
Efficient LLVM-Based Dynamic Binary Translation
Alexis Engelke

Technical University of Munich
Garching near Munich, Germany

engelke@in.tum.de

Dominik Okwieka
Technical University of Munich
Garching near Munich, Germany

okwieka@in.tum.de

Martin Schulz
Technical University of Munich
Garching near Munich, Germany

schulzm@in.tum.de

Abstract
Emulation of other or newer processor architectures is neces-
sary for a wide variety of use cases, from ensuring compati-
bility to offering a vehicle for computer architecture research.
This problem is usually approached using dynamic binary
translation, where machine code is translated, on the fly, to
the host architecture during program execution. Existing sys-
tems, like QEMU, usually focus on translation performance
rather than the overall program execution, and extensions,
like HQEMU, are limited by their underlying implementation.
Conversely, performance-focused systems are typically used
for binary instrumentation. E.g., DynamoRIO reuses original
instructions where possible, while Instrew utilizes the LLVM
compiler infrastructure, but only supports same-architecture
code generation.

In this short paper, we generalize Instrew to support differ-
ent guest and host architectures by refactoring the lifter and
by implementing target-independent optimizations to re-use
host hardware features for emulated code. We demonstrate
this flexibility by adding support for RISC-V as guest archi-
tecture and AArch64 as host architecture. Our performance
results on SPEC CPU2017 show significant improvements
compared to QEMU, HQEMU as well as the original Instrew.

CCS Concepts: • Software and its engineering → Just-
in-time compilers; Virtual machines.

Keywords: Dynamic Binary Translation, LLVM, Optimiza-
tion, Architecture Simulation, RISC-V

ACM Reference Format:
Alexis Engelke, Dominik Okwieka, and Martin Schulz. 2021. Ef-
ficient LLVM-Based Dynamic Binary Translation. In Proceedings
of the 17th ACM SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments (VEE ’21), April 16, 2021, Virtual, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3453933.
3454022

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
VEE ’21, April 16, 2021, Virtual, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8394-3/21/04. . . $15.00
https://doi.org/10.1145/3453933.3454022

1 Introduction
Dynamic Binary Translation (DBT) is a common technique
to allow the execution of code compiled for one architecture
on systems with a different architecture. Such a translation
layer can be used to run existing applications on other pro-
cessor architectures, for example, newer architectures with
new instruction sets or older ones with missing specialized
instructions, even if source code is unavailable or porting
would require too much effort.

Other use cases are low-level software development, e.g.
for embedded systems, and research in computer architec-
ture, where studying the impact of new instructions or other
user-facing modifications requires software emulation, as
few or no hardware is available.
QEMU [4] is a widely used CPU emulator supporting bi-

nary translation for many guest and host architectures. The
original machine code is transformed to the architecture-
independent intermediate code representation TCG, from
which new machine code for the host architecture is gener-
ated. The code is lifted with basic block granularity and only
few optimizations are performed, resulting in fast translation
times, but high overhead for the translated code. The latter
is especially problematic for longer-running applications.
Many approaches to improve the quality of TCG’s gen-

erated code utilize the LLVM [16] compiler infrastruc-
ture [6, 13, 14]. However, they usually suffer either from
performance problems of the LLVM code generator or from
inherent TCG limitations such as the fine granularity of code
translation preventing optimizations, or both.
HQEMU [12] circumvents the performance problem of

LLVM by using a hybrid approach in which the entire code
is first translated using TCG and only performance-sensitive
sections are then optimized using LLVM. Further, the over-
head caused by basic block granularity is addressed by an-
alyzing and combining traces of basic blocks. Nonetheless,
HQEMU still suffers from the known architectural limita-
tions of TCG: it is not possible to further increase translation
granularity to allow more complex control flows. Finally,
HQEMU requires a modified version of LLVM to integrate
with the QEMU architecture, decreasing maintainability con-
sidering the quickly evolving state of LLVM.
To avoid these limitations imposed by QEMU/TCG and

to enable a more performance-focused solution, we take
a different approach and rely on directly lifting machine
code to LLVM-IR. This enables translating entire functions
at once rather than at basic block granularity, matching the

165

https://doi.org/10.1145/3453933.3454022
https://doi.org/10.1145/3453933.3454022
https://doi.org/10.1145/3453933.3454022

VEE ’21, April 16, 2021, Virtual, USA Alexis Engelke, Dominik Okwieka, and Martin Schulz

native granularity of LLVM. Consequently, the translated
functions retain more semantic information and can there-
fore take more advantage of LLVM’s flexible, function-wide
register allocator by exploiting the respective calling conven-
tion. This allows mapping frequently used guest registers
directly to host registers, avoiding memory accesses caused
by spilling.
We implement our approach by adapting the In-

strew/Rellume [10] framework, which was originally de-
signed for LLVM-based run-time binary instrumentation of
x86-64 binaries. In particular, we generalize the lifter to be
easily extensible for other guest architectures and modify the
execution environment for more flexible support of different
host architectures and calling conventions. To demonstrate
the flexibility, we added a lifter for the 64-bit RISC-V archi-
tecture and support for AArch64 as host architecture. As
an additional benefit, building on Instrew allows us to in-
strument the guest program during translation. This is an
important use case for architecture development, allowing us
to get performance metrics of the underlying machine code
while still benefitting from high emulation speed resulting
from JIT-compilation.

The main contributions of this paper are the following:
• A generalized performance-oriented library for lifting
machine code to LLVM-IR that can be easily extended
for other architectures.

• An efficient and flexible dynamic binary translation
framework based solely on LLVM, currently support-
ing x86-64 and RISC-V rv64 as guest architectures.

• An approach to exploit the hardware return address
stack for the emulated program by re-using host in-
structions for function calls and returns.

Our results show that this LLVM-based approach yields
significant performance improvements compared to the
state-of-the-art dynamic binary translators QEMU and
HQEMU, having an emulation overhead of just 53% com-
pared to QEMU with 648% and HQEMU with 124%.

This paper is structured as follows: in Section 2 we review
the general structure of a dynamic binary translation system
and illustrate the Instrew/Rellume architecture inmore detail.
In Section 3 we describe our changes to Instrew/Rellume and
in Section 4 we show our results in comparison with state-
of-the-art systems. In Section 5 we cover related work and
in Section 6 we summarize our findings.

2 Binary Translation 101
In general, a dynamic binary translation system for user-
space programs like QEMU [4] works as follows: during
initialization, the guest code (the code to be emulated) is
mapped into the address space of the emulator and the state
of the emulated CPU is initialized. For translation of ma-
chine code from one architecture to another, small chunks
of guest code are decoded and usually lifted into a low-level

intermediate code representation. In that representation, op-
timizations can be applied and the code is compiled to the
host architecture (the architecture on which the program
is intended to be executed). Compiled code fragments are
stored in a code cache for future re-use. In the main execution
loop, the dispatcher checks whether it already has translated
a code block starting at the current program counter, poten-
tially triggers the translation process, and then executes the
translated code fragment, resulting in a modified CPU state
with a new program counter value. This process repeats until
the program exits. To reduce the overhead of dispatching the
translated code fragments, two code blocks can be chained
by inserting a direct jump at the end of the first code block
to the following code block.

A common choice for the translation granularity are basic
blocks, where a code chunk is ended by an instruction that
can modify the control flow. This not only simplifies trans-
lation and code generation, but also ensures only actually
executed code is translated.

A slightly different approach can be found in Instrew [10],
a framework for retargetable dynamic binary instrumenta-
tion of x86-64 programs. Instead of a low-level internal code
representation, it directly and exclusively uses the widely
used LLVM [16] framework. It relies on the lifter Rellume
to transform binary code to LLVM and implements several
optimizations allowing for near-function granularity, only
stopping at function calls, returns and indirect jumps.

3 Approach
Instrew’s approach of directly leveraging LLVM forms a
strong basis for an efficient binary translation system and
has the ability to overcome many of the shortcomings in cur-
rent state-of-the-art approaches. However, it also requires
two major contributions: the generalization of the Rellume
lifter, which initially only supported the x86-64 architec-
ture, and the integration of new architecture-independent
performance optimizations.

3.1 Multi-Architecture Support in Rellume
Generalizing Rellume requires challenging all assumptions
specific to x86-64 by contrasting it with other, modern 64-bit
architectures, such as AArch64 [3] and RISC-V [19]. This has
a direct impact on the design of the machine code lifter, in
our case the library Rellume.

In particular the register file, which is currently tailored to
x86-64, must be modified to allow architecture-specific lay-
outs. Architectures not only vary in the number of general-
purpose or floating-point registers, but also in their size. For
example, x86-64 provides 16 general-purpose registers and
16 SSE vector registers, each 128 bits wide, whereas 64-bit
RISC-V has twice as many registers, but the floating-point
registers only have a width of 64 bits. Whether condition

166

Efficient LLVM-Based Dynamic Binary Translation VEE ’21, April 16, 2021, Virtual, USA

flags exist at all and, if so, which ones exist, also depends on
the architecture.

Architectures also differ in their interpretation of the pro-
gram counter. The instruction pointer rip of x86-64 points
to the end of the instruction, whereas the program counter in
RISC-V or AArch64 points to the address of the beginning of
the current instruction, and on 32-bit ARM to the second next
instruction. This requires careful handling during decoding
and whenever the emulated program counter is inspected.
Some architectures, like AArch64 or RISC-V, support

floating-point rounding modes to be encoded statically in
the instruction itself or to be selected dynamically from a
control register. LLVM, on the other side, has currently only
very basic support for rounding modes other than the default
round-to-nearest [2]. While for most operations minor devi-
ations can be tolerated, this is not the case for conversions
from floating-point values to integers—which are employed
for widely used functions like floor or ceil. Further, archi-
tectures like x86-64 offer no way of encoding the rounding
mode in an instruction, while changing the rounding mode
in the control register is an expensive operation. Thus, Rel-
lume implements some rounding operations explicitly using
software emulation.
There are other architecture-specific peculiarities that

must represented for proper translation; for example, the
meaning of the carry flag after subtraction differs between
x86-64 and AArch64, and RISC-V has no carry flag at all.
Therefore, we moved the handling of such peculiarities to
the architecture-specific part.
Despite these differences affecting Rellume’s data struc-

tures and instruction handling, the generalized Rellume re-
tains its function-granularity decoding and lifting strategy,
enabling powerful optimizations. Apart from a configuration
function to set the architecture, the Rellume API needed no
further changes to enable multi-architecture use. Adapting
Instrew to a new architecture therefore requires only very
fewmodifications to extract the architecture given in the ELF
header and to adjust the lifter’s configuration accordingly.

This flexible structure and generic API also makes it pos-
sible to easily add further architectures by following these
steps: (a) the number and sizes of registers have to be speci-
fied; (b) the mapping of instruction semantics to LLVM-IR
semantics has to be specified; (c) control flow information
for the generic decoder must be attached to decoded instruc-
tions, in particular the instruction length, kind (branch, call,
return, etc.), and potential jump targets; and finally (d) the
list of supported architectures has to be extended.

Case Study: Adding RISC-V Support. RISC-V [19] is a
comparably new open architecture with a focus on simplicity
and extensibility. Only few hardware is currently available,
and several possible extensions, including vector extensions,
still need to be finalized. This makes RISC-V an interesting
target for our approach: dynamic binary translation aids

in evaluating the quality of compilers or design choices of
ISA extensions, and the existing instrumentation capability
allows injecting code to implement efficient profiling, e.g.,
to capture the effectiveness of vectorization.
We apply the previously listed steps to add RISC-V sup-

port for the 64-bit RISC-V base instruction set (RV64I) with
commonly used extensions (rv64imafdc) to Rellume. Due to
the generalizations described above, this is a straightforward
process, except for one problematic case concerning atomic
memory operations: while atomic read/modify/write opera-
tions are supported, load-reserve/store-conditional pairs are
currently lifted as non-atomic stores, as these operations are
very hard to represent in LLVM-IR code. Handling these is
left to future work.

3.2 Performance Optimizations Covering
Translations

Transformation to register-based calling convention.
In the default lifting mode, Rellume lifts code into a function
with a single parameter, the pointer to the CPU state struc-
ture. When the function is called, the pointer is passed in a
register and the entire state of emulated registers is stored in
memory. This works for every architecture. To improve per-
formance, Engelke et al. [10] implemented a separate mode
where the HHVM calling convention [18] is used, which
supports passing 12 values in registers as arguments and
return values on x86-64 hosts. This is used to map a fixed
set of guest registers to host registers. Lifting to this calling
convention, however, was implemented directly in the lifter,
limiting this approach to x86-64 guests.
To make the general idea of using different calling con-

ventions available for other guest–host combinations, we
implement a mechanism in Instrew that transforms the ba-
sic CPU struct pointer variant to a more efficient one using
the HHVM calling convention. Loads/stores with mapped
registers in the CPU state are replaced by arguments and
return values where possible. This way, other guest architec-
tures can benefit from register-based argument passing—in
particular, the adaption to RISC-V guests only requires the
specification of the register mapping—and the code can be
easily extended to other host architectures. Furthermore, it
removes the need to implement more complex calling con-
ventions in Rellume, simplifying the lifter.

Call-return optimization. While Rellume already sup-
ports some kind of whole-function lifting, it still stops lifting
when it encounters function calls. However, there is a sig-
nificant drawback of that approach: it does not exploit the
fact that most functions return and continue after the corre-
sponding function call instruction1.

We therefore modify Rellume to support a callret mode,
in which function calls in the original code are lifted to an
LLVM-IR function call to the dispatcher. After that LLVM-IR
1This is not the case for exception or setjmp/longjmp.

167

VEE ’21, April 16, 2021, Virtual, USA Alexis Engelke, Dominik Okwieka, and Martin Schulz

call, the new program counter has to be verified to have the
expected value so that the code after the call can be safely
executed, otherwise the dispatcher needs to be called again.
Function returns are lifted to LLVM-IR return instructions;
indirect jumps are realized as tail calls to the dispatcher.

With these modifications, our binary translator essentially
implements a shadow stack by translating entire functions
including their call-relations at once. The difference to other
approaches utilizing host call/return instructions [11, 15] lies
in the increased translation granularity by continuing decod-
ing after call instructions. However, the benefit of reduced
overhead and usage of the return address stack of the CPU
comes with a cost: translated code fragments may become
significantly larger, directly impacting the translation time,
which grows super-linearly with the code size.

4 Results
We evaluate our dynamic binary translation system using
the SPEC CPU2017 benchmarks, which consists of a diverse
set of compute- and memory-intensive applications and
are, therefore, also used for the evaluation of similar sys-
tems [5, 12, 17]. As guest architectures, we use x86-64 and
64-bit RISC-V (rv64imafdc) and as host architectures we use
x86-64 and AArch64. We compare the performance against a
native compilation for the host architecture as well as against
QEMU 5.2.0 [4]. For x86-64 guest code, we additionally com-
pare against HQEMU 2.5.2 [12] in its hybrid mode2.

4.1 Setup
For all benchmarks, we use the reference input size and
run them single-threaded. Native code is compiled with
GCC 9.2.0 and -O3, cross-compiled code using GCC 10.2.0
and -O3; everything is linked against glibc 2.32. For Instrew,
we use LLVM 9.0, which is its latest supported version; for
HQEMU we use LLVM 6.0, which is its latest supported ver-
sion, and patch it according to their user documentation [1].
Our x86-64 target platform is based on Intel Xeon CPUs

(E5-2697 v3, Haswell), 17 MiB L3 cache and 64 GiB main
memory, running SUSE Linux 15 SP1 with Linux kernel
4.12.14-197.40 in 64-bit mode. Our AArch64 target platform
is based on Cavium ThunderX2 99xx CPUs, 32 MiB L3 cache
and 512 GiB main memory, running CentOS Linux 8 with
Linux kernel 4.18.0-193.6.3 in AArch64 mode.
We exclude the benchmark 600.perlbench, as it is cur-

rently unsupported by Instrew [10]. QEMU did not finish
all floating-point benchmarks in a reasonable time frame as
a consequence of software floating-point emulation, which
affects 638.imagick on x86-64 and the floating-point bench-
marks targeted for AArch64.
2HQEMU 2.5.2 does not support RISC-V.

60
2.g
cc

60
5.m

cf

62
0.o
mn
etp
p

62
3.x
ala
nc
bm
k

62
5.x
26
4

63
1.d
eep

sje
ng

64
1.l
eel
a

64
8.e
xch

an
ge
2
65
7.x
z

ge
om
ean

0
1
2
3
4
5
6

N
or
m
al
iz
ed

ru
n-
tim

e Native QEMU HQEMU-hybrid Instrew

(a) Integer benchmarks.

60
3.b
wa
ve
s

60
7.c
act
uB
SS
N

61
9.l
bm
62
1.w

rf

62
7.c
am
4

62
8.p
op
2

63
8.i
ma
gic
k

64
4.n
ab

64
9.f
oto
nik
3d

65
4.r
om
s

ge
om
ean

0
1
2
3
4

N
or
m
al
iz
ed

ru
n-
tim

e

Native HQEMU-hybrid Instrew

(b) Floating-point benchmarks. QEMU’s slowdown (not shown
here) ranges from 7.7x to 38x (geomean 16.4x).

Figure 1. Performance results on the SPEC CPU2017 bench-
marks translating x86-64 to x86-64 with the ref workload.

4.2 Results
Translation x86-64→x86-64 (Fig. 1). The mean over-

head across all benchmarks with our modified Instrew is 53%
(67% INT, 40% FP) and therefore much lower than HQEMU
with 124% (136% INT, 114% FP) and QEMU with 716% (275%
INT, 1541% FP). For benchmark 619.lbm the overhead is as
low as 7%, and the slowdown compared to the native execu-
tion is generally below a factor of 2. There is one exception:
for the 602.gcc benchmark almost no performance improve-
ment could be observed. As this benchmark executes a lot
of code, around 55% of its time is spent on translating.
To better understand the impact of our described opti-

mizations for modifying the calling convention (hhvm) and
increasing the translation granularity (callret), we analyze
their impact both individually and combined compared to
the baseline with both optimizations turned off. The results
are shown in Table 1. The use of a specialized calling con-
vention generally improves performance, reducing the mean
overhead by 0.27 at the cost of a slight increase in compi-
lation time. The callret optimization on its own also leads
to better performance, but the compilation time grows as
well. An exception is 602.gcc, where run-time improvements
are shadowed by the compilation time increase, resulting in

168

Efficient LLVM-Based Dynamic Binary Translation VEE ’21, April 16, 2021, Virtual, USA

Table 1. Comparison of different optimizations compared
for x86-64 guest code on an x86-64 host. Run-times are nor-
malized to the native execution.

Benchmark base hhvm callret both

602.gcc 3.41 3.15 3.66 4.21 (+0.80)
605.mcf 1.84 1.36 1.63 1.27 (–0.57)
620.omnetpp 2.33 1.96 2.25 1.89 (–0.44)
623.xalancbmk 1.75 1.72 1.62 1.60 (–0.15)
625.x264 1.57 1.46 1.49 1.43 (–0.14)
631.deepsjeng 2.57 1.96 2.38 1.95 (–0.62)
641.leela 2.38 1.71 2.12 1.69 (–0.69)
648.exchange2 1.33 1.33 1.16 1.16 (–0.17)
657.xz 1.28 1.17 1.32 1.17 (–0.11)

geomean 1.96 1.69 1.85 1.53 (–0.43)

avg. trans. time 782s 875s 1245s 1881s

an overall slowdown. In combination, the two optimizations
have a much larger impact on overall performance than indi-
vidually, reducing overhead by 0.43. However, the translation
time increases on average by 140%. The main driver for this
increase is the 602.gcc benchmark, which contains and calls
a lot of functions. This implies that the limiting factor is
the LLVM code generator, which appears to have perfor-
mance problems when many registers are fixed at function
call boundaries.

Translation RISC-V→x86-64 (Fig. 2). When translat-
ing 64-bit RISC-V code to x86-64, Instrew is generally
more performant on both integer (76% Instrew vs. 202%
QEMU) and floating-point benchmarks (40% Instrew vs.
1267% QEMU). The only exception is again the 602.gcc bench-
mark due to high translation times.
Another interesting observation is that the overhead of

QEMU is lower when translating from RISC-V than from x86-
64, whereas this is not the case for Instrew. This indicates that
lifting to LLVM-IR abstracts most architecture-specific pecu-
liarities. The remaining differences are likely to be caused
by the current lack of vector instructions in RISC-V.

Translations to AArch64 (Figs. 3, 4). For translations
from x86-64 and RISC-V to AArch64, our approach leads to
overall significant performance improvements compared to
state-of-the-art tools. However, for some benchmarks, only
slight or no improvements can be observed.

Especially in comparison with the x86-64 host, the overall
overhead of the programs emulated by Instrew is larger. This
has several reasons: first, our calling convention optimization
is not supported by upstream LLVM, which causes the entire
register state to be written back to memory; second, for
x86-64 guest programs, the additional registers provided by
the architecture are rarely used; and, third, the CPU of our

60
2.g
cc

60
5.m

cf

62
0.o
mn
etp
p

62
3.x
ala
nc
bm
k

62
5.x
26
4

63
1.d
eep

sje
ng

64
1.l
eel
a

64
8.e
xch

an
ge
2
65
7.x
z

ge
om
ean

0
1
2
3
4
5

N
or
m
al
iz
ed

ru
n-
tim

e

Native QEMU Instrew

(a) Integer benchmarks.

60
3.b
wa
ve
s

60
7.c
act
uB
SS
N

61
9.l
bm
62
1.w

rf

62
7.c
am
4

62
8.p
op
2

63
8.i
ma
gic
k

64
4.n
ab

64
9.f
oto
nik
3d

65
4.r
om
s

ge
om
ean

02
46
810
1214
1618
2022
2426
2830
3234

N
or
m
al
iz
ed

ru
n-
tim

e

Native QEMU Instrew

(b) Floating-point benchmarks.

Figure 2. Performance results on the SPEC CPU2017 bench-
marks translating RISC-V64 to x86-64 with the ref workload,
compared against native x86-64 execution.

AArch64 host is performing fewer internal optimizations,
resulting in less instruction-level parallelism.

4.3 Discussion
Our results show that increasing the translation granularity
and avoiding TCG by lifting code directly to LLVM-IR leads
to significant performance improvements for all measured
configurations. The emulation overhead on x86-64 with 53%
is much lower than HQEMU with 124%.
The approach of using a calling convention that allows

flexible use of registers across translated code chunks for x86-
64 hosts results in significant performance improvements.
This motivates adding support for a more general all-registers
calling convention in LLVM. When increasing translation
granularity by lifting whole functions even beyond calls,
we observe significant performance improvements for the
actually translated code, as the return address prediction of
the CPU can be exploited. However, the translation time also
increases with bigger code chunks, negating performance
gains on a single benchmark.

169

VEE ’21, April 16, 2021, Virtual, USA Alexis Engelke, Dominik Okwieka, and Martin Schulz

60
2.g
cc

60
5.m

cf

62
0.o
mn
etp
p

62
3.x
ala
nc
bm
k

62
5.x
26
4

63
1.d
eep

sje
ng

64
1.l
eel
a

64
8.e
xch

an
ge
2
65
7.x
z

ge
om
ean

0
1
2
3
4
5
6
7
8
9
10

N
or
m
al
iz
ed

ru
n-
tim

e
Native QEMU HQEMU Instrew

Figure 3. Performance results on the SPEC CPU2017 bench-
marks translating x86-64 to AArch64 with the ref workload,
compared against native AArch64 execution.

60
2.g
cc

60
5.m

cf

62
0.o
mn
etp
p

62
3.x
ala
nc
bm
k

62
5.x
26
4

63
1.d
eep

sje
ng

64
1.l
eel
a

64
8.e
xch

an
ge
2
65
7.x
z

ge
om
ean

0
1
2
3
4
5
6
7

N
or
m
al
iz
ed

ru
n-
tim

e Native QEMU Instrew

Figure 4. Performance results on the SPEC CPU2017 bench-
marks translating RISC-V64 to AArch64 with the ref work-
load, compared against native AArch64 execution.

5 Related Work
QEMU [4] is the state-of-the-art tool for software emulation
and virtualization. It supports several guest and host archi-
tectures and allows not only the emulation of Linux user
space programs, but also full-system emulation.

Several approaches to address the performance problem of
QEMU have been presented so far. As shown by Chipounov
et al. [6], simply using LLVM to generate code for basic blocks
leads to high translation overhead. Jeffery [14] explores the
parallel use of TCG and LLVM, where the LLVM-IR is gen-
erated directly from ARM machine code and the full opti-
mization/code generation routine runs in a separate thread,
overwriting translated code fragments with more optimized
versions. This approach did not lead to performance improve-
ments, as the optimized fragments were found to be executed
very rarely. LnQ [13] achieves performance improvements
over QEMU by lifting guest code to LLVM-IR and applying
the chaining optimization as well as caches for predicting

indirect jump targets and function returns. HQEMU [12]
achieves further improvements by keeping the TCG code
generator as fast path and merging TCG code fragments into
traces to increase the size of LLVM-translated code blocks.
In our work, we go further and increase the translation gran-
ularity to full functions, implicitly implementing a shadow
stack for function returns using the native instruction for
function calls and returns of the host architecture.

Pico [8] is a modification of QEMU enhanced with differ-
ent ways to correctly handle atomic memory operations by
leveraging hardware transactional memory.
Rv8 [7] is a dynamic binary translator which translates

RISC-Vmachine code directly to x86-64 instructions and uses
a fixed register mapping to reduce memory accesses. While
they observe similar performance improvements compared
to QEMU, their approach is not easily portable to other guest
or host architectures.
McSema [20] translates entire binaries to LLVM-IR code,

attempting to reconstruct functions, global variables and
other common language constructs. However, as it is focused
on software analysis and reverse engineering, performance
is not a primary focus. RevGen [9] is a static binary translator
based on McSema that translates binaries to LLVM-IR code
using TCG as intermediate lifting step, but is not optimized
for run-time performance.
Valgrind [17] enables same-architecture dynamic binary

instrumentation, using VEX as architecture-independent
code representation. It should be possible to retarget VEX
code to other architectures, although its code generator usu-
ally incurs high overheads. DynamoRIO [5] is a performance-
oriented system for same-architecture binary instrumenta-
tion, which internally uses the original machine code instruc-
tions where possible. Consequentially, retargeting program
execution is not easily possible.

6 Summary & Outlook
In this paper, we described how we generalized the Instrew
dynamic binary instrumentation framework to work effi-
ciently with guest and host architectures other than x86-64.
In particular, we described our approach to generalizing the
lifting library Rellume for other architectures and demon-
strated the flexibility by adding support for RISC-V. Further,
we described two optimizations to use registers and the re-
turn address stack of the host processor more effectively. Our
results show that this yields significant improvements over
state-of-the-art dynamic binary translators.

Acknowledgments
Some of the experiments were run on the Bavarian Energy,
Architecture and Software Testbed (BEAST) at the Leibniz
Supercomputing Centre (LRZ).

170

Efficient LLVM-Based Dynamic Binary Translation VEE ’21, April 16, 2021, Virtual, USA

References
[1] 2018. HQEMU v2.5.2 Technical Report, installation guide. http://

csl.iis.sinica.edu.tw/hqemu/download/quickstart-2.5.2.pdf, accessed
2020-02-17.

[2] 2019. LLVM 9 Documentation: LLVM Language Reference Manual.
http://releases.llvm.org/9.0.0/docs/LangRef.html, accessed 2020-02-17.

[3] Arm Limited. 2020. Arm Architecture Reference Manual Armv8, for
Armv8-A architecture profile.

[4] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.
In USENIX Annual Technical Conference, FREENIX Track, Vol. 41. 46.

[5] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003.
An infrastructure for adaptive dynamic optimization. In International
Symposium on Code Generation and Optimization (CGO). 265–275.

[6] Vitaly Chipounov and George Candea. 2010. Dynamically Translating
x86 to LLVM using QEMU. (2010).

[7] Michael Clark and Bruce Hoult. 2017. Rv8: a high performance RISC-V
to x86 binary translator. In 1st Workshop on Computer Architecture
Research with RISC-V (CARRV).

[8] Emilio G. Cota, Paolo Bonzini, Alex Bennée, and Luca P. Carloni.
2017. Cross-ISA machine emulation for multicores. In IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (CGO’17).
210–220.

[9] Cyberhaven. 2018. Translating binaries to LLVM with Revgen. http:
//s2e.systems/docs/Tutorials/Revgen/Revgen.html, accessed 2020-02-
17.

[10] Alexis Engelke andMartin Schulz. 2020. Instrew: Leveraging LLVM for
High Performance Dynamic Binary Instrumentation. In Proceedings
of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE ’20). 172–184. https://doi.org/10.1145/
3381052.3381319

[11] Liwei Guo, Shuang Zhai, Yi Qiao, and Felix Xiaozhu Lin. 2019.
Transkernel: bridging monolithic kernels to peripheral cores. In 2019

USENIX Annual Technical Conference (USENIX ATC 19). 675–692.
[12] Ding Yong Hong, Chun Chen Hsu, Pen Chung Yew, Jan Jan Wu, Wei

Chung Hsu, Pangfeng Liu, Chien Min Wang, and Yeh Ching Chung.
2012. HQEMU: A multi-threaded and retargetable dynamic binary
translator on multicores. In International Symposium on Code Gen-
eration and Optimization (CGO). 104–113. https://doi.org/10.1145/
2259016.2259030

[13] Chun-Chen Hsu, Pangfeng Liu, Chien-Min Wang, Jan-Jan Wu, Ding-
Yong Hong, Pen-Chung Yew, andWei-Chung Hsu. 2011. LnQ: Building
high performance dynamic binary translators with existing compiler
backends. In 2011 International Conference on Parallel Processing. IEEE,
226–234. https://doi.org/10.1109/ICPP.2011.57

[14] Andrew Jeffery. 2009. Using the LLVM compiler infrastructure for
optimised asynchronous dynamic translation in QEMU. Master’s thesis.
University of Adelaide, Australia.

[15] Piyus Kedia and Sorav Bansal. 2013. Fast dynamic binary translation
for the kernel. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles. 101–115. https://doi.org/10.1145/
2517349.2522718

[16] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization (CGO).

[17] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In ACM SIGPLAN
notices, Vol. 42. 89–100. https://doi.org/10.1145/1250734.1250746

[18] Philip Reames. 2015. LLVMPhabricator: Calling convention for HHVM
(D12681). https://reviews.llvm.org/D12681, accessed 2020-02-17.

[19] RISC-V Foundation. 2019. The RISC-V Instruction Set Manual, Volume
1: User-Level ISA, Document Version 20190608-Base-Ratified.

[20] Trail of Bits, Inc. [n. d.]. McSema. https://www.trailofbits.com/
research-and-development/mcsema/, accessed 2020-02-17.

171

http://csl.iis.sinica.edu.tw/hqemu/download/quickstart-2.5.2.pdf
http://csl.iis.sinica.edu.tw/hqemu/download/quickstart-2.5.2.pdf
http://releases.llvm.org/9.0.0/docs/LangRef.html
http://s2e.systems/docs/Tutorials/Revgen/Revgen.html
http://s2e.systems/docs/Tutorials/Revgen/Revgen.html
https://doi.org/10.1145/3381052.3381319
https://doi.org/10.1145/3381052.3381319
https://doi.org/10.1145/2259016.2259030
https://doi.org/10.1145/2259016.2259030
https://doi.org/10.1109/ICPP.2011.57
https://doi.org/10.1145/2517349.2522718
https://doi.org/10.1145/2517349.2522718
https://doi.org/10.1145/1250734.1250746
https://reviews.llvm.org/D12681
https://www.trailofbits.com/research-and-development/mcsema/
https://www.trailofbits.com/research-and-development/mcsema/

	Abstract
	1 Introduction
	2 Binary Translation 101
	3 Approach
	3.1 Multi-Architecture Support in Rellume
	3.2 Performance Optimizations Covering Translations

	4 Results
	4.1 Setup
	4.2 Results
	4.3 Discussion

	5 Related Work
	6 Summary & Outlook
	Acknowledgments
	References

