposals/memory64/Overview.md at master - WebAssem-
bly/memory64. https://github.com/WebAssembly/memory64/blob/
master/proposals/memory64/Overview.md

The Linux man-pages project, Michael Kerrisk, and Alejandro Colomar.
2023-05-03. mprotect(2) — Linux Manual Page. https://man7.org/linux/
man-pages/man2/mprotect.2.html

Wasmer. 2024. Wasmer. https://wasmer.io

Robert N. M. Watson, Simon W. Moore, Peter Sewell, and Peter G.
Neumann. 2019. An Introduction to CHERI. Technical Report 941.
University of Cambridge - Computer Laboratory, 15 JJ Thomson
Avenue, Cambridge CB3 0FD, United Kingdom. 43 pages. https:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
WebAssembly Community Group and Andreas Rossberg. 2024. Feature
Extensions - WebAssembly. https://webassembly.org/features/
Alon Zakai. 2011. Emscripten: An LLVM-to-JavaScript Compiler. In
Proceedings of the ACM International Conference Companion on Object
Oriented Programming Systems Languages and Applications Companion.
ACM, Portland Oregon USA, 301-312. https://doi.org/10.1145/2048147.
2048224

mem-

Received 2024-07-25; accepted 2024-08-21

https://doi.org/10.1145/3582016.3582023
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://docs.oracle.com/cd/E88353_01/html/E37853/adi-7.html
https://docs.oracle.com/cd/E88353_01/html/E37853/adi-7.html
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://www.scylladb.com/2022/04/14/wasmtime/
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://github.com/wasm3/wasm3
https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20240111-1713746-1-4
https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20240111-1713746-1-4
https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md
https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md
https://man7.org/linux/man-pages/man2/mprotect.2.html
https://man7.org/linux/man-pages/man2/mprotect.2.html
https://wasmer.io
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://webassembly.org/features/
https://doi.org/10.1145/2048147.2048224
https://doi.org/10.1145/2048147.2048224

	Abstract
	1 Introduction
	2 Background
	2.1 POSIX Signals
	2.2 C++ Exceptions
	2.3 WebAssembly Memory

	3 Signal-Based WebAssembly Trap Detection
	4 Guard Pages
	5 Two-Level Guard Pages
	5.1 Bounds Checking
	5.2 Growing Memory
	5.3 Memory Consumption
	5.4 Macro Guard Region Allocation

	6 Using x86 Memory Protection Keys
	7 Experiments
	7.1 Validation
	7.2 Performance

	8 Related Work
	8.1 Other Methods for Out-Of-Bounds Access Detection

	9 Conclusion
	References

