
Instrew: Leveraging LLVM for High Performance
Dynamic Binary Instrumentation

Alexis Engelke
Martin Schulz

Technical University of Munich
{engelke,schulzm}@in.tum.de

Abstract
Dynamic binary instrumentation frameworks are popular
tools to enhance programs with additional analysis, debug-
ging, or profiling facilities or to add optimizations or trans-
lations without requiring recompilation or access to source
code. They analyze the binary code, translate into a—typically
low-level—intermediate representation, add the needed in-
strumentation or transformation and then generate new code
on-demand and at run-time. Most tools thereby focus on a
fast code rewriting process at the cost of lower quality code,
leading to a significant slowdown in the instrumented code.
Further, most tools run in the application’s address space,
making their development cumbersome.

We propose a novel dynamic binary instrumentation frame-
work, Instrew, which closes these gaps by (a) leveraging the
LLVM compiler infrastructure for high-quality code opti-
mization and generation and (b) enables process isolation
between the target code and the instrumenter. Instead of
using our own non-portable and low-level intermediate rep-
resentation, our framework directly lifts the original machine
code into LLVM-IR, where instrumentation and behavioral
changes may be performed, and from which high quality
code can be produced. Results on the SPEC CPU2017 bench-
marks show that the rewriting overhead is only 1/5 of the
overhead incurred using the state-of-the-art toolchain Val-
grind.

CCS Concepts • Software and its engineering→ Run-
time environments; Just-in-time compilers; Software test-
ing and debugging;

Keywords Dynamic Binary Instrumentation, Dynamic Bi-
nary Translation, LLVM, Client/Server Model, Optimization

VEE ’20, March 17, 2020, Lausanne, Switzerland
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in 16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’20), March 17, 2020, Lausanne, Switzerland, https://doi.
org/10.1145/3381052.3381319.

ACM Reference Format:
Alexis Engelke and Martin Schulz. 2020. Instrew: Leveraging LLVM
for High Performance Dynamic Binary Instrumentation. In 16th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments (VEE ’20), March 17, 2020, Lausanne, Switzerland.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3381052.
3381319

1 Introduction
Tools for rewriting binaries dynamically at run-time are fre-
quently used for program analysis, debugging and portability.
During rewriting, such tools may also add additional instru-
mentation code to perform their analysis, code specialization
or even code translation. The advantage over adding such
transformations at compile-time lies in the fact that instru-
mentation is possible on the fly and without recompiling the
program or its libraries. Therefore, several tools for Dynamic
Binary Instrumentation (DBI) exist [11, 12, 25], most notably
Valgrind [26] and Pin [24].

Many of these frameworks focus on low overhead during
the instrumentation and code generation process. As such,
they perform only lightweight optimizations at the cost of
lower performance of the newly generated code. Addition-
ally, instrumentation typically happens at the level of basic
blocks or superblocks, limiting the scope of possible opti-
mizations even further. As a consequence, it is not unusual
for instrumented programs to run several times slower than
non-instrumented code.
The lack of optimizations can be avoided by incorporat-

ing a high-quality optimizer and machine code generator. In
fact, DBILL [25] showed that using the LLVM [23] compiler
infrastructure for code generation can achieve a higher per-
formance. However, as the machine code is lifted first to TCG
(the IR of QEMU [10]), it faces several limitations: (1) only
common integer instructions can be mapped to the LLVM-IR,
causing a high overhead for other instructions, including
floating-point and SIMD instructions; (2) the code is instru-
mented with basic block granularity, limiting the scope of
possible optimizations; and (3) code for emulating the origi-
nal behavior and code for managing the emulation are mixed
and can only be distinguished using metadata annotations,
which are known to cause performance problems [18] and
increase complexity for tool writers.

1

https://doi.org/10.1145/3381052.3381319
https://doi.org/10.1145/3381052.3381319
https://doi.org/10.1145/3381052.3381319
https://doi.org/10.1145/3381052.3381319


VEE ’20, March 17, 2020, Lausanne, Switzerland Alexis Engelke and Martin Schulz

Another limitation of existing binary instrumentation
frameworks is that the instrumenting tool is required to
use the same address space as the executed binary. While
this eases access to the code to be instrumented, as it resides
within the same address space, tool developers have to be
careful to not corrupt program state, often limiting the use
of external libraries. To our knowledge, the only exception
is DynInst [11], where the tool using the DynInst API runs
in a separate process and modifies the instrumented process
using the ptrace debugging interface.
In this paper, we describe a novel and comprehensive

framework that overcomes these shortcomings by leveraging
the optimization and transformation capabilities of LLVM for
dynamic binary rewriting. In particular, we present a library
to lift x86-64 machine code directly to LLVM-IR covering
most x86-64 instructions (include SSE/SSE2, but excluding
the rarely used x87 FPU/MMX and AVX) and capable of
lifting entire functions for efficient code generation. Our
rewriting framework is based on this library and implements
a client-server model for rewriting, where the server per-
forms the instrumentation and code generation, while the
client is only dispatching and executing the generated code.
Leveraging LLVM-IR opens the door to high-quality code
instrumentation and optimization, as well as—in the extreme
case—binary translation to other platforms by changing the
back-end used. Results on the SPEC CPU2017 benchmarks
show that our average rewriting overhead is only 72%, i.e.,
only around 1/5 compared to Valgrind’s average overhead
of 367%.

Our main contributions are the following:

• An x86-64-to-LLVM lifter that supports function-level
lifting and is suitable for generation of efficient code
that is able to reach a performance close to the original
code.

• A retargetable rewriting and instrumentation frame-
work based on LLVM, capable of generating high qual-
ity code for high run-time performance.

• A client-server approach for dynamic binary instru-
mentation allowing the (expensive) rewriting and code
generation to be done on different machines and the
result to be cached for further use.

The rest of this paper is structured as follows: in Section 2
we outline use cases of dynamic binary instrumentation and
briefly describe the general structure of binary instrumen-
tation frameworks. In Section 3 we detail our approach to
lift x86-64 machine code to LLVM-IR and in Section 4 we de-
scribe the architecture of our rewriting framework as well as
some further details regarding the effective usage of LLVM
for dynamic binary rewriting. In Sections 5 and 6, we will
evaluate the performance of our framework compared to
state-of-the-art tools. Finally, in Section 7 we cover related
work and in Section 8 we conclude with a summary of our
findings.

Instrumenter Process

Guest Code

Code Cache

Execution
Manager

Decode & Lift

Instrument

Optimize IR

Code Gen.

main
loop

Figure 1. Architecture of a typical Dynamic Binary Instru-
menter.

2 Background
The technique of dynamic binary instrumentation is widely
used and has many applications, especially in debugging and
performance analysis. For example, a memory checker, like
Valgrind Memcheck [30] or Dr. Memory [13], can enhance
the already compiled code with bounds checks and therefore
detect invalidmemory accesses at run-time. Another use case
is the addition of tracing functionality to a program, enabling
the extraction of information about program elements such
as function calls or memory allocations. This information can
then be used for performance analysis, e.g., for the detection
of performance critical parts of a program or for the analysis
of cache usage [33].
While such functionality could also be added at compile-

time, which would allow for more optimizations and a higher
performance of the instrumented program, this would re-
quire all source code to be re-compiled with these instru-
mentations, including all libraries. This not only takes a
significant amount of time, but also is sometimes impossible,
e.g., if the source of a library is not available.
The general approach of systems for dynamic binary in-

strumentation is the following (cf. Figure 1): in the begin-
ning, the instrumenter (or host) loads the binary to be instru-
mented (target or guest) into memory, initializes its state and
sets the guest instruction pointer to the entry address of the
guest binary, before starting the host code’s main execution
loop. The host, starting from the current instruction pointer,
decodes the guest code and lifts it into some kind of interme-
diate representation from where the program code can be
modified and enhanced with the requested instrumentation.
This results in a modified guest program—still represented in
an IR—from where it generates new machine code, which is
then stored in a separate location. The rewritten code is then
executed and at the end sets the guest instruction pointer
to the address of the next instruction, at which the main
execution loop continues translating.

2



Instrew: Leveraging LLVM for High Performance DBI VEE ’20, March 17, 2020, Lausanne, Switzerland

To reduce redundant decoding and instrumentation, rewrit-
ers typically deploy a code cache. If the execution loop en-
counters an address that is already translated and still is
in cache, the code previously stored in cache is reused. As
a further optimization, the translated code can be patched
to directly branch to the following translated code block
without going through the main loop of the host. This opti-
mization is known as chaining. However, the target address
must be known for chaining, for which reason this optimiza-
tion cannot be applied to indirect branches and function
returns.

3 Lifting x86-64 to LLVM-IR
Dynamic binary rewriting and instrumentation typically
relies on lifting machine code to an Intermediate Represen-
tation (IR). This increases flexibility and simplifies the imple-
mentation of code transformations. Two prominent exam-
ples for this are VEX, the IR of the Valgrind instrumentation
framework [26], and TCG, the IR used by QEMU [10, 28]. To
reduce the overhead of both lifting code and generating new
code from it, these IRs are typically low-level and incom-
plete, i.e., cannot represent the whole instruction set of an
architecture. Instead, they rely on external helper functions
for complex instructions not covered in the IR. Obviously,
this limits optimization possibilities and has an impact on
the quality and performance of the generated code.
We, therefore, pursue a different direction and target a

higher-level and target architecture-independent IR. Instead
of developing a new one, though, we leverage LLVM-IR [23],
which not only fulfills our criteria, but also features a high-
quality code optimizer and machine code generator. LLVM-
IR is used by several compilers, including commercial ones
(e.g., Arm Compiler for Linux [8]), and is becoming the de-
facto standard for IRs offering a rich eco-system of optimiza-
tion passes.
A similar approach, the use of LLVM-IR, was used by

DBILL [25]. However, DBILL first lifts machine code to TCG,
its own IR, and from there to LLVM-IR. Instead, we generate
LLVM-IR code directly from the machine instructions. This
approach has several advantages:

• We can lift all instructions and have no restriction to
instructions caused by the intermediate IR, like TCG.
This especially applies to vector instructions, which
are used in performance critical code parts.

• We can lift entire functions and do not have a limita-
tion to basic blocks/superblocks. This enables a more
comprehensive analysis of used data types, non-local
optimizations and leads to less jumps between differ-
ent code blocks.

• We can maintain a well-defined relation between the
original registers/instructions and the corresponding
values/instructions in the LLVM-IR and do not lose
this information through the intermediate IR. This

information is especially helpful for instrumentation
use cases.

In order to use LLVM-IR in this context, our lifter must
be able to derive “good” LLVM-IR code, i.e., code that is
structured so that it can be handled well by the existing opti-
mization/code generation infrastructure, as this is critical for
run-time performance. Moreover, the IR code must also be
designed in such a way that the optimization process itself
does not add too much overhead. Furthermore, we require
the LLVM-IR code generated by our lifter to be independent
of the target architecture (disregarding pointer size), imply-
ing that x86-specific intrinsic functions or inline assembly
cannot be used. This enables retargetability—the x86-64 ma-
chine code can then dynamically be retargeted and executed
on other 64-bit architectures as well.

We implement our lifter, following these requirements, as
a separate library, which we call Rellume and which is freely
available and open-source1, licensed under LGPLv2.1+.

3.1 Rellume Design
The overall lifting process consists of three main stages:

1. Decoding: first, we decode all instructions that belong
to one block of compiled code, eventually also follow-
ing jump targets, and split them into basic blocks.

2. Instruction Lifting: second, we create a skeleton LLVM-
IR function and generate the corresponding LLVM-IR
for each instruction.

3. Branch Fixup: finally, we add branches between the
basic blocks to the LLVM-IR and fill the so-called PHI
nodes, which merge incoming values from different
basic block [5].

After these three stages, we can then perform any optimiza-
tions or other transformations leveraging the ecosystem of
LLVM.
Our lifter works in a semi-lazy fashion: we first gener-

ate the corresponding LLVM-IR code for each instruction
independently and then perform optimizations across in-
structions or basic block boundaries via LLVM optimization
passes. As this may lead to a large number of unused or
trivial instructions, we generate some parts of the LLVM-IR
code only on demand. This improves overall performance
as well as reduces analysis time and eliminates handling of
dead code.

The library allows to create LLVM-IR code for a given set
of instructions, with all branches fixed up. Code generation
can be controlled through a configuration API, which also al-
lows to to override the implementation of some instructions
with custom implementations. This can be used for complex
instructions, like cpuid, or the operating system dependent
syscall instruction.

1https://github.com/aengelke/rellume, accessed 2020-02-17

3

https://github.com/aengelke/rellume


VEE ’20, March 17, 2020, Lausanne, Switzerland Alexis Engelke and Martin Schulz

3.2 LLVM-IR Functions
In LLVM-IR, all code must be enclosed in functions, which
can take parameters and have a return value [5]. A function
has a single entry point, but—apart from this—it can contain
an arbitrary (but well defined) control flow defined on the
level of multiple basic blocks.
The functions created by our lifter take a pointer to the

CPU state as a single parameter and do not return any values.
The CPU state structure contains all required information
required to describe the state of the CPU needed to drive the
host’s main loop. This includes all general-purpose registers,
the status flags and the SSE vector registers, as well as the
instruction pointer rip and the segment register base offsets
for the registers fs/gs.

At the beginning of a function, the general-purpose, vector
and flags registers are loaded into SSA registers in the LLVM-
IR. Likewise, before the function returns, the new values of
these registers are written back to memory if they have been
modified. This avoids frequent memory accesses for register
use within the actual program logic, reducing the workload
for the optimizer. As a consequence, the CPU state is mainly
used to pass state between different functions.

When lifting some x86-64 machine code to LLVM-IR, we
start at a specified address, which we then use as entry into
the function. Starting from the first instruction, the lifter gen-
erates the corresponding LLVM-IR and follows the control
flow of the machine code, also creating appropriate branch
instructions in the LLVM-IR where needed. When an indi-
rect jump, call or return instruction is encountered, it is not
possible to continue further. In such cases, the lifting process
stops and the lifted function sets the virtual rip register in
the CPU state to the address of the next instruction before
returning. A separate lifting process will then start once the
address is actually known.

3.3 Basic Blocks
A basic block is a sequence of instructions that does not
modify control flow and ends with a branch to another basic
block or a return instruction. Basic blocks in the x86-64 ma-
chine code are detected during decoding. In the same phase,
we also ensure that each instruction part of exactly one basic
block. This reduces code size and avoids duplicate lifting and
optimization work, improving overall performance.

Per the design of the LLVM-IR, all code within a function
must be split into basic blocks [5]. While in many cases one
architectural basic block on x86-64 maps to a single basic
block in the LLVM-IR, this is not always the case; e.g., the re-
peated string instructions have a different control flow logic.
As an LLVM-IR basic block is not allowed to contain con-
trol flow instructions in the middle, lifting such instructions
requires additional LLVM-IR basic blocks.

rax

64-bit int

eax

32-bit int

ax

16-bit int

ah

8-bit int (high)

(a) Examples for single element facets (dark gray) of general-
purpose registers. For a write-back of 32-bit facets, the upper half
of the register is zeroed (white), while for 8-bit or 16-bit facets the
untouched part (light gray) has to be preserved via bit masking.

xmm0

32-bit float

xmm0

64-bit int

(b) Examples for single element facets (dark gray) of SSE vector
registers. On write-back, some instructions require keeping the
untouched part (e.g., addss), while others clear to zero (e.g., movq).

8×16-bit int 2×32-bit float

(c) Examples for vector facets of SSE vector registers. Element type
and count depend on the instruction, just as the handling of unused
parts on write-back.

Figure 2. Registers can be accessed either as a single element
or as a vector. The actual instruction defines the facet in
which the register is accessed and may also specify whether
untouched parts of the registers are preserved or zeroed.

3.4 Registers
In our lifter, we model the following x86-64 registers: 16×64-
bit general-purpose registers, the 64-bit instruction pointer,
16×128-bit SSE vector registers, and the flags register. We
currently do not support x87 FPU, MMX, and AVX registers,
but this can be added later on.
Every register can be accessed in different views on the

raw binary representation of the register contents, which
we call facets. Facets can differ in their data type, e.g. <2 x
i64> vs. <4 x i32>, but also in the part of the register they
represent. For example, the general-purpose register rax
can also be accessed as a 16-bit register (ax) or a high-byte
register (ah).

Every register has a native facet, which is the bitwise repre-
sentation of the register contents. In the LLVM-IR, this facet
is represented using an integer of the appropriate length, e.g.,
an i64 for a general-purpose register or an i128 for an SSE
vector register. The native facet must always be specified
and all other facets can be deduced from it, although the
values of other facets are cached after their computation.

A general-purpose register has additional integer facets for
each accessible subregister (e.g., for rax, these are eax, ax, al
and ah), cf. Figure 2a. Further, general-purpose registers have
a special pointer facet, which uses a pointer type in the LLVM-
IR. While integer and pointer arithmetic are identical in
machine code, LLVM has a strong distinction between these
types. It is beneficial to use the getelementptr instruction in

4



Instrew: Leveraging LLVM for High Performance DBI VEE ’20, March 17, 2020, Lausanne, Switzerland

LLVM-IR for memory accesses and specific instructions [6].
This improves the quality of the alias analysis, which leads
to better machine code.
Vector registers have a variety of other facets: scalar in-

teger and floating-point facets with different sizes (cf. Fig-
ure 2b), as well as vector facets of different element counts
for the scalar data types (cf. Figure 2c).
Register values are propagated between basic blocks us-

ing so-called PHI nodes, where the values of all preceeding
blocks are specified [5]. There may be several PHI nodes for
a single register, depending on the required facets. Whenever
a specific facet is required from the predecessors, a new PHI
node for this register–facet combination will be created.

Read Access When an instruction reads a register, it ac-
cesses the register in a specific facet. For a general-purpose
register, the facet is usually implied from the register itself
(except for pointer facets), but for vector registers the facet
depends on the instruction. For example, the instruction
addps requires a <4 x f32> facet, whereas paddd requires
a <4 x i32> facet.
The value for this facet is then either (a) already avail-

able from a previous instruction, (b) available from a newly
created PHI node, or (c) generated from the native facet. In
the third case, the value is extracted using trunc/lshr in-
structions for general-purpose registers and using bitcast,
shufflevector and extractelement instructions for vec-
tor registers.

Write Access On awrite-back of a new value into a register,
the facet is always implied by the register itself and the
value type. In addition to caching the new value for the
facet, the native facet must be updated as well. For general-
purpose registers this may involve bitmasking for 8-bit and
16-bit facets or zero-extension for 32-bit facets. For vector
registers, an updated native facet is created using proper
bitcast/shufflevector/insertelement combinations.

3.5 Status Flags
The flags register has to be handled separately, as the in-
dividual flag bits are independent of each other. Therefore,
the flags register has a separate 1-bit facet for each of the
seven stored flags (sign, zero, carry, overflow, parity, adjust
and direction). These flags are usually written and evaluated
independently from each other and are rarely used in the
format specified by the x86 architecture, which in fact is only
possible using the pushf, lahf, and syscall instructions in
user-mode [22]. To avoid frequent, but useless bit shuffling,
code to compute the register value of rflags is only gener-
ated on demand. The set of the individual flag bits is then
considered as the native facet for the flags register.
The four arithmetic flags are computed as specified by

the architecture. For common operations, however, we opti-
mized the evaluation of flags such that subsequent queries of
conditions (e.g., in jumps) can be easily folded into a single

Table 1. Computation of flags for common arithmetic op-
erations. The expressions are designed to be easily foldable
for all integer signed and unsigned comparison conditions.
Parity and adjust flag are not optimized and use bitwise
computations.

add sub/cmp

ZF res = 0 lhs = rhs
SF res <s 0 res <s 0
CF res <u lhs lhs <u rhs
OF bitwise (res <s 0) ⊕ (lhs <s rhs)

LLVM icmp instruction during optimization. The computa-
tion of these flags is described in Table 1. For the overflow
flag, our lifter also provides a mode to use intrinsic func-
tions provided by LLVM, but this did not lead to noticeable
performance changes.

The parity flag is computed using the llvm.ctpop intrin-
sic [5], and the adjust flag is calculated using bitwise op-
erations. Both flags are rarely used—we are not aware of
any recent use of the adjust flag—and we, therefore, do not
perform further optimizations.

3.6 Memory Access
Memory operands in x86-64 are rather complex and contain
up to four optional components: (a) a base register, which
may also be the instruction pointer rip; (b) a scaled index
register, which is a register multiplied by 1, 2, 4, or 8; (c) a
constant 32-bit offset; and (d) a segment register as additional
offset. Additionally, in 64-bit mode the architecture allows
for an address size override to 32-bit, specified for single
instructions.

To optimize our generated code for existing LLVM analysis
and optimization passes, we generate instructions for pointer
arithmetic (getelementptr) instead of integer arithmetic. To
safely handle all cases of operand combinations, we set the
null-pointer-is-valid function attribute, which causes
the address 0 to be treated as a valid address [5]. This prevents
optimizations that consider arithmetic with a null pointer
as undefined behavior.
Pointer arithmetic instructions in LLVM-IR have a base

pointer and one or more offsets as input operands. The dis-
tinction between the base pointer and the offsets is not easily
possible frommachine code, for which reason we apply some
simple heuristics. If a base register is present, we assume
that the base register holds the base pointer and interpret
the constant displacement as offset. Otherwise the constant
offset specifies the pointer base. The scaled index register
is commonly used as an offset, but not as a base pointer.
Note that this heuristic only helps to guide the optimization;
it does not impact the correctness or the behavior of the
program.

5



VEE ’20, March 17, 2020, Lausanne, Switzerland Alexis Engelke and Martin Schulz

If one of the segment registers fs/gs, which are commonly
used for thread-local storage or system data structures, is
specified as additional offset, the segment offset loaded from
the CPU structure is interpreted as a pointer base. Finally,
for the rare case of memory operations with a 32-bit address
size, only integer arithmetic is used.

3.7 Instruction Coverage & Limitations
Rellume covers a significant portion of the base x86-64 archi-
tecture, including SSE and SSE2, which are also commonly
used for floating-point computations on x86-64. The rarely
used legacy x87 FPU and MMX instruction sets are not yet
supported, though. Further, some instructions cannot be
lifted independently of the target architecture, e.g., syscall,
cpuid or rdtsc. For these instructions, no default implemen-
tation is provided. Instead, the tool using the lifter specifies
a custom implementation using the configuration API.

Although our implementation of SSE/SSE2 is sufficient for
most programs, it currently does not support floating-point
exceptions and different rounding modes. As the handling
these properties depends on a configuration register (mxcsr),
run-time checks would have to be inserted in many places in
the code, causing a significant overhead. Implementation of
these rarely used features might be possible using the LLVM
experimental constrained floating-point intrinsics, but this
is left as future work.

3.8 Contrasts with Other Approaches
Our lifting approach differs from other lifters which directly
transform x86-64 machine code to LLVM-IR in several ways.
Many lifters, e.g., McSema [31] and RetDec [9], do not

keep register values in SSA registers, but load/store them to
the CPU structure on every access. The transformation to
more optimizable SSA registers is done using existing LLVM
optimization passes. In contrast to our approach, these sys-
tems are unable to propagate type information, especially
for smaller integer registers and vector types. The concept
of storing multiple facets for different types can only be
represented efficiently by using SSA registers directly. Addi-
tionally, the transformation from load/stores to SSA registers
requires additional optimization time, which our lifter avoids.
DBrew-LLVM [17] also has register facets similar to our

approach, but is much more eager in computing all values
and generating PHI nodes unconditionally. Our lifter gen-
erates facets only on demand and therefore produces much
smaller LLVM-IR code, which is beneficial for lifting and
optimizing performance.
Treating the individual flag bits as separate registers is a

common approach and also used by many other lifters [9, 31].
RetDec [9] contains a custom optimization pass that folds
common flag evaluations (e.g., less-or-equal) after lifting.
DBrew-LLVM [17] uses a cache for the operands of the last
integer comparison instruction. Our approach is to com-
pute flags preferably using arithmetic instructions instead

Client Process Server Process

Guest Code

Code Cache

Execution
Manager

ELF
Linker

Decode

Lift to LLVM-IR

Opt. LLVM-IR

Code Gen.

main
loop

Figure 3. Overview of the Instrew client-server architecture.
The program execution is controlled in the client process,
while instrumentation and code generation happens on the
server side. Guest code and instrumented code are trans-
ferred using an IPC protocol.

of bitwise operations, exploiting the standard instruction
combination pass.

4 Rewriting Framework
To use our lifter library Rellume, we integrate it into our new
framework named Instrew, which is also freely available and
open-source2, licensed under LGPLv2.1+. In the following,
we outline the general architecture of our framework and
describe further performance optimizations at the LLVM-IR
level.

4.1 Client/Server Architecture
In contrast tomost other binary instrumentation systems [24–
26], we split the instrumenter into two processes: a light-
weight client process, which manages the program state and
executes the instrumented code, and a server process, which
is responsible for actually lifting, instrumenting and compil-
ing new code at the request of the client. They are connected
via an IPC communication mechanism, as shown in Figure 3.

Instrew Server The rewriting server is passive and only
acts on client requests; it is stateless aside from a small num-
ber of configuration options. Whenever a client requests
new code for a given address, the server queries the relevant
instruction bytes via the same connection. It then decodes
these instructions and passes them to our lifter library Rel-
lume, which returns an LLVM function for the decoded in-
structions. Instrumentations can be applied during lifting
to add code at instruction and basic block boundaries, and
after the LLVM-IR is generated to transform the program at
a higher level of semantics. For the latter, the server process
can leverage any standard optimization pass available as
part of the LLVM ecosystem. Finally, the LLVM module is
compiled to an in-memory ELF object file, which is then sent
2https://github.com/aengelke/instrew, accessed 2020-02-17

6

https://github.com/aengelke/instrew


Instrew: Leveraging LLVM for High Performance DBI VEE ’20, March 17, 2020, Lausanne, Switzerland

back to the client. Note that the object file consists of a single
ordinary function and can contain relocations and references
to other functions, e.g., a system call handler, which have to
be resolved by the client before execution.
This design concept of a separate server process has sev-

eral benefits compared to the usual design of having the
rewriter in the same address space. First, it opens the door to
additional possible optimizations: a single server process can
be used across multiple runs, reducing the initialization over-
head; and the rewritten code can be cached across multiple
executions of the process if both code and configuration re-
main the same. Second, it increases flexibility: a single server
process can generate code for multiple clients (or threads in
a single client), avoiding duplicated rewriting. In fact, the
rewriting server can also run on a different, perhaps more
powerful machine or even in the cloud. Third, it simplifies
tool development, as developers do not need to care about
not corrupting the memory of the guest program. This also
eases the use of external libraries.

Instrew Client The client is responsible for executing the
actual (rewritten) program code andmanaging the code cache,
which maps instruction addresses to already rewritten code
fragments for future use. At program start, the guest binary
is mapped into memory, the CPU state and the stack are
initialized according to the System-V ABI [21], and the in-
struction pointer is set to the entry address specified in the
ELF headers. Whenever the client reaches an instruction
address that is not yet translated3, it sends a request to the
server to generate rewritten code for the current address. The
server may query required instruction bytes and responds
with an ELF object file containing a function to start execu-
tion at the requested address. Before adding the new code
to the code cache, the client has to apply ELF relocations
and resolve missing symbols, making the client essentially a
very simple object file linker. The dispatcher just looks up
the function for the requested address and calls it with the
CPU state.

Communication The communication between the two
processes is currently implemented as a custom binary pro-
tocol sent over UNIX pipes. However, the use of sockets,
shared memory regions, or even direct access to the memory
of the client process as supported on newer Linux kernels4
is possible as well and could easily be added.

4.2 Translation Granularity
For the granularity of rewriting and instrumentation, there
are several possibilities:

3We consider an address as translated if and only if the address is the entry
of a translated code fragment.
4Linux system calls process_vm_readv/process_vm_writev

• Instruction: each instruction gets translated one-by-
one. This allows accurate detection of faults, but causes
very high overhead.

• Basic Block: a sequence of instructions is decoded until
the first branch. With this method only instructions
that are actually executed will be accessed.

• Function: instructions are encoded as far as possible,
following conditional branches and only stopping at
indirect branches, call and return instructions. Here,
instructions that never get executed could be accessed
and rewritten as well.

In our framework, we opted for the function granularity, as
it has three major benefits: (1) the optimization possibilities
from LLVM’s whole-function and loop transformations can
be exploited as complex control flows are also lifted to the
LLVM-IR, leading to a better register allocation and more
optimized code; (2) it simplifies the client as no chaining of
blocks is necessary for good performance; all possibilities
where chaining applies are already handled when decoding
and generated in a single function block; and (3) it reduces
the number of required switches between the client and the
server.

We note that our approach works with unmodified LLVM
libraries. Implementing a chaining optimization is rather
difficult with upstream LLVM — HQEMU [19], for exam-
ple, requires a patched LLVM library to support a specific
operation mode closely tied to their usage [4].

4.3 Optimizations for LLVM-based Dynamic
Rewriting

To further increase performance, we added three optimiza-
tions to our LLVM-based rewriter.

HHVM Calling Convention For x86-64 targets, LLVM
supports the hhvmcc calling convention, which was orig-
inally designed for the HipHop Virtual Machine [29], a JIT
compiler for PHP and Hack [27]. In contrast to other calling
conventions, 15 arguments can be passed and 14 values can
be returned in general-purpose registers. Additionally, only
2 of 16 general-purpose registers are callee-save, namely r12
and rsp.

This calling convention is also very beneficial for our case
of binary rewriting: we can keep the values of 12 general-
purpose registers in host registers during a context switch
(e.g., the lookup/translation for a return or an indirect jump
target). This reduces the amount of memory accesses at the
beginning and end of a code block significantly. In addition,
we pass a pointer to the CPU structure as parameter and
get the address of the next instruction as additional return
value. Note that we intentionally leave one register unused
to reduce register pressure on the host side, avoiding regis-
ter spilling for a translation cache lookup. The full register
mapping can be found in Table 2.

7



VEE ’20, March 17, 2020, Lausanne, Switzerland Alexis Engelke and Martin Schulz

Table 2. Use of host general-purpose registers at entry and
exit of compiled code blocks based on the HHVM calling-
convention. Registers r12 and rsp are callee-saved, register
r14 is intentionally unused to reduce register pressure.

Reg. Usage

rax Guest rax
rcx Guest rcx
rdx Guest rdx
rbx New rip (on exit)
rsp Host Stack
rbp Guest rbx
rsi Guest rsi
rdi Guest rdi

Reg. Usage

r8 Guest r8
r9 Guest r9
r10 Guest r10
r11 Guest r11
r12 CPU struct ptr.
r13 Guest rbp
r14 —
r15 Guest rsp

As a further enhancement, it would be possible to use the
SSE registers as well to keep more values in registers. How-
ever, this is currently not possible with upstream LLVM 9
and would require custom patches, decreasing the portability
and maintainability of our instrumentation framework.

Use of native fs/gs registers The x86-64 architecture has
two special segment registers, namely fs/gs, whose base
address can be used as additional offset to memory oper-
ands [22]. The base address of these segment registers can
typically only be configured from kernel space. On Linux,
this is done using the arch_prctl system call. While the
base address can be added using additional calculations in
the rewritten code, it is also possible to emit code that uses
the native segment registers on x86-64 targets. We forward
any corresponding arch_prctl system call to the host and
then use the architecture-dependent LLVM address spaces
256 and 257 for gs and fs-based memory accesses. These
address spaces correspond, by definition, to the respective
segment registers [5].

Optimization of flagusage on calls/returns Many arith-
metical instructions on x86-64 overwrite the status flags in
the rflags register. As these flags are only needed rarely,
avoiding explicit computation of the flag value is relevant
for performance. While within an LLVM function the dead
code elimination pass will remove such computations where
possible, this is not possible across boundaries of code blocks.
Due to the use of function granularity, this is the case before
all function calls and returns in addition to indirect jumps.
We are not aware of any compiler or calling convention

that requires the status flags to be preserved over the bound-
aries of a call or ret instruction. Therefore, we assume that
all status flags can be discarded when such an instruction
is encountered. For compatibility, we provide an option to
disable this optimization.

4.4 System Call Handling
In order to correctly handle system calls that may collide
with the instrumentation system (e.g., fork or arch_prctl),
all system calls are redirected to a separate function in the
client. In most cases, the system calls are forwarded to the
host operating system without modifications.

As a side-effect of intercepting all system calls, these can
also be changed such that an application can run on changing
architectures, e.g., Intel x86-64 code translated into AArch64
on an ARM platform. This requires changing the system call
number, but for some syscalls also the order of arguments
and the layout of passed data structures differ. The latter
may involve using a temporary buffer.

5 Evaluation: Rewriting Overhead
To evaluate the quality of Instrew and Rellume, we first
focus on the overhead caused by our framework with a null-
instrumentation, that is, executing the code without func-
tional changes, compared to an uninstrumented baseline. For
this, we apply Instrew on the SPEC CPU2017 benchmark
suite. We also compare the overhead of our tool against the
no-instrumentation tool of Valgrind 3.15.0 [26] (Nulgrind),
the state-of-the-art tool for heavy-weight dynamic binary in-
strumentation. Unfortunately, we could not directly compare
against DBILL [25] as sources are not publicly accessible.
We did not compare against Pin [24], because Pin has a

different scope in that it only allows insertion of function
calls, but no further transformations or modifications of the
code, as we do in our system.
Furthermore, to evaluate the quality of our x86-64-to-

LLVM lifter, we run the benchmarks with HQEMU 2.5.2 [19],
a QEMU variant that uses LLVM for code generation and
optimization. We use HQEMU to emulate x86-64 user-level
binaries on the same architecture and configured it to use
the LLVM-only mode. Note that we had to patch HQEMU to
avoid an option name collision with LLVM.

5.1 Setup
We use the reference input set for all benchmarks and run
them single-threaded to avoid interference. Our target plat-
form is based on Intel Xeon CPUs (E5-2697 v3, Haswell)
clocked at 2.6 GHz (3.6 GHz in Turbo mode), 17 MiB L3 cache
and 64 GiB main memory, running SUSE Linux 12 with Linux
kernel 4.12.14-95.32 in 64-bit mode. All code is compiled us-
ing GCC 9.2.0 with the -O3 option and linked against glibc
2.22. To avoid compatibility problems, the benchmarks are
not specifically tuned for the target architecture, but for a
generic x86-64 machine, implying that only SSE2 but no later
extensions (including AVX) are generated. For Instrew, we
use LLVM 9.0; for HQEMU we used LLVM 6.0.0, which is
the latest supported version.

8



Instrew: Leveraging LLVM for High Performance DBI VEE ’20, March 17, 2020, Lausanne, Switzerland

60
2.g
cc

60
5.m

cf

62
0.o
mn
etp
p

62
3.x
ala
nc
bm
k

62
5.x
26
4

63
1.d
eep

sje
ng

64
1.l
eel
a

64
8.e
xch

an
ge
2
65
7.x
z

60
3.b
wa
ve
s

60
7.c
act
uB
SS
N

61
9.l
bm
62
1.w

rf

62
7.c
am
4

62
8.p
op
2

63
8.i
ma
gic
k

64
4.n
ab

64
9.f
oto
nik
3d

65
4.r
om
s

ge
om
ean

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

N
or
m
al
iz
ed

ru
n-
tim

e
Native Valgrind HQEMU-LLVM Instrew

Figure 4. Performance results on the SPEC CPU2017 benchmarks on x86-64 with the ref workload.

We only use 19 of the 20 SPEC CPU benchmarks: we
excluded 600.perlbench, because it used x87 FPU instructions,
which are currently unsupported by Instrew.

5.2 Results
Figure 4 shows the benchmark results. We can see that In-
strew has an average overhead of 72%, which is significantly
lower than the overhead of Valgrind with 367%. Especially on
floating-point benchmarks, the better handling of floating-
point operations and SIMD instructions becomes visible.
While Valgrind has an average overhead of 490% on this
subset, Instrew has an overhead of only 43%.

The results further show that our approach to lifting x86-
64 machine code to LLVM-IR generally has a significantly
lower overhead than HQEMU in LLVM-only mode (overhead
of 142%). Also here, the performance difference is emphasized
on floating-point benchmarks.

To better understand the reasons for the slowdown of In-
strew, we also analyze howmuch wall-clock time is spent for
rewriting, including code lifting, optimizations, code genera-
tion and code transfer between the processes. These results
are shown in Figure 5. While the time spent for rewriting
is usually low in comparison to the total run-time (cf. Fig-
ure 5a), this is not the case for the 602.gcc benchmark, where
31% of the time is spent on code generation. The reason is
that this benchmark executes a significant amount of code.

As the benchmark consists of three independent payloads,
the code is actually rewritten three times.
For the benchmarks 620.omnetpp and 631.deepsjeng, In-

strew is even slower than the HQEMU in LLVM-only mode.
The main reason for this is the amount of function calls
executed in these benchmarks. In contrast to Valgrind or
HQEMU, Instrew does not trace into function calls, inferring
a dispatching overhead not only for function returns, but also
for calls. These benchmarks would benefit from decoding
into nested functions, however, with unforeseeable effects
for rewriting time.
During the rewriting process itself, 65% of the time is

spent on machine code generation (cf. Figure 5c). The Se-
lectionDAG code generator is known to have performance
problems, but the replacement back-end (GlobalISel) is not
yet ported for x86-64 [7] by the LLVM community. Once
completed, we expect substantial further improvements also
for our infrastructure.

5.3 Discussion
Instrew provides clear performance advantages over Val-
grind on many benchmarks due to more advanced optimiza-
tions and due to its use of a high-quality code generator.
Especially on floating-point benchmarks the generated code
comes close to the performance of the original code. This
clearly shows that the lifter generates LLVM-IR code that

9



VEE ’20, March 17, 2020, Lausanne, Switzerland Alexis Engelke and Martin Schulz

60
2.g
cc

60
5.m

cf

62
0.o
mn
etp
p

62
3.x
ala
nc
bm
k

62
5.x
26
4

63
1.d
eep

sje
ng

64
1.l
eel
a

64
8.e
xch

an
ge
2
65
7.x
z

60
3.b
wa
ve
s

60
7.c
act
uB
SS
N

61
9.l
bm
62
1.w

rf

62
7.c
am
4

62
8.p
op
2

63
8.i
ma
gic
k

64
4.n
ab

64
9.f
oto
nik
3d

65
4.r
om
s

ge
om
ean

0

10

20

30

%
of

tim
e
us
ed

fo
rr
ew

rit
in
g

(a) Time used for rewriting relative to the total running time of the
benchmarks.

60
2.g
cc

60
5.m

cf

62
0.o
mn
etp
p

62
3.x
ala
nc
bm
k

62
5.x
26
4

63
1.d
eep

sje
ng

64
1.l
eel
a

64
8.e
xch

an
ge
2
65
7.x
z

60
3.b
wa
ve
s

60
7.c
act
uB
SS
N

61
9.l
bm
62
1.w

rf

62
7.c
am
4

62
8.p
op
2

63
8.i
ma
gic
k

64
4.n
ab

64
9.f
oto
nik
3d

65
4.r
om
s

0

200

400

600

Ti
m
e
us
ed

fo
rr
ew

rit
in
g
[s
]

(b) Absolute time used for rewriting the benchmarks.

60
2.g
cc

60
5.m

cf

62
0.o
mn
etp
p

62
3.x
ala
nc
bm
k

62
5.x
26
4

63
1.d
eep

sje
ng

64
1.l
eel
a

64
8.e
xch

an
ge
2
65
7.x
z

60
3.b
wa
ve
s

60
7.c
act
uB
SS
N

61
9.l
bm
62
1.w

rf

62
7.c
am
4

62
8.p
op
2

63
8.i
ma
gic
k

64
4.n
ab

64
9.f
oto
nik
3d

65
4.r
om
s

ge
om
ean

0

20

40

60

80

100

Re
w
rit
in
g
tim

e
br
ea
kd

ow
n
[%
]

Lifting Optimization Codegen Linking

(c) Breakdown of rewriting time into decoding/lifting, LLVM-IR
optimization, machine code generation, and linking.

Figure 5. Time used by Instrew for generating and optimiz-
ing code for the different benchmarks.

can be compiled again to performant machine code. Fur-
ther, the comparison with HQEMU shows that our lifting
approach leads to a notably more efficient usage of the LLVM
compilation infrastructure.
Moreover, the average overhead of Instrew on the SPEC

CPU2017 INT benchmarks with 109% is also significantly
lower than the overhead reported for DBILL with 240% on
SPEC CINT2006 [25]. Even though this comparison is not
fully accurate, it gives an indication that avoiding TCG as
additional intermediate code representation is advantageous.
Due to the fact that LLVM has a rather slow code gen-

erator, every code generation has a significant cost. This
cost is the biggest general drawback for the adoption of our
approach: the rewriting time has to amortize over the run of
the program, which either requires codes with smaller code
footprints and/or longer running times. The latter, though,
is not uncommon for many realistic workloads, especially in
the High Performance Computing (HPC) space. Additionally,
ongoing developments in the LLVM community will further
reduce this issue in the future.

6 Use Case: Dynamic Binary Translation
To demonstrate the use of our framework, we show how
Instrew and Rellume can used for retargetability. We choose
this use case, as this demonstrates the entire framework and
as it is one of themost extreme use cases. In particular, we use
Instrew as dynamic binary translator to execute programs
compiled for x86-64 on an AArch64 machine. We compare
the performance of Instrewwith QEMU [10], the state-of-the-
art emulation tool running in user-space emulation mode, as
well as the performance of the program compiled natively
for AArch64. We would have also included HQEMU [19] in
our comparison, but experienced crashes when running with
any program, presumably due to memory corruption.
The evaluation system for this use case is an ODroid C2

single-board computer equipped with 4×ARM Cortex-A53
clocked at 1.5 GHz and 2 GiB of memory. The board uses
Debian 10 (Buster) with Linux kernel 3.14.79. All code are
compiled with GCC 8.3.0.

Due to time and resource limitations, most notably mem-
ory, on the ODroid platform, we use a subset of the SPEC
CPU2017 benchmarks and due to memory constraints, we
only use the train benchmark workload. We note that the
memory constraint is imposed by the benchmark itself and
not by the instrumentation systems.

Results Figure 6 shows the results of our experiments. The
x86-64 code emulated with QEMU on AArch64 is on average
5x slower than the code compiled and optimized for AArch64.
With Instrew, this slowdown is significantly lower at 3x,
providing an average speed-up of 40% compared to QEMU.
Due to the smaller workload size, the rewriting and opti-

mization using LLVM takes relatively more time. However,
10



Instrew: Leveraging LLVM for High Performance DBI VEE ’20, March 17, 2020, Lausanne, Switzerland

60
5.m

cf

62
5.x
26
4

64
1.l
eel
a

64
8.e
xch

an
ge
2

65
7.x
z

ge
om
ean

0
1
2
3
4
5
6
7
8

N
or
m
al
iz
ed

ru
n-
tim

e
Native AArch64 QEMU
Instrew Instrew (no rew. time)

Figure 6. Performance results on some SPEC CPU2017
benchmarks with train workload emulating x86-64 binaries
on AArch64. The native run-time is the same code compiled
directly to AArch64. Due to the small workload size, rewrit-
ing time has a significant performance impact.

the actual impact depends on the benchmark and the work-
load. For example, on the 605.mcf benchmark, the rewriting
time is negligible, whereas on the 657.xz benchmark more
time is spent on rewriting code for AArch64 than on the
actual execution of the program itself.
Excluding the rewriting time, Instrew is still on average

2.23x slower than the code directly optimized for AArch64.
We note that a translation cache in the Instrew server can
be implemented, avoiding the rewriting time on subsequent
program executions.

Discussion From our results, we can see that significant
speed-ups for cross-ISA translations can be achieved by in-
volving LLVM into the translation process. This is in line
with previous findings reported by Hong et al. [19]. Unfortu-
nately, we were unable to include HQEMU in our comparison
here, but also here we expect a slightly better performance
compared to their LLVM-only mode due to translation with
function granularity and our optimized handling of SIMD
instructions. However, it also demonstrated another advan-
tage of using LLVM: by relying on a widely used, tested and
supported infrastructure, we achieve a more portable and
robust solution that can be used across platforms.
However, from the fact that the generated code is still

2.23x slower than the optimal reference code, we conclude
that just the use of a high-quality code generator is not suffi-
cient to achieve optimal performance for binary translation.
Information about the integrity of function returns and ad-
ditional pointer alias information, especially for the stack
layout, would lead to a higher code quality. This kind of

information is usually not available in the executable files,
as it is discarded during compilation.

7 Related Work
Several tools exist for the purpose dynamic binary rewriting
and instrumentation. Typically, these either target the pur-
pose of instrumentation on the same architecture, or they
perform dynamic translation to a different architecture.

Dynamic Binary Instrumentation DBILL [25] is an in-
strumentation framework based on LLVM. Instead of lifting
directly from machine code to LLVM-IR, they first lift the
machine code to TCG and from there to LLVM-IR. While
this allows them to easily port their instrumenter to other
architectures, information about the original instructions is
lost at the point where instrumentation can be performed.
The biggest drawback, however, is the lack of floating-point
support, making it unusable for a large class of applications.
For heavy-weight dynamic binary instrumentation, the

state-of-the-art tool is Valgrind [26]. All code is lifted with
superblock granularity to the architecture-independent VEX
intermediate representation, where instrumentations and
other code modifications can be performed. Before new ma-
chine code is generated, some simple optimizations are ap-
plied. The instrumenter runs in the same address space as
the instrumented program.
DynamoRIO [12] also allows for heavy-weight transfor-

mations and represents program code in a low-level, but
architecture-dependent intermediate representation. Instruc-
tion modifications can be either performed via an architec-
ture-independent API, or by directly modifying the instruc-
tions. However, no optimizations are applied. Also, there is
no address space separation between instrumenter and the
guest.
Pin [24] allows inserting calls to functions in the instru-

menting tool at any point in the program. However, modifi-
cations to the program and heavy-weight transformations
are not possible.

DynInst [14] runs the instrumenter in a different process
than the instrumentation target. The target process is con-
trolled and modified using the ptrace debugging API of
the kernel. DynInst has an API to modify and replace spe-
cific functions within the instrumented program. However,
DynInst is not targeted at heavy-weight and complete pro-
gram transformations.

TheQuarkslaBDynamic binary Instrumentation (QBDI) [1,
3] framework is a dynamic binary instrumenter, which also
uses LLVM. However, they do not use the architecture-inde-
pendent LLVM-IR, but the LLVM-MC machine code repre-
sentation for their instrumentation. Although QBDI attempts
to separate the instrumenter from the instrumentation tar-
get, they run in the same address space and even share the
same heap and loader [2], which adds further requirements
to the instrumented program.

11



VEE ’20, March 17, 2020, Lausanne, Switzerland Alexis Engelke and Martin Schulz

Dynamic Binary Translation QEMU [10, 28] is an emu-
lator supporting several architectures as host and guests. All
guest code is lifted to the architecture-independent interme-
diate representation TCG, which then can be compiled to
several other (host) architectures. For complex instructions,
TCG can emit calls to pre-compiled functions which emulate
a specific behavior. QEMU supports full-system emulation
with a software memory management unit or dedicated hard-
ware support as well as the emulation of Linux user-space
programs in the same address space.

HQEMU [19] is an extension of QEMU which detects hot
code traces and optimizes them using LLVM in a separate
thread. As with DBILL, machine code is lifted from the TCG
IR to the LLVM-IR. A client-server architecture for HQEMU
has been proposed as well [20]. In contrast to our approach,
they keep the TCG-only translator as fast-path in the client
to reduce the performance overhead.

Lifting x86-64 to LLVM-IR Regarding our work regard-
ing lifting x86-64 binary code to LLVM-IR, we are aware of
several projects doing something similar, although the goals
differ. Such lifters are mostly targeted at static software anal-
ysis and reverse engineering. McSema [31] lifts compiled x86
binaries to LLVM-IR and also tries to recover functions and
global variables, targeted for software analysis. RetDec [9]
and fcd [15] are decompilers that use LLVM as intermediate
representation. Both projects only support a limited amount
of instructions and the resulting LLVM-IR is not intended to
be executed again. S2E/Revgen [16] uses McSema and TCG
to lift entire binary files to LLVM-IR and allows retargeting
to other architectures, but is not tuned for performance or
binary size.
Such systems designed for static analysis do not have

strong performance requirements. While this technically
does not render them unsuitable for binary instrumenta-
tion, they are hard to incorporate for a performance-focused
rewriting system. For example, VMILL [32] is prototypical
binary instrumenter based on McSema/Remill, but has sig-
nificant performance issues, mostly because all memory ac-
cesses are handled using a software address translation.
We know only one project, which lifts x86-64 machine

code directly to LLVM-IR with the intention of executing the
lifted code at run-time: DBrew-LLVM [17] is a library that
uses LLVM-IR to perform dynamic code optimization at run-
time. User-specified functions are lifted from x86-64 machine
code to LLVM-IR, optimized, and compiled back to machine
code. The compilation takes place in the same address space
and is explicitly configured by the program itself. In contrast
to this work, our lifter does not have limitations such as
lacking registers (segment registers, direction flag) and an
enforced calling convention. Furthermore, we focus not only
on the performance of the compiled code, but also on the
performance of the rewriting process itself.

8 Summary & Outlook
In this paper, we presented Instrew, a dynamic binary rewrit-
ing and instrumentation framework based on LLVM. Instrew
lifts x86-64machine code at function granularity to LLVM-IR,
which allows using the high-quality code generator of LLVM.
Our lifting approach has a special focus on the performance
of the lifted code. Instrumentation and behavioral changes
can be made at the level of LLVM-IR. We also propose the
use of a client-server architecture for binary instrumenta-
tion, splitting off the instrumenter in a separate process to
allow further optimizations like caching. In addition, our
framework is retargetable, allowing the execution of x86-64
programs on other 64-bit architectures supported by LLVM,
e.g., 64-bit ARM. On the SPEC CPU2017 benchmarks our
framework has an average performance overhead of just 72%,
which is a 1/5 of the overhead of the state-of-the-art instru-
mentation tool Valgrind. The performance improvement is
even larger on floating-point benchmarks.

Further optimizations are possible in the handling of func-
tion calls to reduce the dispatching overhead. A further reduc-
tion of the rewriting overhead could be possible by caching
rewritten code across different program runs, but would re-
quire a more persistent infrastructure at the OS level. The
latter would then also open the door more dynamic OS and
runtime environments enabling on the fly instrumentation,
optimization and translation of any code as default operation
without user intervention.

References
[1] [n. d.]. QBDI: A Dynamic Binary Instrumentation framework based

on LLVM. https://github.com/QBDI/QBDI, accessed 2020-02-17.
[2] [n. d.]. QBDI User Documentation. https://qbdi.readthedocs.io/en/

stable/user.html, accessed 2020-02-17.
[3] [n. d.]. QuarkslaB Dynamic binary Instrumentation. https://qbdi.

quarkslab.com, accessed 2020-02-17.
[4] 2018. HQEMU v2.5.2 Technical Report, installation guide. http://

csl.iis.sinica.edu.tw/hqemu/download/quickstart-2.5.2.pdf, accessed
2020-02-17.

[5] 2019. LLVM 9 Documentation: LLVM Language Reference Manual.
http://releases.llvm.org/9.0.0/docs/LangRef.html, accessed 2020-02-17.

[6] 2019. LLVM 9 Documentation: The Often Misunderstood GEP Instruc-
tion. http://releases.llvm.org/9.0.0/docs/GetElementPtr.html, accessed
2020-02-17.

[7] 2020. LLVM 10 Documentation: Global Instruction Selection. https:
//llvm.org/docs/GlobalISel/index.html, accessed 2020-02-17.

[8] Arm Limited. [n. d.]. Arm Compiler for Linux – Arm Devel-
oper. https://developer.arm.com/tools-and-software/server-and-hpc/
compile/arm-compiler-for-linux, accessed 2020-02-17.

[9] Avast Software. [n. d.]. RetDec. https://retdec.com/, accessed 2020-02-
17.

[10] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.
In USENIX Annual Technical Conference, FREENIX Track, Vol. 41. 46.

[11] Andrew R. Bernat and Barton P. Miller. 2011. Anywhere, Any-time
Binary Instrumentation. In SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools (PASTE). 9–16.

[12] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003.
An infrastructure for adaptive dynamic optimization. In International
Symposium on Code Generation and Optimization (CGO). 265–275.

12

https://github.com/QBDI/QBDI
https://qbdi.readthedocs.io/en/stable/user.html
https://qbdi.readthedocs.io/en/stable/user.html
https://qbdi.quarkslab.com
https://qbdi.quarkslab.com
http://csl.iis.sinica.edu.tw/hqemu/download/quickstart-2.5.2.pdf
http://csl.iis.sinica.edu.tw/hqemu/download/quickstart-2.5.2.pdf
http://releases.llvm.org/9.0.0/docs/LangRef.html
http://releases.llvm.org/9.0.0/docs/GetElementPtr.html
https://llvm.org/docs/GlobalISel/index.html
https://llvm.org/docs/GlobalISel/index.html
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux
https://retdec.com/


Instrew: Leveraging LLVM for High Performance DBI VEE ’20, March 17, 2020, Lausanne, Switzerland

[13] Derek Bruening and Qin Zhao. 2011. Practical memory checking with
Dr. Memory. In Proceedings of the IEEE/ACM International Symposium
on Code Generation and Optimization (CGO’11). IEEE Computer Society,
213–223.

[14] Bryan Buck and Jeffrey K. Hollingsworth. 2000. An API for Runtime
Code Patching. International Journal of High Performance Computing
Applications (IJHPCA) 14, 4 (2000), 317–329.

[15] Felix Cloutier. [n. d.]. fcd. http://zneak.github.io/fcd/, accessed 2020-
02-17.

[16] Cyberhaven. 2018. Translating binaries to LLVM with Revgen. http:
//s2e.systems/docs/Tutorials/Revgen/Revgen.html, accessed 2020-02-
17.

[17] Alexis Engelke and Josef Weidendorfer. 2017. Using LLVM for Op-
timized Lightweight Binary Re-Writing at Runtime. InWorkshop on
High-Level Parallel Programming Models and Supportive Environments
(HIPS). 785–794.

[18] Hal Finkel. 2016. Intrinsics, Metadata, and Attributes: The story con-
tinues. In 2016 LLVM Developers’ Meeting.

[19] Ding Yong Hong, Chun Chen Hsu, Pen Chung Yew, Jan Jan Wu, Wei
Chung Hsu, Pangfeng Liu, Chien Min Wang, and Yeh Ching Chung.
2012. HQEMU: A multi-threaded and retargetable dynamic binary
translator on multicores. In International Symposium on Code Genera-
tion and Optimization (CGO). 104–113.

[20] Chun-Chen Hsu, Ding-Yong Hong, Wei-Chung Hsu, Pangfeng Liu,
and Jan-Jan Wu. 2015. A dynamic binary translation system in a
client/server environment. Journal of Systems Architecture 61, 7 (2015),
307–319.

[21] Jan Hubička, Andreas Jaeger, Michael Matz, and Mark Mitchell. 2013.
System V Application Binary Interface, AMD64 Architecture Proces-
sor Supplement. https://software.intel.com/sites/default/files/article/
402129/mpx-linux64-abi.pdf.

[22] Intel Corporation. 2019. Intel 64 and IA-32 Architectures Software
Developer’s Manual. https://intel.com/sdm, accessed 2020-02-17.

[23] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization (CGO).

[24] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. 2005. Pin: building customized program analysis tools with
dynamic instrumentation. In SIGPLAN Conference on Programming
language design and implementation (PLDI), Vol. 40. 190–200.

[25] Yi-Hong Lyu, Ding-Yong Hong, Tai-Yi Wu, Jan-Jan Wu, Wei-Chung
Hsu, Pangfeng Liu, and Pen-Chung Yew. 2014. DBILL: an efficient and
retargetable dynamic binary instrumentation framework using LLVM
backend. In International Conference on Virtual Execution Environments
(VEE). 141–152.

[26] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In ACM SIGPLAN
notices, Vol. 42. 89–100.

[27] Guilherme Ottoni. 2018. HHVM JIT: A Profile-guided, Region-based
Compiler for PHP and Hack. In Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI 2018). 151–165. https://doi.org/10.1145/3192366.3192374

[28] QEMU Developers. 2019. Documentation/TCG. https://wiki.qemu.
org/Documentation/TCG, accessed 2020-02-17.

[29] Philip Reames. 2015. LLVMPhabricator: Calling convention for HHVM
(D12681). https://reviews.llvm.org/D12681, accessed 2020-02-17.

[30] Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to detect
undefined value errors with bit-precision. In USENIX Annual Technical
Conference, General Track. 17–30.

[31] Trail of Bits, Inc. [n. d.]. McSema. https://www.trailofbits.com/
research-and-development/mcsema/, accessed 2020-02-17.

[32] Trail of Bits, Inc. [n. d.]. VMILL (repository). https://github.com/
lifting-bits/vmill, accessed 2020-02-17.

[33] Josef Weidendorfer, Markus Kowarschik, and Carsten Trinitis. 2004. A
tool suite for simulation based analysis of memory access behavior. In
International Conference on Computational Science. Springer, 440–447.

13

http://zneak.github.io/fcd/
http://s2e.systems/docs/Tutorials/Revgen/Revgen.html
http://s2e.systems/docs/Tutorials/Revgen/Revgen.html
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://intel.com/sdm
https://doi.org/10.1145/3192366.3192374
https://wiki.qemu.org/Documentation/TCG
https://wiki.qemu.org/Documentation/TCG
https://reviews.llvm.org/D12681
https://www.trailofbits.com/research-and-development/mcsema/
https://www.trailofbits.com/research-and-development/mcsema/
https://github.com/lifting-bits/vmill
https://github.com/lifting-bits/vmill

	Abstract
	1 Introduction
	2 Background
	3 Lifting x86-64 to LLVM-IR
	3.1 Rellume Design
	3.2 LLVM-IR Functions
	3.3 Basic Blocks
	3.4 Registers
	3.5 Status Flags
	3.6 Memory Access
	3.7 Instruction Coverage & Limitations
	3.8 Contrasts with Other Approaches

	4 Rewriting Framework
	4.1 Client/Server Architecture
	4.2 Translation Granularity
	4.3 Optimizations for LLVM-based Dynamic Rewriting
	4.4 System Call Handling

	5 Evaluation: Rewriting Overhead
	5.1 Setup
	5.2 Results
	5.3 Discussion

	6 Use Case: Dynamic Binary Translation
	7 Related Work
	8 Summary & Outlook
	References

