
File Systems: GFS vs HDFS vs Ceph Bluestore

Nicolas Arteaga and Raphael Schleithoff

Summer term 2020

Abstract

We describe three different distributed file sys-
tems, the Google File System, the Hadoop Dis-
tributed File System and Ceph Bluestore, that
strive to handle the growing amounts of data
that is produced by modern algorithms. We
will have a look at the basic operations and
the different trade offs they implement in their
system architecture. Finally we compare all
three and recommend one of the distributed
file systems.

1 Introduction

Computer Science is all about abstractions,
which means that complexity of an implemen-
tation is hidden and that new ideas are built
on top of already existing structure. Compil-
ers or specifically in distributed systems the
OSI model provide levels of abstraction on top
of which new protocols are created. etc. Dis-
tributed file systems act in a similar way, they
want to abstract where data is stored exactly
and only want to make it accessible to the
client through an API.

In this paper we want to have a look at
the way a set of distributed servers are orches-
trated and networked to emulate a single file
system.

Without file systems data inside a stor-
age medium would be one large blob without
any way of separating or retrieving them. A
file system therefore defines the structure and
logic for managing data (files).

When talking about file systems it’s impor-
tant to keep the context in mind. In the con-
text of disks a file system is the way in which
files are actually organized in the physical stor-
age medium. Formats include ext2, FAT. In
the context of operation systems a file system
usually means the hierarchical directory struc-
ture. Here the UNIX file system is a great ex-
ample. Distributed file systems are close to the
latter kind. They provide interface for clients
to interact with a file system as if it were stored
on a single computer. But by making it dis-
tributed a lot of functionality and performance
improvements.

2 The Google File System

The Google File System (GFS) was developed
out of the need to process large amounts of
data for the search engine. It is Google’s
proprietary software, therefore there is only a
white paper about its functionality and not
any code to look at. Google’s search algo-
rithms functions in a highly distributed man-
ner but all the programs running on differ-

1



ent machines have to access the same data to
work on. The many petabytes of data can’t be
stored on one huge server because one server
can’t provide fault tolerance or high and easily
scalable storage capacity.

Figure 1: GFS Architecture Model

The GFS was designed to be optimized
for reading and appending, which means that
writing/overwriting is possible but compara-
tively costly. In contrast to what one might
think Google doesn’t operate high-end servers
with triple redundancy, but cheap commod-
ity servers running Linux. This enables easy
scalability, low costs but also leads to higher
probability of any one of the servers crashing.
GFS was therefore designed with high fault
tolerance as a central characteristics.

From the user point of view we have a clas-
sic client-server architecture. A client, some
program running on a search query for exam-
ple, makes a request to the GFS and the GFS
hands it the contents of that file. If we dive a
little deeper we see that the GFS is made up of
clusters of servers operating in a master-slave
architecture. In the GFS every file is split into

chunks of 64MB, which are assigned unique
64-bit chunk handles and then replicated and
distributed to the chunkservers by a master
server. So the file example.txt with a size of
130MB is split into two chunks of 64MB and
one chunk of 2MB, which are then replicated
three times across the cluster of chunkservers,
resulting in a total of nine chunks. This may
seem overly redundant but replication not only
increases the fault tolerance but also the band-
width of the overall system by making the
same chunks accessible for reading in parallel.

On a high level view the client sends a re-
quest to the master server wanting to access
/data/example.txt with a byte offset if need
be. The master server, knowing how that
file is distributed amongst the chunkservers,
tells the client on which chunkservers to find
file. The client then makes a request to the
chunkservers, which send the data directly to
the client without going through the master
server. This ensures that the master server
doesn’t become the bottleneck of the system.
If many clients send requests to the mas-
ter server this could of course still lead to
higher latency but by letting the data trans-
fer happen directly between the client and the
chunkservers overall bandwidth is increased,
which is far more important metric for the file
system than the latency. Message size is kept
small.

Autonomic computing is another key con-
cept important in the design of the GFS; it
strives to automate administrative duties that
keep the system running. Examples of this in-
clude detection of dead/crashed chunkservers
through heartbeat logging and the mainte-
nance of the operation logs (mapping of chunks
to file). In order to serve clients as fast as
possible the master server keeps the whole op-

2



eration log in RAM, which means that if the
master server crashes the whole log is lost. In
order to solve that, a second (shadow) mas-
ter server continuously copies the master slaves
operation logs.

3 Hadoop Distributed File
System

If one were to assign some kind of genealogy to
distributed file system then the Hadoop Dis-
tributed File System (HDFS) would be the
open-source clone of the GFS. The HDFS, li-
censed under the Apache License 2.0, forms
part of the Apache Hadoop project and can
therefore be used by us to demonstrate how
a distributed file system works in practice.
HDFS provids an efficient data store and
retrieval for Big Data applications such as
MapReduce.

Figure 2: HDFS System Architecture

Even though the HDFS is heavily modelled
after the GFS, there exist some differences.
The master server becomes the NameNode and
the chunkservers are called DataNodes. Fur-
thermore files are split into blocks of 128MB,
instead of 64Mb chunks.

HDFS implements a centralized architec-
ture, where namespace information (block lo-
cation of file) is communicated by the Na-
meNode but actual file data is transferred
between the client and the DataNode. This
makes load balancing possible but can also
lead to lower *availability of the system.

In order to increase the availability of the
system the NameNode holds all the namespace
information of the file system in RAM. This
makes the system less faul tolerant because if
the NameNode crashes it losed that informa-
tion. The SecondaryNameNode therefore
periodically saves it in its memory to make it
persistent.

Fault detection and node statuses are
propagated through the system with heart-
beats and block reports. By default ev-
ery three seconds a heartbeats and every 10
minutes a block report from each DataNode.
This makes the system fully connected, which
means that every node in the file system is
aware of faulty behavior.

4 Ceph Bluestore

Ceph Bluestore is an open source totally dis-
tributed file system. The philosophy from
Ceph is an Open Source Project for evolving
in the needs of the future, that focuses on the
community and has no single point of failure.
Meaning that a Failure from a server is the
norm and not the exception. It’s Design con-
centrates on being scalable, that’s why is to-
tally distributed and has not a Master server.
It’s software based, because all kinds of dif-
ferent hardware can run with the same soft-
ware and work together seamlessly. Another
important aspect from Ceph is, that it’s Self-

3



Figure 3: Ceph Architecture Model

Managing, meaning that it heals automatically
whenever a problem arises.

Ceph doesn’t use a Master Slave Architec-
ture, so to substitute a Master it provides a dy-
namic distributed metadata management us-
ing a metadata cluster (in short MDS). Then
stores data and metadata in Object Storage
Devices (OSDs). These are simply a CPU
attached to a Network Card and to an SSD
or Harddisk. OSDs are used to take advan-
tage from horizontal scalability (Having more
computers, rather than one super computer).
The MDS manage the namespace, consistency
and security of the systems and Clients access
the data directly using an algorithm named
CRUSH, to find the Blockfiles. [Figure 3]

4.1 CRUSH

The algorithm CRUSH stands for Controlled
Replication Under Scalable Hashing and is a
pseudo-random placement function, that de-
termines which OSDs to store files on, instead
of the centralized way of storing the placement
information in a table, like with the GFS. The
volume of metadata stored per file is reduced,

boosting metadata accesses and shrinking the
load on metadata servers. Clients directly cal-
culate the proper file placement for read and
write operations, and only need to connect
with the MDS servers for metadata operations.

4.2 Differences from Ceph Filestore

Figure 4: Ceph FileStore vs Ceph BlueStore

The Motivation from Bluestore is improv-
ing the performance of the cluster. The previ-
ous object store, FileStore, uses the journaling
File System XFS on top of raw block devices.
Instead, BlueStore stores objects directly on
the block devices. And since the metadata in
Ceph is organized with RocksDB, a Database
that cannot write directly to the raw disk de-
vice. BlueFS was created, a file system only for
RocksDB with the minimal functioning feature
set, to store the metadata.

The results make BlueStore roughly about
twice as fast as FileStore, leaving a boosted
performance (almost 2x for writes) with a
lower latency.

5 Conclusion

As an overview, we summarized the most im-
portant points from the three File Systems

4



HDFS Ceph

Architecture Centralized Distributed

Namespace Index CRUSH

API CLI, REST API CLI, REST API

Fault detection Fully connected Fully connected

Replication Async. Sync.

Load balancing Automatic Manual

Table 1: Analysis of Six Distributed File Sys-
tems (GFS is almost the same as HDFS)

described in this Report. In a first exam-
ine it’s easy to spot the similarities between
the Google File System and the Hadoop File
System, since HDFS is based from the other.
That said, as a conclusion we will only con-
centrate in HDFS vs Ceph. The Architec-
ture from HDFS is centralized, using an In-
dex Namespace in the Master to map all files
in the servers, while Ceph is completely dis-
tributed and uses it’s CRUSH algorithm to be
able to find all Blockfiles. Both use a Com-
mand Line Interface and an Application Pro-
gramming Interface, but since GFS is a white
paper, there is no info what Google uses to
control it’s File System. All three File Systems
provide strong fault detection, since they use
heartbeats to check between the Master and
the Server or the individual OSDs. More sig-
nificant differences come with the Replication
and Load Balancing. HDFS is asynchronous,
this being, that when a File is written, it is
still possible to request it, although the repli-
cas aren’t written in the disks. This changes
with the synchronous replication form Ceph
where, when data is written, the data is locked
until the replicas are committed to the disk. In
HDFS there is an automatic Load Balancing
between the Datanodes, but in Ceph, because

of it’s pseudo random placement of the files by
CRUSH, the Load Balancing commands have
to be run manually.

HDFS Ceph

Write / Read R W R W

1 x 20GB 401s 407s 342s 419s

100 x 1MB 17s 72s 21s 76s

This table compares the performance of
HDFS and Ceph in Read and Write opera-
tions from one big 20 GB File and a hundred
1MB Files. And reflects, that HDFS is more
applicable to store small quantity of big files
(Writes faster), while Ceph can dominate both
small and big data.

5.1 Our Recommendation

We would recommend using CEPH because
of the performance improvements. This being
that decentralized architectures seem to scale
better than a centralized one thanks to the
distributed workload management. That and
the fact that Ceph is an Open Source Project,
makes it the future of storage.

6 Sources

Ghemawat, Sanjay, Gobioff, Howard and Le-
ung, Shun-Tak. ”The Google File System.”
Google. 2003. Harris, Robin. ”Google File
System Evaluation.” StorageMojo. June 13,
2006.

http://storagemojo.com/?pageid = 15

“HDFS Architecture Guide.” Hadoop,
hadoop.apache.org/docs/r1.2.1/hdfsdesign.html.

5



Big-Data-Europe. “Big-Data-
Europe/Docker-Hadoop.” GitHub,
19 May 2020, github.com/big-data-
europe/docker-hadoop.

“Apache Hadoop.” Wikipedia, Wiki-
media Foundation, 10 May 2020,
en.wikipedia.org/wiki/ApacheHadoop.

“List of File Systems.” Wikipedia,
Wikimedia Foundation, 9 Apr. 2020,
en.wikipedia.org/wiki/Listoff ilesystemsDistributedf ilesystems.

Ceph Documentation
https://docs.ceph.com/docs/master/

https://www.usenix.org/legacy/event/osdi06/tech/fullpapers/weil/weilhtml/index.html

Benjamin Depardon, Gaël Le Mahec,
Cyril Séguin. Analysis of Six Dis-
tributed File Systems. [Research Re-
port] 2013, pp.44. ffhal-00789086

https://ceph.io/community/new-
luminous-bluestore/

6


