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Abstract—Low compilation times are highly important in
contexts of Just-in-time compilation. This not only applies to
language runtimes for Java, WebAssembly, or JavaScript, but is
also crucial for database systems that employ query compilation
as the primary measure for achieving high throughput in
combination with low query execution time.

We present a performance comparison and detailed analysis
of the compile times of the JIT compilation back-ends provided
by GCC, LLVM, Cranelift, and a single-pass compiler in the
context of database queries. Our results show that LLVM achieves
the highest execution performance, but can compile substantially
faster when tuning for low compilation time. Cranelift achieves
a similar run-time performance to unoptimized LLVM, but
compiles just 20–35% faster and is outperformed by the single-
pass compiler, which compiles code 16x faster than Cranelift at
similar execution performance.

Index Terms—Fast compilation, LLVM, JIT compilation, Query
Compilation

I. INTRODUCTION

Fast compilation is not only important for improving

developer productivity through fast builds, but is also highly

relevant for achieving a low start-up latency in just-in-time

(JIT) compilation settings. This allows fast overall execution of

short programs. Typically, a fast-compilation tier is responsible

only for keeping the start-up times short and is paired with an

optimizing compilation tier, which takes more time to generate

code, but achieves higher execution performance.

Consequently, many JIT-compilation engines feature a multi-

tiered compilation approach and are particularly widely used

for efficient JavaScript execution. For example, V8 [1], [2]

only pairs a bytecode interpreter with an optimizing compiler,

whereas WebKit’s JavaScriptCore [3] implements three JIT-

compilation tiers on the top of their interpreter. Similarly,

dedicated WebAssembly runtimes like Wasmtime [4] often

feature such approaches.

Another user of JIT-compilation techniques are query com-

pilation engines of database systems. Compiling database

queries to native machine code is a key technique for efficient

processing of large data sets and allows for substantial

performance improvements over interpreted processing. As

a consequence, several database systems implement some sort

of query compilation [5]–[10].

As it is not uncommon that queries are unknown before their

execution, fast compilation is important for a low response

latency. This is particularly relevant for applications like

interactive data exploration tools, which often generate their

queries in response to user interaction, so fast overall execution

times even on large data sets are important for application

responsiveness. To add to this, such queries might be more

complex and tools might execute multiple queries in a row,

increasing the importance of fast execution of queries not

known ahead of time [11].

Umbra [9] is a compiling database with strong emphasis on

fast execution, targeting x86-64 and AArch64. It supports a

wide range of back-ends for the actual compilation of queries

to machine code, with different properties regarding compile

time and execution performance, in particular, supporting an

ordinary C compiler, LLVM [12], and Cranelift [13]. Moreover,

Umbra also implements a custom, direct code generator to x86-

64 machine code [14] and an interpreter.

In this paper, we report our experiences with these different

back-ends and provide a detailed and thorough comparison

and analysis of the compile times of these back-ends when

compiling database queries. Our main contributions are:

• A performance comparison and analysis of all back-ends

supported by Umbra on both x86-64 and AArch64.

• A thorough and in-depth analysis of the compile-time

performance of LLVM and Cranelift.

• An analysis and outline of possible improvements regard-

ing compile-times for all compilation approaches.

• Our steps to adjust our LLVM-IR code to achieve faster

compilation times.

The remainder of this paper is structured as follows: Sec. II

gives a brief overview on query compilation and Sec. III

describes Umbra in more detail, particularly focusing on

the structure of the generated code and Umbra’s internal

code representation. The following sections then describe and

analyze each of the back-ends, with GCC/C in Sec. IV, LLVM

in Sec. V, Cranelift in Sec. VI, and Umbra’s single-pass

approach in Sec. VII. Afterwards, Sec. VIII compares the

back-ends regarding compile-time and run-time performance,

and we discuss the results in Sec. IX. Sec. X covers related

work and in Sec. XI we summarize our findings.
Benchmark System Specification: Unless noted otherwise,

all specified performance numbers refer to the sum of compiling

all TPC-DS [15] queries, resulting in the compilation of 6678

functions. We ran 20 executions of all measurements and

report the arithmetic mean. Our x86-64 machine is based
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(a) Query plan.

for t1 ∈ R1

if σ1(t1)
store t1 in hash table ⋊⋉1

for t2 ∈ R2

store t2 in hash table ⋊⋉2

for t3 ∈ R3

for match t2 in ⋊⋉2

for match t1 in ⋊⋉1

output t1 ◦ t2 ◦ t3

(b) Pseudo-code.

Fig. 1. Simple query plan with three pipelines.

on an Intel Xeon Gold 6338 processor, 32 cores, 2.0 GHz,

equipped with 256 GiB memory, running Linux 5.19.0. All

AArch64 measurements were done on an Apple M1 system,

only utilizing the 4 performance cores, equipped with 16 GiB

memory, running Asahi Linux 6.2.0.

II. BACKGROUND: QUERY COMPILATION

Modern database systems compile queries to native machine

code to achieve high throughput by utilizing available compute

resources effectively [7], [8], [16], [17]. To compile a query,

it is initially parsed, analyzed, and transformed into a query

plan, which is often a tree or DAG. The plan is then optimized

and modified to be more suitable for efficient execution. This

also involves selecting actual implementations for high-level

operators, e.g. choosing a hash join for a generic join operator.

Once the final query plan is reached, the plan is separated

into linear pipelines [5]. The operator at the bottom of a pipeline

reads the data from a data source (e.g., a relation in storage).

The data is then passed through the operators of the pipeline,

which can arbitrarily transform the tuples. At the end of the

pipeline, the tuples are materialized into a proper representation

in memory, e.g., the output buffer, a temporary buffer, or an

index data structure. Most notably, there is no materialization

between the operators of the pipeline, data is kept in registers

or local buffers only. Pipelines can also have dependencies

on the results of other pipelines. For example, in Fig. 1a the

join operator ⋊⋉2 in the pipeline starting from R3 needs the

materialized result of the pipeline from R2. This data-centric

approach allows for a fairly straight-forward generation of

imperative code. The base table scan iterates over the tuples

of the base relation and loads the values into local variables.

In the loop body, ancestor operators are applied in a nested

manner, and at the innermost nesting level, the modified tuple

is materialized again. Fig. 1b shows an example.

To allow for utilizing multiple cores, scans at the bottom of

a pipeline do not always iterate over all tuples, but only over

a configurable subset [18] (“morsel-driven parallelism”). This

way, multiple threads can process different parts of the base

table in parallel. When multiple threads write to the same data

structure, atomic operations or runtime calls are used.

III. UMBRA SYSTEM ARCHITECTURE

Umbra [9] is a relational database system that makes heavy

use of dynamic code generation for executing queries. To

improve utilization of CPU cores, Umbra not only employs

morsel-driven parallelism, but also compiles each pipeline

separately, enabling parallel compilation and more efficient

execution scheduling. In addition to the function with the

main logic, compiling a pipeline also involves some other

small functions, e.g. for single-threaded preparatory work or

cleanup. Umbra is written in C++ and mainly targets x86-64,

but AArch64 is supported as well.

A. Structure of Generated Code

As a consequence of the rather fine-grained separation into

multiple functions, a portion of the functions are rather small

and only have simple control flow. However, for some query-

dependent parts, functions can not only grow very long with

variables having long live-intervals (e.g., for a query with many

selection predicates), but also contain arbitrarily deeply nested

loops (e.g., with many table joins, one loop nest per join).

For many non-trivial and query-independent operations, the

generated code includes calls into runtime functions. This

includes memory management, input/output and non-trivial

synchronization operations. In some cases, runtime functions

call back into generated code, for example, for the comparison

function of a sort operation. As Umbra uses C++ exceptions

for error handling, all functions with runtime calls must have

associated DWARF [19] unwinding information registered with

the C++ runtime.

For representing SQL decimals, Umbra uses 128-bit integers,

and therefore the generated code can make heavy use of 128-

bit arithmetic. Furthermore, all arithmetic operations on user

data include checks for overflow conditions to avoid producing

incorrect results.

Strings are implemented as 16-byte data structures with small

buffer optimization: the first four bytes indicate the length. If

the length is less than or equal to 12, the remainder of the

struct contains the entire string. Otherwise, bytes 8–15 contain

a pointer to the string and additionally bytes 4–7 contain the

prefix of the string, allowing quick access to the first four

characters. This string structure is passed very frequently by-

value to and from runtime functions.

Umbra’s hash function uses CRC-32 if the target hardware

has native support, and otherwise falls back to using 64×64 →
128-bit multiplication, where the lower and upper half of the

128-bit result are immediately combined using XOR into a

new 64-bit value (referred to as long-mul-fold). As hash-joins

are extremely common, these operations occur very frequently

in hot parts of the compiled query.

B. Umbra IR

Code for a function is initially generated in Umbra IR [9],

[14], a custom SSA-based intermediate representation op-

timized for fast generation and linear traversal. After its

generation, the IR is handed over to an execution back-end,

which interprets or compiles the code as suitable, permitting a
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Listing 1. Excerpt of an Umbra IR function.

define int32 @filter(int8* %s, int32 %count,

int32* %vec) noexcept [] {

2:

%0 = isnull i32 %count

condbr %0 %3 %4

3:

return 0

4:

%5 = load int32 %vec

%6 = add i32 %5, %count

%7 = sub i32 %6, 1

%8 = sub i32 %count, 1

; ...

}

path with very fast code generation as well as an optimizing

path through a more advanced back-end like LLVM.

Structurally, Umbra IR is inspired by LLVM-IR and has

several conceptual similarities, Listing 1 shows an example:

functions are structured in basic blocks, which begin with Φ-

nodes to merge values from multiple predecessors. Instructions

inside basic blocks always have a single result value and the

IR is strictly typed. The type system, however, is much more

simple: Umbra IR has no complex or composite data types and

only supports integer (8/16/32/64/128 bits), boolean, double-

precision floating-point, pointer, and the data128 (e.g., for

strings) types. Also, constants are separate instructions to

simplify the internal representation.

One key motivation for a custom IR is the ability to also

express complex operations as a single instruction, increasing

the expressiveness and brevity of Umbra IR programs. A prime

example are arithmetic instructions with overflow detection,

which are provided in three variants: (a) trapping instructions,

where an overflow condition results in a call to a trap function

(which is implicit control flow in the IR) — Listing 2 shows

an example; (b) check-and-branch instructions, where the

IR instruction terminates the basic block and specifies two

successors, one for the success and one for the overflow case;

and (c) check instructions, which indicate an overflow condition

as a separate IR value. As Umbra IR instructions only have

one result operand, the overflow bit is produced by a separate

instruction, which immediately follows after the arithmetic

instruction and is intended to be fused by the back-end. Other

non-standard operations include byte-swap, CRC-32, long-mul-

fold, and arithmetic operations that directly operate on memory.

Technically, Umbra IR is designed and heavily optimized

for efficient in-memory storage and linear forward traversal.

Instructions are variable-length, stored in a single buffer, and

reference each other using offsets into the buffer. To achieve

low-latency code generation, Umbra IR does not maintain user

lists and the complexity of inserting or removing instructions

in the middle of a block is O(n), as subsequent instructions

need to be rewritten. The only implemented transformation on

Umbra IR — dead code elimination — therefore first explicitly

computes the user count of each instruction and then rewrites

Listing 2. Umbra IR code using overflow instructions and special operations
as part of a hash function. Value numbers simplified for brevity.
4:

%5 = getelementptr int8 %state, i64 32

; ssubtrap may call throwOverflow()

%6 = ssubtrap i32 %3, 53

%7 = zext i64 %6

%8 = crc32 i64 0xf45f017ffbcd4390, %7

%9 = crc32 i64 0xb9935cc97ab5b272, %7

%10 = rotr i64 %6, 32

the entire function, omitting (transitively) unused instructions.

A more detailed description of Umbra IR can be found in [14].

C. Execution Back-ends

Umbra IR has several execution back-ends with different

characteristics in compile-time and execution performance.

By default, the back-end is selected adaptively, starting each

compilation with the low-latency DirectEmit back-end. Then,

after a function is executed a few times, the adaptive back-end

roughly estimates the compilation time and benefit through a

simple heuristic on the code size and, if it deems optimization

beneficial, starts a compilation with the LLVM-optimized back-

end. Once compiled, subsequent executions will use the opti-

mized function. Advanced mechanisms for switching functions

are not necessary, as morsel-driven parallelism ensures that the

function is called for sufficiently small workloads.

IV. GCC/C BACK-END

Umbra’s GCC/C back-end provides a very high execution

performance, but also the longest compilation times.

The back-end first transforms Umbra IR into C code. This is

mostly a straight-forward process; conditional branches become

goto statements and every SSA-variable becomes a normal

variable. Φ-nodes follow the usual SSA destruction strategy,

resolving chains or cyclic dependencies between Φ-nodes. The

C code is written to a temporary file and an external compiler

(typically GCC) is called to compile it into a shared library.

The shared library is opened using dlopen and the compiled

functions are accessed with dlsym.

While this approach is conceptually similar to libgccjit [20],

which also compiles code into shared libraries, libgccjit directly

generates GCC’s IR (GIMPLE), avoiding the parsing overhead.

However, due to restrictive licensing, using libgccjit in Umbra

is not possible.

A. Optimizations

1) Run-time: The C compiler is invoked with the options

-O3 -march=native to aggressively optimize code for the

current system and its supported CPU features.

2) Compile-Time: Due to the large overhead of generating

and parsing C code, calling an external process, which in

turn invokes the assembler and linker, and the I/O for the

intermediate files, we did not further optimize compile times.
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TABLE I
COMPILE-TIME BREAKDOWN OF THE C BACK-END. DATA FROM

-FTIME-REPORT FOR THE INDIVIDUAL PHASES IS SHOWN SEPARATELY

DUE TO HIGH OVERHEAD.

Phase -ftime-report Time

Umbra: C code generation 0.14s

GCC: cc1 (compiler) 52.00s 42.13s
Phase setup 0.26s
Phase parsing 6.45s

Preprocessing 2.03s
Lexical analysis 2.09s
Parsing 2.31s

Phase opt and generate 44.92s
GCC: as (assembler) 0.13s
GCC: collect2 (linker) 0.75s

Load shared library 0.01s

Total 46.34s

B. Compile-Time Analysis

GCC provides two mechanisms for analyzing compile times:

the -time option, which has nearly no overhead and just

prints the time of the sub-processes (compiler proper, assembler,

linker), and -ftime-report, which provides more details

about the individual compiler phases, but has an overhead of

24%. All reported times are wall-clock time, and Table I shows

a summary of the results using GCC 12.2.0.

Two inherent problems become immediately visible: first,

Umbra needs to generate C code, which GCC has to parse

again. This part alone takes around 13% of the overall compile

time. Second, calling GCC results in a separate invocation of

the assembler and linker, which also take a measurable amount

of time for starting up, parsing their input files, and generating

their output.

Nonetheless, most of the time is spent for optimizing and

generating machine code. While we did not spend time to

actively improve this, the possibilities to do so are limited by

the available command line options and boil down to selecting

different optimization passes.

C. Discussion & Possible Improvements

Due to its internal architecture, using GCC as part of a

query compilation engine requires generating and parsing

textual source code, which does not allow for a compile-time-

optimized implementation. Invoking external commands for

assembling and linking adds further costs, which, however,

cannot be avoided due to GCC’s internal architecture. Although

improvements on this architecture are certainly possible, such

changes are unlikely to make the GCC/C back-end competitive

to other compilation strategies.

V. LLVM BACK-END

Umbra’s LLVM back-end supports two operating modes: an

optimized compilation mode intended for producing efficient

code and a cheap compilation mode with focus on low compile

times. These different modes, however, only affect whether

optimizations are applied and the configuration of the LLVM

back-end optimizations.

The LLVM back-end transforms the Umbra IR code into

LLVM-IR, which is mostly a straight-forward process. Some

special instructions are lowered to intrinsics (e.g., overflow

arithmetic) or more complex instruction sequences (e.g., long-

mul-fold). When explicitly requested, the back-end also attaches

debug information to the LLVM-IR code.

Afterwards, the code is handed over to LLVM’s ORC JIT-

compilation infrastructure. For optimized compilations, we

configure the back-end to optimization level -O2 and use the

SelectionDAG instruction selector; for cheap compilations we

use -O0 and FastISel.

ORC then takes care of producing an in-memory ELF object

file for the module and uses JITLink for linking the object

file into the current address space. Runtime functions are

referenced via external symbols. We use the Small-PIC code

model, causing JITLink to generate one PLT+GOT for each

compiled module. Additionally, we also use an existing plug-in

to register the unwind information.

A. Optimizations

1) Run-Time: In the optimized mode, the back-end applies

a few optimization passes that have been shown to be

beneficial. This includes common-subexpression elimination,

CFG simplification, instruction combination, loop-invariant

code motion, and dead code elimination. For cheap builds, no

further transformations are applied.

Additionally, for both modes, we provide a custom implemen-

tation of 128-bit multiplications with overflow detection, with

a run-time check optimizing for the case that both operands

can be represented as 64-bit integers. If a full multiplication is

required, we do not use the LLVM intrinsic but create a call

to our hand-optimized 128-bit multiplication.

2) Compile-Time: We implemented several measures to

reduce the compilation time for cheap builds using FastISel,

which improved compilation performance by more than 50%

compared to a previous implementation.

First, instead of the default large code model for JIT

compilation, we use the Small-PIC code model. This not only

results in smaller code, but more importantly, FastISel only

supports the small code model and previously fell back to

SelectionDAG for every function call. The disadvantage of

the Small-PIC model is that runtime calls now require two

jumps in machine code (near jump to PLT, indirect jump from

there). In practice, however, we could not measure any run-time

performance differences.

Second, instead of representing Umbra IR’s data128 as

an LLVM struct {i64,i64}, we always represent it as two

separate i64 values in LLVM-IR. The only exception are

function return values, as structures are the only way to

represent functions with multiple return values. This change

has several implications:

1) The LLVM-IR code becomes shorter as no instructions

for extracting/inserting elements need to be generated.
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Fig. 2. Compile-time breakdown of LLVM on x86-64. IRPasses are back-end
passes on LLVM-IR, OtherPasses are smaller back-end passes on Machine IR,
“Misc” is pass manager and measurement overhead and object file generation.

2) As the flow of the actual values inside the struct becomes

obvious, later analyses need to spend less time for

handling opaque structures.

3) Avoiding structures leads to substantially fewer fallbacks

from FastISel to SelectionDAG: as FastISel only handles

LLVM-IR values that fit in a single machine register,

every occurrence of this struct type would trigger a

fallback for the remainder of the current basic block.

4) This change also improves compile times in the optimized

build mode by ∼ 7%.

Note that Umbra IR’s int128 is still represented as native

LLVM i128.

Third, instead of parsing and constructing the architecture

description (TargetMachine) for every compilation, we

cache it across multiple compilations. However, as Umbra can

do multiple compilations in parallel and LLVM modifies some

parts of the TargetMachine throughout the compilation

(e.g., to store function-level option overrides in a central

place), we need to construct and cache one TargetMachine

instance per thread.

Fourth, we implemented several minor performance improve-

ments in LLVM, including FastISel support for the CRC-32

intrinsic on x86 and AArch64, FastISel support for functions

with multiple return values on AArch64, and more efficient

writing of encoded machine code instructions on x86. All

changes were merged upstream and resulted in 4% faster

compile times.

B. Compile-Time Analysis

We evaluated the performance of the LLVM back-end with

a recent LLVM development snapshot (commit 84a6a05). To

get more insights, we used LLVM’s time tracing infrastructure

to measure the execution time of the individual passes. We

note that this causes causes 1.27M (optimized)/467k (cheap)

time measurements, which adds an overhead of up to 2%. We

supplement the measured data with profiling data obtained

using perf. Figure 2 shows the results.

1) Constructing/Destructing LLVM-IR: During LLVM-IR

construction, most time is spent allocating and constructing

the LLVM objects that correspond to the Umbra IR functions,

basic blocks, and instructions. However, we also observed

that destructing the LLVM module is fairly expensive, taking

around 1% of the compilation time in the cheap mode.

2) LLVM-IR Back-end Passes: At the start of the code

generation pipeline, several passes that operate on the LLVM-

IR are applied first, for example, expansion of divisions larger

than 128 bits, lowering of “constant intrinsics”, expansion of

certain vector intrinsics, or lowering of x86 AMX types. Many

of these passes have two things in common: first, each of them

iterates over all instructions to check whether an instruction

matches a specific pattern. While this itself is fairly cheap,

doing this several times in a row adds up. And second, Umbra

never generates many of the handled constructs, yet these

passes are always run and there is no option to disable them

for faster compilation.

Running such passes only when a function contains the

constructs in question or merging these passes to iterate over

the IR once only could reduce this avoidable overhead.

Optimized builds run several additional passes for target-

specific information, which also involves computing some

analyses. In particular, this includes double computation of the

dominator tree and loop information, which is used, e.g., to

hoist constants and certain other operations out of loops.

3) Instruction Selection: One expensive part of the LLVM

back-end is the instruction selection phase, which transforms

LLVM-IR into the lower-level Machine IR (MIR). In this

representation, operations correspond to instructions of the

target architecture, but the program is still in SSA-form and

registers are generally unallocated. In addition to selecting

machine instructions, this phase also performs legalization of

IR operations that are not directly supported by hardware (e.g.,

128-bit arithmetic).

a) SelectionDAG: The most capable and often default in-

struction selector is SelectionDAG, which operates on one basic

block at a time. For each basic block, SelectionDAG converts

the LLVM-IR into a DAG consisting of generic operations.

After a series of legalizations and combinations of operation

nodes, the actual instruction selection is performed, replacing

generic operation nodes with actual machine operations. Finally,

the DAG is linearized into MIR either in topological order or

according to an instruction scheduling model.

While SelectionDAG is highly capable, it also faces sub-

stantial performance problems [21], taking around 30% of

the compilation time in the optimized build mode. While one

fifth of this time is spent in constructing and linearizing the

graph-based IR, nearly half of the time is spent combining and

legalizing DAG nodes. Particularly for arithmetic operations, a

substantial part is determining whether any bits of the operation

are known, which is implemented as recursive traversal.

b) FastISel: For unoptimized builds, LLVM provides

a fast instruction selector that expands IR instructions into

corresponding sequences of machine instructions. For sim-

plicity, FastISel only supports common data types that fit in a

single machine register and does not implement 128-bit integers

or structures. Furthermore, only a frequently-used subset of

LLVM-IR operations and intrinsics are supported. Whenever
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Fig. 3. Compile-time breakdown of LLVM on AArch64 (Apple M1,
performance cores only), comparing FastISel, SelectionDAG, and GlobalISel.

an unsupported LLVM-IR instruction is encountered, FastISel

stops and falls back to SelectionDAG for the remainder of the

block. However, for function calls that use unsupported data

types or pass parameters on the stack as well as unimplemented

intrinsics, only the affected call instruction is handled by

SelectionDAG.

For fast compile times, reducing the amount of SelectionDAG

fallbacks is critical. On the 103 TPC-DS benchmark queries on

x86-64, we observed 3876 fallbacks after our optimizations (cf.

Sec. V-A2), accounting for 36% of the instruction selection

time. The two main reasons for fallbacks are unsupported

intrinsics or function calls (2486) and 128-bit data types

(1328). The remaining cases include atomic operations (35) and

operations on booleans (i1) (27). We note that we carefully

adjusted our LLVM-IR code to avoid SelectionDAG fallbacks

where easily possible.

c) GlobalISel: To address the shortcomings of Selec-

tionDAG and FastISel, the LLVM project started developing

a long-term replacement called GlobalISel, which provides a

fast and optimized compilation mode in a single infrastructure.

Currently, GlobalISel is only supported on a few architectures,

including AArch64, where it already is the default back-end.

The first stage of GlobalISel is the translation of LLVM-IR

into a generic Machine IR (gMIR), i.e. MIR with generic,

target-independent operations. In this representation, generic

operations that are unsupported by the target are legalized into

supported generic operations. Then, a register bank is selected

for each value and finally the actual instruction selection is

performed. Similar to SelectionDAG, between these stages,

combiners are run to generate more efficient code; the extent

depends on the optimization level. [22] provides more details

on the implementation of a GlobalISel back-end.

To compare GlobalISel in its cheap and optimized compi-

lation setting with FastISel/SelectionDAG, we ran the TPC-

DS benchmarks on AArch64. Figure 3 shows the results.

For optimized compilation, GlobalISel is 1.4x faster than

SelectionDAG, reducing the overall compile time by 10%.

Here, avoiding an entirely different graph-based IR shows its

benefits. However, for cheap compilation, GlobalISel is 2.7x

slower than FastISel, increasing the total compilation time

by 52%. The main cause is the multi-pass approach, where

each pass iterates over and modifies the entire IR. The initial

translation from LLVM-IR to gMIR itself is just slightly faster

than FastISel in its entirety, and the other passes (legalizer,

combiners, RegBankSelect, InstructionSelect) each take further

considerable amounts of time.

4) Register Allocation: The second-most expensive part of

the compilation pipeline is register allocation, which is split

into multiple passes in LLVM. First, the MIR is transformed

out of SSA by replacing Φ-nodes with copy instructions. Then,

two-address machine operations where one source operand is

also the destination are rewritten accordingly.

After these preparatory steps, the actual register allocation

is done. For cheap builds, LLVM uses the “fast” register

allocator, which linearly iterates over all basic blocks and

their instructions in reverse order and greedily assigns registers.

In particular, it does not require any analyses like a dominator

tree or liveness intervals. For optimized builds, the “greedy”

allocator is used, which implements a graph-coloring-based

greedy allocation scheme and afterwards performs additional

optimizations to improve the assignment and spill placement.

This allocator also requires several analyses, including a

liveness analysis of registers and stack slots, loop information,

and block execution frequency prediction.

Of these passes related to register allocation, the allocation

itself is the most expensive part, but also the related passes,

in particular the two-address rewriting pass and the liveness

analysis, take between 25–45% of the time related to register

allocation.

5) Other Passes: In both compilation modes, several other

passes are executed as part of the back-end; in total the

optimized pipeline consists of 146 passes and the cheap

pipeline of 67 passes. Many of these passes do only small

transformations or changes and are individually fairly cheap.

One of the more expensive of these passes is prologue/epi-

logue insertion, which not only inserts the function entry and

exit sequences to take care of callee-saved registers, but also

finalizes the stack frame layout and rewrites all references to

the stack frame. In cheap compilation, this transformation is

comparably expensive, taking 4% of the compile time.

6) Machine Code Emission: The “assembly printer”, which

is responsible for encoding the MIR instructions into machine

code and emit an object file for the LLVM module, takes an

unexpectedly large part of the compilation time, with 12%

in cheap mode and 2% in optimized mode; this particularly

affects the cheap mode as the resulting machine code is larger

due to fewer optimizations.

After emitting the function header, the emitter iterates over

the instructions of all basic blocks. An MIR instruction is first

lowered into an LLVM-MC instruction, where the instruction

mnemonic and operands directly correspond to the instruction

encoding of the target architecture. This instruction is then

encoded into a memory buffer. Further hooks can be registered

to follow and modify the code emission at every instruction,
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basic block, and function; in our case, this is used for emitting

DWARF unwind information. References to other parts of the

code like basic block offsets are stored as fixups and handled

at the end of the compilation; these numbers are not included

in the AsmPrinter pass and account for an extra 3% of the

compile time in cheap mode.

There are three main reasons for the large time spent in

this pass. First, the emitter constructs another in-memory

encoding of every instruction. Second, the infrastructure allows

for abstracting the underlying target and representation (e.g.,

encoded instruction vs. textual assembler), registering hooks,

and target-specific optimizations at various points, resulting

in several virtual function calls per emitted instruction. Third,

all symbols, including labels for internal basic blocks, are

string-based, causing overhead of generating and hashing these

strings, even though these are never externally visible.

7) Linking: LLVM’s JIT-compilation approach is very

similar to a standard compiler flow [23]: the LLVM module is

first compiled to a complete (in-memory) ELF object file with

proper symbols, string tables, and relocations. In the second

step, the object file is JIT-linked into the current process. In

the cheap mode, linking takes ∼7% of the total compile time.

The link step is separated into four phases [23]: the first

phase (∼2% of compile-time) recovers the symbols from object

file, prunes unused symbols, and allocates the final memory

where the object file is linked to. The second phase (∼4% of

compile-time) assigns addresses to all symbols and resolves

external symbols. The third phase (0.4% of compile-time)

applies relocations and copies the sections of the object file

into their final place. The final phase (< 0.1% of compile-time)

performs the actual lookup of the symbol address.

8) Miscellaneous: In addition to measurement overhead

and object file generation, a few other parts of the compilation

are not captured by the tracing infrastructure. This includes

construction and destruction of the pass pipeline itself and

destructing the LLVM-IR module.

We also observed that, in cheap mode, the method to add

an operand to an MIR instruction itself takes 3% of the overall

compile time. Further, profiling indicates that 5% of the time

is spent in the legacy pass manager infrastructure itself for

tracking available and required analyses. There were proposals

to port the back-end to the “new” pass manager infrastructure,

which would likely reduce this overhead, but these were not

implemented so far.

C. Discussion & Possible Improvements

LLVM is a complex framework capable of generating highly

optimized code with support for a wide range of features and

architectures. To achieve this, LLVM implements a modular

infrastructure and a flexible Machine IR that can represent

operations of all supported targets. The back-end is split in a

multitude of passes, which are combined by the target back-end

as required.

Nonetheless, this generic and flexible approach comes at

a substantial cost in compile time. The general approach

of rewriting the code several times prevents substantial im-

provements in compile-time without massive architectural

changes. The comparison of FastISel and GlobalISel shows that

increasing the number of IR rewrites can increase flexibility

and maintainability, but also substantially increases the compile

time. Similarly, running a multitude of cheap passes also has a

non-negligible impact; merging passes or only running passes

when they are actually required by the input at hand could

reduce compilation times.

Emitting an in-memory ELF object only to decode it

immediately afterwards allows for a simple implementation,

but could be avoided entirely by emitting the machine code

directly in-place for execution (e.g., through a hypothetical

MCJITStreamer). Furthermore, the high degree of flexibility

and the large amount of optional features, often realized

through hooks or plug-ins, leads to a huge amount of virtual

function calls, which are comparably expensive and prevent

optimizations.

In summary, while smaller improvements in compile-time

in LLVM appear to be possible, reducing the compile times by

an order of magnitude would likely require a fundamentally

different approach that puts less emphasis on flexibility and

avoids frequent iteration over and rewriting of the program.

VI. CRANELIFT

Cranelift [13] is a compiler back-end developed for fast com-

pilation. Originally developed for the WebAssembly runtime

Wasmtime [4], it also strives to be generally usable.

Cranelift-IR (CIR) is superficially similar to LLVM-IR [24].

However, as Cranelift aims for a simpler design, it only

supports a small set of data types, in particular scalar integers

with 8/16/32/64/128 bits, 32/64 bit floating points, vector

types of up to 512 bits and opaque reference types that do

not support any arithmetic operations. Notably CIR has no

support for explicit pointer and aggregate types, these need

to be emulated by the front-end using integer arithmetic. The

instruction set is generally aligned with the operations required

for WebAssembly and has no intrinsics. Stack slots are allocated

outside of the instruction stream and explicit instructions for

stack load, stores and address retrieval are available. There is

also support for further WebAssembly-related concepts, but

these are not relevant for our case of compiling database

queries.

CIR data structures are more optimized for performance

than LLVM-IRs and mostly rely on arrays and hash maps.

For example, instructions are of fixed length and stored in

one continuous array. However, some more expensive data

structures are used to allow for easier modification and analysis

of the IR such as array-backed linked lists, for example to

store the instruction order.

The Cranelift back-end translates Umbra IR to CIR in two

passes, first setting up function metadata before translating

them. Each function is translated individually as Cranelift can

only compile one function at a time. Many Umbra IR operations

have an equivalent in CIR, but some operations require helper

functions. This includes floating point conversions, which have
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TABLE II
AVERAGE RUN-TIME PERFORMANCE INCREASE OF CRANELIFT-COMPILED

CODE WITH CUSTOM INSTRUCTIONS ON X86-64.

Query CRC32 Arithmetic Overflow Full Multiplication

TPC-H 1 5% 41% 16%
TPC-DS 60 21% 8% 0%
TPC-DS 32 40% 16% 0%
TPC-DS 21 50% 0% 0%

TPC-H Mean 9% 1% 1%
TPC-DS Mean 19% 1% 0%

different semantics in CIR, and 128-bit multiplication with

overflow. The addresses for external functions, including the

helper functions, are hard-wired into the generated CIR code.

The CIR is then compiled by Cranelift and directly emitted into

memory and fixups/relocations are applied after all functions

have been compiled.

A. Optimizations

1) Run-Time: We have implemented the same optimization

for 128-bit multiplications with overflow checks as the LLVM

back-end. Additionally, we added multiple instructions to CIR

to reduce the number of calls to helper functions. These include

crc32, arithmetic overflow instructions, and a multiplication

with a full result, as Cranelift’s instruction selector cannot

merge multiplications with separate low and high results.

Table II shows the execution speedup of adding these operations.

crc32 has the most impact on average due to the prevalence of

hash joins. The arithmetic instructions have a small influence on

the average, but some queries profit substantially. The combined

multiplication instruction has little impact, however: as it just

saves a single multiplication, it only has a noticeable impact on

queries which make heavy use of decimal multiplications. Our

additions of the arithmetic overflow operations have already

been merged upstream.

B. Problems

To use Cranelift as a JIT compiler, we use a wrapper provided

by the Cranelift developers, which is currently not quite mature.

For example, it does not properly emit GOTs/PLTs, which

can cause crashes during relocation if code or data pages are

allocated too far away from each other. This can happen if other

parts of the program mmap large amounts of memory. Thus, we

needed to generate CIR that does not generate any PC-relative

relocations, at the cost of less efficient code. Additionally,

the JIT library does not generate unwind information, so we

need to generate the DWARF CFI information manually. Lastly,

Cranelift is written in Rust while Umbra is written in C++. This

interoperation needs additional engineering effort, as the Rust

code for translating Umbra IR needs to have struct definitions

provided in Rust or a C interface to read Umbra IR. This

can be automated for simple structures, but more complex

C++ constructs as used by Umbra need to be translated and

maintained manually.

0 0.2 0.4 0.6 0.8 1

GenerateIR IRPasses ISelPrepare ISel

RegAlloc Emit Linking Overhead

Fig. 4. Compile-time [s] breakdown of Cranelift on x86-64. IRPasses are
analysis on the IR like domtree/CFG calculation, ISelPrepare are passes over
the IR before the selection algorithm is run, Overhead is measurement overhead.

C. Compile-Time Analysis

We evaluated Cranelift with a recent development snapshot

(commit 30297dd) and our custom instructions added. Fig-

ure 4 shows the results.

1) IR Generation: Around 8% of compile time is spent

converting from Umbra IR to CIR. Significant time is at-

tributable to hash map lookups for mapping the Umbra IR

value to the corresponding CIR value and translating Umbra

IR’s getelementptr operations into integer arithmetic.

2) Instruction Selection: Cranelift spends a non-negligible

time (8%) of its lowering step preparing data for the actual

instruction selection, which itself is comparably efficient (12%)

as the code for it is machine-generated from a domain-specific

language specifying the replacement patterns. The instruction

selector is a tree-matching algorithm that transforms CIR,

which is conceptually a graph, into a linear array of machine

instructions.

Before the tree-matching is done, however, metadata is

generated in three passes over the complete IR. First, virtual

registers are allocated for each IR value and are marked with a

register class (integer or float) corresponding to its type. Second,

the instructions are partitioned by instructions with side-effects,

so memory accesses, calls and the like. This is used to make

sure the instruction selector does not merge instructions across

these boundaries. Third, information about the users of each

instruction result is calculated using a depth-first search. This

is used to distinguish whether a result has one unique use or is

used by multiple instructions, where transitive uses with depth

one are also counted. This is needed to prevent side-effectful

instructions from being duplicated by the instruction selector1.

3) Register Allocation: Surprisingly, the largest part of

compilation is spent in the register allocator. This is in contrast

to LLVM, which spends significantly less time in this phase

and whose register allocator is 42% faster than Cranelift’s.

Cranelift uses a modified linear-scan allocator that calculates

live-ranges for virtual registers, merges non-overlapping ones

into bundles and splits them if too many are live in physical

registers at the same time. The allocator spends roughly 37%

of its time calculating these live-ranges and merging them,

iterating over the IR several times. Additionally, it maintains

multiple data structures during allocation, e.g., a B-tree for

every physical register to track their allocations, and spends a

non-negligible amount of time traversing them. For example,

1see https://github.com/bytecodealliance/wasmtime/blob/7cf8121a/cranelift/
codegen/src/machinst/lower.rs#L214
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roughly 6% of register allocation time is spent inserting and

looking up values in B-trees. Using a greedy approach instead

could significantly improve register allocation performance.

4) Emitting: Cranelift emits basic blocks in the order of

their lowering, with blocks marked explicitly as “cold” by the

user being emitted last. This is largely straight-forward iteration

over the instructions as produced by the instruction selector

and writing the instruction bytes into a buffer, making use

of the register assignments. However, the emitter does a pass

over all instructions and their register allocations beforehand

to calculate the clobbered registers for the function. This is

information that the register allocator could easily provide in a

small bitmap. Additionally, the emitter iterates over all moves

inserted by the register allocator to aid estimation of how large

a basic block could become before emitting it to decide whether

veneers should be inserted between basic blocks. However, as

this calculation later uses over-approximated instruction lengths

(15 on x86-64), using a simpler approximation for the number

of moves in a block might be beneficial.

5) Linking: Linking is relatively fast because it only needs

to apply a small number of relocations as previously mentioned

and just copies the output bytes from Cranelift to an executable

memory region.

VII. DIRECTEMIT BACK-END

The DirectEmit back-end [14] (formerly referred to as Flying

Start) is highly tuned for low compile times and translates

Umbra IR to machine code with a single analysis pass and a

single code generation pass. The back-end only supports x86-

64 and also has a few further restrictions, most importantly,

it does not support irreducible loops. This, however, is no

real problem, as all possible sources of Umbra IR code are in

Umbra itself and can be adjusted accordingly.

The analysis pass constructs a dominator tree, detects natural

loops, and approximates liveness intervals of the SSA values

with basic block granularity. The code generation pass then

iterates over the basic blocks in reverse post-order and for

each instruction directly generates machine code, allocating

registers greedily on-the-fly. In addition to that, DWARF call

frame information is written in parallel. This strategy obviously

leads to suboptimal code in many cases, but heavily aids in

reducing compile times.

A. Optimizations

1) Run-Time: For improved run-time performance, a liveness

analysis was added to enable better register allocation. Further,

a loop analysis was added to implement a simple heuristic

when spilling values to the stack: this way, the register allocator

can easily prefer values defined inside a loop.

2) Compile-Time: The back-end is highly tuned for low

compilation overhead. In addition to being single-pass, the back-

end uses a free variable slot in the Umbra IR data structures

to assign linearly increasing values to instructions and blocks.

This is used to store information in an array, avoiding hash

table operations. Further, the back-end uses a custom assembly

encoder, which does not focus on generating the most compact

0 10 20 30 40 50 60 70

Analysis Code Generation

Fig. 5. Compile-time [ms] breakdown of DirectEmit on x86-64; note that the
entire compilation of 6678 functions takes just 64 ms.

representation of an x86-64 instruction, but on reducing the

number of branches. The DWARF CFI writer only generates

synchronous unwinding information, which only needs to be

correct at function calls, reducing the amount of written data.

B. Compile-Time Analysis

Due to the highly integrated approach, only the separation of

analysis and code generation is reasonably measurable. Figure 5

shows the results. The most expensive part of the analysis is

the liveness analysis, taking around 75% of the analysis time.

For the code generation pass, a more detailed accounting is

not reasonably possible; profiling indicates that roughly 30%

is related to register allocation.

C. Discussion & Possible Improvements

The DirectEmit back-end implements a single-pass compila-

tion approach and shows that compiling Umbra IR to machine

code can be done as fast as generating the corresponding

IR for Cranelift or LLVM. This is obviously aided by the

design of Umbra IR with an efficient in-memory representation

and supporting only instructions that can be easily lowered

to machine code; but nonetheless, other compiler frameworks

could conceptually design similar data structures.

However, this approach also comes with a substantial

engineering effort and is extremely non-portable. An AArch64

port was developed [25], but never merged due to the high

maintenance effort. Decoupling parts that are fairly inde-

pendent of the target architecture (e.g., register allocation)

from architecture-dependent parts (e.g., instruction generation)

without impacting compile time is an open question.

VIII. EXECUTION PERFORMANCE

We also evaluated the performance of the generated code of

the different back-ends on TPC-DS scale factor 10; Table III

and Figure 6 show the results. The “compile time” of the

interpreter is the transformation of Umbra IR into register-based

bytecode. In terms of execution performance, LLVM-optimized

and GCC are fastest, followed by Cranelift and DirectEmit.

LLVM-cheap closely follows DirectEmit. The interpreter is the

slowest due to interpretation overhead.

However, the massively higher compilation time needed to

achieve the marginal performance gains rarely pays off. This

particularly applies to the GCC back-end, which for this reason

is in practice only used for debugging. Nonetheless, the wide

range of optimizations provided by LLVM has a significant

impact on some queries, for example on query 17, the code

compiled using LLVM-optimized is 38% (0.93 s vs. 1.29 s)

faster than the DirectEmit-compiled code.
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TABLE III
COMPILE-TIME AND EXECUTION PERFORMANCE OF THE DIFFERENT

BACK-ENDS ON TPC-DS SF=10. THE X86-64 MACHINE HAS 32 CORES,
THE AARCH64 MACHINE USES 4 CORES.

x86-64 comp exec AArch64 comp exec

Interpreter 0.03 s 15.40 s 0.02 s 64.55 s
DirectEmit 0.06 s 4.83 s — —
Cranelift 1.07 s 4.62 s 0.61 s 16.37 s
LLVM-cheap 1.63 s 5.23 s 0.74 s 19.45 s
LLVM-opt 11.36 s 4.12 s 5.86 s 12.88 s
GCC 48.88 s 4.28 s 41.64 s 13.99 s
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Fig. 6. Compile-time and Execution performance of the different back-ends
on TPC-DS sf=10; data from Table III.

To further evaluate when each back-end is beneficial to

minimize the sum of compile and execution time, we ran the

TPC-H [26] benchmark at scale factors 10 and 100; Figure 7

shows the results. For scale factor 10, DirectEmit is almost

always the best choice, Cranelift just once. At scale factor

100, however, also LLVM-opt becomes beneficial for several

queries despite the large compile time.

IX. DISCUSSION

Analytical database systems can substantially benefit from

fast query compilation over interpreted execution. While for

larger data sizes optimizations become more important, fast

compilation is especially important for small data sizes and

provides large execution performance improvements, which

easily offset the compilation time in many cases. As most

database systems that compile queries to machine code follow

a similar approach to Umbra, our observed results should also

apply to other analytical query compilers. However, databases

like PostgreSQL [27] that just compile parts of queries, e.g.,

expressions or predicates, can also benefit from shorter compile

times.

A few efforts for faster compilers exist, but the achieved

benefits are often low: LLVM’s new GlobalISel back-end only

slightly improves optimized builds, but is much slower for

the unoptimized case. Cranelift, a framework designed for fast

JIT-compilation, compiles just 20–35% faster than LLVM, but

comes at a substantial maintenance cost, particularly due to

the inter-operation between C++ and Rust. An approach like

DirectEmit can generate code on-par with LLVM-cheap at

much lower cost, but is highly non-portable. More research
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Fig. 7. Best x86-64 back-end for every TPC-H query at scale factors 10/100.
LLVM is only beneficial for larger data sets.

in portable and fast compiler frameworks is needed to limit

maintenance effort and thereby achieve wider adoption.

X. RELATED WORK

Fast compilation is a primary focus of JIT compilers and

therefore a lot of work was dedicated to improving compile

times. Frequent optimizations include multi-tiered compila-

tions [2], [3], [28], [29], template-based code generation [29]–

[31], and greedy register allocation [32]–[35].

LLVM [12] provides a JIT compilation functionality, but is

regularly avoided due to high compilation cost of the general

back-end infrastructure. For example, WebKit added an LLVM

back-end to their JavaScript compiler in 2014 [36], only to

replace it two years later with their custom code generation

back-end [37] due to efficiency concerns.

Umbra’s code generation back-ends were analyzed be-

fore [25], but the reasons for the varying compile times were

not investigated. From other database systems, Flounder [10]

also implements a custom, lower-level IR for custom code gen-

eration that also compiles substantially faster than LLVM, but

again did not investigate the underlying causes or optimization

potential in existing frameworks.

XI. CONCLUSION

In this paper, we provided a detailed performance comparison

and analysis of different compilation back-ends of the Umbra

database system. In particular, we compared the performance

of GCC and Umbra’s single-pass compiler back-end with the

JIT-compilation frameworks LLVM and Cranelift. In addition

to that, we analyzed the compile times of LLVM and Cranelift

in-depth and discussed several optimization possibilities for

these frameworks. Our results showed that GCC and LLVM

are capable of generating high-quality code, albeit GCC takes

an order of magnitude longer with structural issues preventing

a more efficient integration, but also showed that LLVM can

achieve considerably low compile times. Cranelift compiles

code just 20–35% faster than LLVM, but takes 16x as long as

Umbra’s single-pass back-end.
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APPENDIX

A. Abstract

The artifact [38] contains a binary package of Umbra

built for Linux on x86-64 and AArch64 modified to allow

additional instrumentation for getting the detailed compile-time

breakdowns presented in the paper. The enclosed benchmark

script (Makefile) obtains and runs data generators for the

TPC-H and TPC-DS benchmarks and runs the benchmarks to

obtain the compile-time breakdowns from Sec. IV–VII (Table I,

Figures 2, 3, 4, and 5) as well as the compile-time and run-time

performance data from Sec. VIII (Table III, Fig. 6, and 7).

B. Artifact Checklist (Meta Information)

• Program: Umbra, closed-source, binaries included; LLVM
commit 84a6a052, binary included.

• Compilation: C back-end tested with GCC 12.
• Binary: Includes Umbra x86-64 and AArch64 binaries for Linux

with required libraries.
• Data set: TPC-DS and TPC-H benchmark scripts included;

generated Sf10 ∼10 GiB, Sf100 ∼100 GiB.
• Run-time environment: Requires Linux 5.19+ and glibc 2.36+.

x86-64 tested on Ubuntu 22.10 and Fedora 37; AArch64 tested
on Asahi Arch Linux ARM.

• Hardware: x86-64 needs SSE4.1, 128 GiB memory, 400 GiB
storage; AArch64 needs Armv8.1-A, 16 GiB memory, 50 GiB
storage. Compile/execution time trade-off in Sec. VIII strongly
depends on CPU core performance and core count.

• Run-time state: Working data should be in OS cache; our script
performs one warm-up run for this.

• Execution: The system should have no other load during
performance measurement. A second execution might yield better
results.

• Metrics: Average execution time of compilation and query
execution.

• Output: CSVs of data for plots; raw paper results included;
optionally plots as PDF.

• Experiments: Makefile to run experiments is included.
• How much disk space required (approximately)?: 400 GiB

for x86-64; 50 GiB for AArch64.
• How much time is needed to prepare workflow (approxi-

mately)?: 1–2 hours for benchmark data generation.
• How much time is needed to complete experiments (approx-

imately)?: 2–4 hours.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: Proprietary.
• Archived (provide DOI)?: 10.5281/zenodo.10357363

C. Description

1) How Delivered: The artifact is archived on Zenodo and online
available at: https://doi.org/10.5281/zenodo.10357363

2) Hardware Dependencies: x86-64 experiments require a CPU
with at least SSE4.1, 128 GiB memory, and 400 GiB disk storage;
AArch64 experiments need an Armv8.1-A system with Advanced
SIMD extensions, 16 GiB memory, and 50 GiB disk storage.

3) Software Dependencies: Tested with Linux 5.19 and glibc
2.36, newer versions should work. Other required libraries are bundled.
The C back-end has been tested with GCC 12, which must be available
as gcc through the PATH environment variable. The benchmark script
requires make (tested with GNU Make 4.3), Perl 5, and GNU sed.
Downloading the benchmark data generators additionally requires Git.
Generating the plot PDFs requires TEX Live and latexmk.

2https://github.com/llvm/llvm-project/tree/84a6a05

4) Data Sets: Data generators for the benchmarks TPC-H [26]
and TPC-DS [15] can be downloaded from the respective websites. For
convenience, the benchmark script will download and build appropriate
data generators unless explicitly provided.

D. Installation

The downloaded tarball can be extracted with tar -xzf

artifact-cgo24-umbra.tar.gz. Enter the newly created di-
rectory artifact-cgo24-umbra before running the commands
below. No further installation is required.

E. Experiment Workflow

Step 1: make prepare — download and build the benchmark
data generators, generate the benchmark data, and import the data
into Umbra database files. This will generate TPC-DS data with scale
factors 1 and 10; on x86-64 additionally TPC-H data with scale factors
10 and 100 (for Fig. 7). This can take 1–2 hours depending on the
system.

Step 2: make all — run all experiments used for the paper
and aggregate the relevant information from the raw output. This
will produce several files containing benchmark results; the README
contains a detailed description of the generated files.

Step 3 (optional): make plots — plot data into figures.
This will produce a file plots_x86_64.pdf on x86-64 and
plots_aarch64.pdf on AArch64.

F. Evaluation and Expected Result

The artifact includes the raw measurement data used for this paper
for comparison.

For the compile time breakdowns, the time distribution and relative
performance between back-ends should be approximately similar to
those shown in the paper. For GCC, the derivation may be larger due
to I/O and operating system overhead.

For the compile-time/run-time trade-off, the results strongly depend
on the number of CPU cores, the core performance, memory latency,
and memory bandwidth. The order of magnitude of the differences
between the back-ends, however, should be similar to the values
reported in the paper.

For the selection of the best back-end for each query, similar
considerations apply: for slower systems with fewer cores, using
LLVM-optimized will be beneficial in more cases, perhaps even at
Sf10, whereas on very fast systems with many cores, LLVM-optimized
might be the best choice for only few queries even at Sf100. The
general trend of LLVM being beneficial primarily for larger data sets,
however, should still be observable.

G. Experiment Customization

Measurements on the compile-time and run-time trade-off (akin
to Sec. VIII) on TPC-H and TPC-DS on scale factors 1/10/100 can
be done using existing Makefile targets; for other scale factors, the
scale factor values can be adjusted accordingly. For the compile-time
breakdowns, the raw data include substantially more details regarding
individual compiler passes than shown in the paper; custom analyses
on this data are possible. Umbra can generally be used with arbitrary
database workloads and other benchmarks. The README includes
further usage documentation.
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