
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

GBS Tutoring Tool:
A Software Engineered Websystem for the

Creation and Organization of GBS Exercises.

Nicolas Mario Arteaga Garcia



DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

GBS Tutoring Tool:
A Software Engineered Websystem for the

Creation and Organization of GBS Exercises.

GBS Tutoring Tool:
Ein Software-entwickeltes Websystem für die

Erstellung und Organisation von GBS
Übungen.

Author: Nicolas Mario Arteaga Garcia
Supervisor: Prof. Dr.-Ing. Jörg Ott
Advisor: Dipl.-Inf. Martin Uhl
Submission Date: 15. March 2021



I confirm that this bachelor’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15. March 2021 Nicolas Mario Arteaga Garcia



Acknowledgments

This thesis was completed as part of a five-months research project at the Technical
University of Munich.

First and foremost, I would like to thank Prof. Dr.-Ing. Jörg Ott for offering me the chance
to conduct my Bachelor thesis in his group. His teaching in GBS made me discover my
interest in the Unix system and virtualization techniques.

An equal amount of gratitude must go to my supervisor, Dipl.-Inf. Martin Uhl for the
introduction to this topic, and his constant knowledge input, and support for my work.

I would also like to thank the organizational team and tutors from the GBS lecture at
the Technical University of Munich, who participated in this software project and research.
Without their time brainstorming and giving feedback to the different phases of the system,
this thesis would not have been possible.

I am grateful for the warm welcome and positive work climate that I experienced in the
group of GBS. The helpfulness among colleagues, their support and assistance were pivotal
during my bachelor’s thesis undertaking.

Finally, I would like to thank the future developers that continue this project.



Abstract

Due to an increasing number of students studying computer science, some courses at the
Technical University of Munich (TUM), were confronted with more than thousand students
registered. Together with the ongoing Coronavirus pandemic, this introduced the need for
more sophisticated and easier to use online learning tools to guarantee a high quality learning
experience. One particular system fulfilling these requirements is an exercise management
system, which facilitates the creation of new exercises and helps to organize these.

This thesis presents the establishment of a software system for the creation and organization
of exercises for the university lecture "Grundlagen Betriebssysteme und Systemsoftware"
(GBS). Old systems are substituted or upgraded with extra functionality and organizators
receive enhanced tools to improve and facilitate teaching. New techniques to create a more
interactive learning are proposed, researched and implemented. The presented synchroniza-
tion approach is based on requests and analysis of feedback from different actors. Since the
project is developed by a single person for many clients, a strategy for collecting and refining
this information is proposed.

We conducted a literature review on software engineering methods and formalized require-
ments and constraints for defining the data of the lecture in exercise objects. Furthermore, we
design a system and evaluate the prototypical implementation’s applicability in a study with
15 participants.

iv



Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Visionary Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 The Software Development Process Life Cycle . . . . . . . . . . . . . . . 4

2 Requirements Elicitation 6
2.1 Requirements Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Redefining the Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Formulary with Tutors ideas . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 BBB conferences with GBS Kern: . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Final Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Non Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 The Use Case Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Analysis 14
3.1 Decomposition of the Git System . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Base Problem Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Problems Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Programming Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Python Web Application Framework . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.3 Virtual Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Analysis Object Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 System Design & Implementation 24
4.1 Subsystem Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 User Registration and Authentication . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 LDAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



Contents

4.3 Synchronization with Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 GitPython Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Problems Synchronization Logic . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Project Structure for new Subsystems . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Web System Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 LaTEX Editor Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 The Creation of Exercise Sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Deployment 30
5.1 VM Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 The Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Results 31
6.1 Feedback Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1.1 Feedback Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2.1 Benchmarks Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Summary 36
7.1 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2 Realized Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Open Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

List of Figures 39

List of Tables 40

Bibliography 41

vi



1 Introduction

This thesis introduces the software engineered project "GBS Tutoring Tool", starting with the
planning and elicitation of the requirements, continuing with the modeling and design of the
project, advancing to the implementation and deployment of the system and finishing with a
conclusion.

1.1 Problem

At the Technical University of Munich (TUM) there is a lecture called "Grundlagen Betrieb-
ssysteme und Systemsoftware" (GBS), that had about 1000 students enrolled in the past winter
semester 2020/20211. This number is planned to increase with the continuous growth of the
number of enrolled students at the TUM, and most importantly the faculty of Informatics
taking into account that GBS is not only a course for the Bachelor of Computer Science
and business Informatics, but is greatly chosen in other big TUM degrees as for example
TUM-BWL.

The GBS lecturer is Prof. Dr.-Ing. Jörg Ott and the exercise leader and supervisor of this
thesis is Dipl.-Inf. Martin Uhl. The lecture organization team consists of only 5 lecture
organizers named "GBS Kern", where three of them are part of the 19 tutors. In total there are
only 24 persons involved in the maintenance of a big course such as GBS, which shows that
organizers need good tools for qualitative teaching.

Good tools are even more important when using an online teaching strategy as they
influence the success of online learning as seen in the article "Improving online learning:
Student perceptions of useful and challenging characteristics" [Son+04]. In TUM courses like
GBS, there are tools like Moodle (a course management system) that enable a communication
and the publication of material. But these tools offen do not fit the extra needs of the courses.

For instance, there is a need for the TUM to create other tools like the Automatic "As-
sessment Management System for Interactive Learning" named Artemis, which "assesses
solutions to programming exercises automatically and provides instant feedback so that
students can iteratively solve the exercise"[KS18]. These tools bring extra functionality or the
possibility of a different visualization of course material (e.g. the listing of course material
from GBS at "https://gbs.cm.in.tum.de"), which provide a better overview for both students
and organizers.

At the moment, GBS has no internet portal that makes it possible to create of exercises and
organize the lecture online in a scalable way, making it easy to be improved in the years to

1Data from the GBS Course supervisor

1

https://gbs.cm.in.tum.de


1 Introduction

come. This leaves the possibility for a new web system, that can help to improve the teaching
(for example The GBS Tutoring Tool), to be created.

1.2 Purpose of the System

The GBS Tutoring Tool makes the creation of LaTEX exercises for the GBS Lecture easier and
more interactive. It gives the possibility for tutors to make their own exercises in a reliable
way, without having to download any LaTEX libraries or knowing how to write the files in
LaTex. It has online access, where every tutor will have an account.

This account gives access to their own profile with their GBS exercises ideas and the pool
of all exercises from the lecture. The main users will be the tutor leader and the tutors, but
in future plans it is an idea also to have students as users. One main goal is to facilitate the
creation of exercises for the lecture.

They will not need to master LaTEX in order to write them. When creating a new exercise,
they get a LaTEX template, that makes clear where to write the title, problem question or
add images, if needed. They will not need to import any libraries or download the right
compiler to create the exercises, since everything will be taken care of from the system.
Editing an exercise when an error is found or something is badly explained is just as easy as
clicking the "edit" button in the exercise box and changing the typo or adding some additional
explanation.

One purpose of this thesis is explaining the system interactions with other systems, such as
the web view, where the users interacts, the TUM server from where we retrieve their data,
and the old used system. Because one requirement of the system is it being used with the old
"GitLab" environment. So that the users still have the option to make changes offline and
synchronize them with the Web server via git commands. This research will try to find the
best approach for synchronizing the web server with the git system.

There is also the idea of a future integration of Tumonline and Moodle. Here the students
registered for the course will get an account in the system and be able to see their own bonus
results from Moodle exercises, like the Quizzes, or the programming homeworks.

1.3 Models

It is important to note, that we mainly used the help of concepts from the book "Object-
Oriented Software Engineering Using UML, Patterns, and Java" from Prof. Bruegge [BD13] to
create a good system with a solid structure and good modelling techniques.

Through this thesis we will present the different unified modeling language (UML) models
used, while building the system, in order to describe it better. We use models to abstract
and represent the important aspects of the systems. They help developers deal with the
complexity of building the system and dealing with its problems.

The first models we will present to describe the system are some visionary scenarios, which
will help us bridge the conceptual gap between the developers and the end users (the tutors
and students) of the system.

2



1 Introduction

1.3.1 Visionary Scenarios

• The Tutor Leader Martin logs in his account from the GBS Tutoring Tool and enters his
LRZ/RBG login credentials. Then he goes to the "My Profile" Tab and creates a new
exercise for chapter 5. Then Martin saves the exercise to his personal profile, where
different personal exercises can be edited or uploaded to the common pool of exercises.

• Hendrik had an idea for a cool exercise to test their students about the "virtuelle
Speicherverwaltung". He thinks it could be beneficial for other students too, so he
creates it in GBS Tutoring Tool, and clicks on "load to exercise pool". If the exercise is
good, it will be used in the future to create exercise pages or even exams.

• Andrea is a tutor that doesn’t think that the students from her class understood how
"Petri-Netze" work. She wants them to understand it better, so she logs into the GBS
Tutoring Tool, chooses some exercises from Petri Netze and creates an extra exercises
sheet for them to practice at home.

1.4 Strategy

Before starting the project, I had BBB2 meetings with the GBS tutorial instructor (who also
supervises this bachelor thesis). In those talks we brainstormed and came up with some
possible requirements for the project’s system[2.1], but since this project is open to ideas, we
decided that the ones that would use the system in the future (tutors) should take part in the
planning. That’s why we created a new strategy, where the developer would work with many
clients and collected all possible ideas, analyzed them and figure the steps for the fulfillment
of the first version of the GBS Tutoring Tool.

This new strategy consists in searching for ideas of tutors and organizers, analyzing and
evaluating the ideas and rebasing them in new final requirements. This project involves a
one-to-many relationship between the developer and the clients, which is very uncommon
in nowadays software projects. It is normal that software projects change a lot. The general
approach is having a team of developers with different abilities solving a software project of
one client. Sometimes, the clients are two to three customers from a company, but even then
they communicate beforehand and have a general idea of what they want or what the leader
of the group wants. For our project, we had to communicate with the GBS Kern for system
related organizational ideas.

In order to have some general ideas for the improvement of the teaching and focusing on
the student’s point of view, we had to involve as many GBS tutors as possible.

In our specific case, there is no known research about and therefore we needed to reinvent
the way of building the project. In practice, the developers of software project use a Software
Development Process Life Cycle (SDLC) to produce high-quality software, that meets the
client’s expectations and reach its completion on time.

2BigBlueButton: A free software web conferencing system for GNU/Linux servers.

3

https://bigbluebutton.org/


1 Introduction

1.4.1 The Software Development Process Life Cycle

In general, the main stages of a software project are: Planning, Requirements Analysis, Design,
Implementation, Testing, Deployment and Future (Maintenance/improvement).

The most classical SDLC is the Waterfall Model (see figure [1.1]), it was proposed in 1970
and it is a lineal sequence of all the main 7 stages that software projects have [BD13]. When a
stage is finished, it will not be repeated again. It is simple to understand and it’s effective
with strict deadlines. But it’s not really flexible since problems remain uncovered until testing
and it’s difficult to make changes since so much from the project is fixed.

Figure 1.1: Schematic representation of the main seven stages with the Waterfall Model.

Nowadays the Iterative Life Cycle Model (see figure [1.2]) is the most used variant [BD13].
Due to its flexibility, it works well with developer teams and can be easily adjusted to fit their
goals. Famous adjusted variants of the general Iterative SDLC Model are Agile or Scrum.
It stengths lies is the better work efficiency and contributes to better feedback to the team
manager. Although no stage is finished it can be difficult to set the milestones.

Figure 1.2: Schematic representation of the main seven stages with the Iterative Model.

In this thesis, a combination of both Waterfall and Iterative Models are adjusted to fit the
requirements and the deadline. The planning of the project with the requirements elicitation
and analysis was made in one block, comparable to the waterfall model. The planning and the
requirements analysis was completed in one and a half months (from 15.10.2020 to 31.11.2020).

4



1 Introduction

In this time we analyzed all the ideas and researched how the system should be build. (Part 1
in figure [1.3]).

In the following months (1.12.2020-15.01.2021) weekly sprints were the System Design,
Implementation and Testing were improved and brought to the desired state. (Part 2 in figure
[1.3])

Finally, two weeks were planned for the Deployment (16.01.2021-01.02.2021). Afterwards,
the tutors and GBS Kern were asked to give feedback. Some of it was used to improve the
system (16.02.2021-15.03.2021). On basis of this, a conclusion was written and future work
for this system was documented. Hence, a basis system was build to be maintained and
upgraded easily. (Part 3 in figure [1.3])

Figure 1.3: The GBS Tutoring Tool SDLC Model

5



2 Requirements Elicitation

2.1 Requirements Ideas

Before starting the project, some requirements ideas were conceptualized. In section [2.3] the
final requirements are described.

Functional Requirements:

Admin:

• Can write new or edit existing LaTEX exercises.

• Accepts and administrates the users.

Tutor Leader and Tutors:

• Can write new and edit existing LaTEX exercises.

• Can actualize or create exercises locally and push them with git.

Non Functional Requirements:

• System should convert LaTEX text fast and uncomplicatedly.

• Every exercise should be combined with its solution.

• A user should be able to create an exercise sheet in less than 10 steps / 5 minutes.

• System should be well documented and easy to expand (It should be easy for the next
student or developer to change functionality).

Optional Requirements:

Functional:

• Admin can upload students results in CSV from Moodle to the Webpage.

• Students can access the website to view their results and own homework feedback.

• Students can create own exercises for future semesters.

6



2 Requirements Elicitation

Non-Functional:

• System is fully in English or German.

• System actualizes the students results data on Moodle automatically.

• System changes exercises randomly for the exam of every student.

2.2 Redefining the Requirements

After the planning was conducted, the second stage was reached. The requirements elicitation
and analysis were still open to change and had to be refined in a new way. A more empirical
approach was taken in the way of getting the ideas.

The most essential part were the individual BBB conferences planned with the lecture
organization team members (GBS Kern). Usually the GBS Kern are organizers for the lecture,
which study at the TUM. Important insights were gained at the conferences, because the
members have experience using the old system. Therefore, the best way of connecting the
old (GitLab) and the new (web) system were analyzed. According to the study "Comparing
focus groups and individual interviews: findings from a randomized study" [Gue+17], the
meetings were done separatly to ensure the members were not influenced by each other and
could speak freely.

The project was briefly explained in a mutual meeting. We told the tutors to collect some
ideas through one week. After that, we started individual meetings initiated with the same
three questions about their experience with GBS and what they think about new websystem.
All these five conferences where recorded with the permission of the GBS Kern and can be
watched upon request.

In the other approach I went to the weekly tutors meeting and introduced the system idea,
then created a voluntary formular for all tutors.

After some research it came clear that the most fitting option was creating the survey with
Google Forms1. The tutors had the possibility to use an arbitrary pseudonym, to remain
anonymous, since the data passes through the Google servers.

We reviewed the google forms survey tool with the help of the proceedings "Online survey
tools: A case study of Google Forms" [VN16]. The tutors could voluntarily answer some
general questions to later be able to classify their ideas by different variables such as if they
were a bachelor’s or master’s student [1] or if they were GBS tutors for the first time [2]. Then
it went to some single choice questions of the system and in important questions, where the
tutors could write and deepen in their ideas.

This data is in german and anonymized and can be seen as .CSV files exported from Google
Forms upon request.

1Google Forms: A web-based app used to create forms for data collection purposes.

7

https://www.google.com/intl/en/forms/about/


2 Requirements Elicitation

2.2.1 Formulary with Tutors ideas

12 out of the 21 GBS tutors, in the winter semester 2020/2021, conducted the voluntary survey.
Four of them, also where part of the GBS Kern. In the following the received answers are
shown:

1. Are you a Bachelor or a Master student?

Bachelor Informatics

33.3%

Master Informatics

66.6%

2. How many times have you been a GBS Tutor?

Second Time

25%

Third or more

25%

First Time 50%

3. How are your skills in LaTEX?

(0% have not worked with latex before)

Beginner

25%

Several projects
already written

in LaTEX

66.7%

LaTEX Master
8.3%

8



2 Requirements Elicitation

4. How do you find the idea of making a web app for the GBS tutoring?
Positive Feedback:
"Good", "I think it is great","Interesting", "Generally good, because there are many
processes that can be automated", "Good, but still C++ is a prettier language", "Sounds
very exciting and practical", "Really good. Having quick access to practice exercises
would be helpful for many students and is something that many courses lack.",
"The option sounds really good, depending on who is supposed to use all of this,
another platform prevents a lot of data.", "Excellent".
Critical Feedback:
"In principle, it is good if it can replace other tools. Using more and more tools will
otherwise become confusing."
"Not really useful - Artemis and Matrix already exist, so that would be another platform."
"I’m not sure how necessary something like this is, because it doesn’t happen that often,
that we create new exercises as a tutor and I can do them relatively quickly with LaTEX."

5. Can you imagine creating new GBS exercises on the WebApp?

Yes

66.6%

No

33.3%

6. Do you think that students will send GBS exercises suggestions on the web applica-
tion?

Yes

75%

No

25%

7. Do you have any suggestions for the WebApp for organizing GBS exercises? (Ideas
that you would want to have)

a) Possibility for a tutor to upload their own slides/PDFs and to make them available
to the students. I think this would automatically attract the students.

9



2 Requirements Elicitation

b) I had actually a similar idea in which students could, for example, randomly
generate tasks such as scheduling or buddy alg., etc. so that they would be able to
practice a lot of “algorithmic” problems/ tasks quickly.

c) It would be really cool to have the possibility of interactive problems (e.g. for
Petri nets), which students can play around with and see for themselves ow their
solution plays out.

d) Statistics (which problems are most popular, which tasks are completed (and how
well), etc.).

e) For example, graphical compilation of exercise sheets from the (existent) collection
of exercises/problems, and, if applicable, (prefabricated) feedback options for
students (“this problem was confusing/ difficult”, “this problem was doable”, . . . ).

f) For me, creating the problems using a classic LaTex editor is enough. The greatest
benefit for me in the implementation as a WebApp would be the integration of
CI/CD, so that material is automatically updated in, e.g., Artemis and Moodle
without having to manually upload everything again and again.

g) Fluent design, and drag & drop for the arrangement of the problems.

2.2.2 BBB conferences with GBS Kern:

Although most of the members had a special view with ideas, we repeated the most important
topics often to try to find more input. Topic repetitions are ignored in this summary. This are
the summarized most important outputs:

• Christian Menges: (Meeting on the 29/10/2020, 3x GBS as tutor & organizer)

He would like to see something being done in the course continuous integration and
continuous delivery from the course material to the students. Things can be automated
between the three GitLab repositories from GBS. For example, that the lecture script
gets compiled automatically and uploaded to the moodle course site every week before
the lecture. We found this idea from Mr. Menges really valuable, but after debating
with the tutor leader it became clear, that it is not covered by this thesis content. But it
could be accomplished with a small script.

• Fabian Sauter: (Meeting on the 30/10/2020, 3x GBS as tutor & organizer)

Mr. Sauter suggested to implement a Drag and Drop for the creation of exercise sheets
and told that we should use "Fluent Design"2 for the Website design. After reviewing
this idea with the tutor leader, we rejected it, because the GBS Tutoring Tool should try
to be part of the TUM Ecosystem. This is why the web system design is based on the
TUM Corporate Design3.

2Fluent Design: Some Microsoft guidelines for the software design of Windows platforms.
3TUM Corporate Design: Living Styleguide for the design of digital platforms for the university.

10

https://portal.mytum.de/corporatedesign/stylesweb/living_styleguide


2 Requirements Elicitation

• Sebastian Kappes: (Meeting on the 01/11/2020, 2x GBS as tutor & organizer)

Mr. Kappes most important point was to implement a way to make the exercises more
organizable. We brainstormed and came to the ideas of making the exercises organizable
looking at the The exercises could have tags in the LaTEX file, that could be visualized
as headers for every exercise. For example, for tutoring problems, exam problems, and
extra properties like, if it is used in an exam or the time needed for completion. How
this advanced can be read in the "Problems Header" section.

• Leander Seidlitz: (Meeting on the 02/11/2020, 4x GBS as tutor & organizer)

Mr. Seidlitz told us that we had to concentrate in what functionality we can give to the
students, because the GitLab system is almost only used by the GBS Kern, and they
already dominate it. The most value from creating the GBS Tutoring Tool would be to
make it easier for the students to interact with GBS. And we agreed that the system
does not want to substitute GitLab but work with it and add functionality. Mr. Seidlitz
proposed programming the the WebApp system with Python and using the Django or
Flask web framework. We go into this in the section "Programming Language".

• Clemens Horn: (Meeting on the 06/11/2020, 4x GBS as tutor & organizer)

Mr. Horn recommended to use well known and tested modules for the web system, by
doing a user login system with the TUM Shibboleth and the LRZ account or with the
Informatics RBG account.

2.3 Final Requirements

In the data it is easily noted that 50% of the teams are a GBS tutor for the first time, and they
did not really have new ideas to work on the system. They found the idea good and were
positive about, the system having a possibility in helping at the GBS teaching, but they did
not know what to add.

With all this input I could identify some general requirements that were important for the
GBS Kern, the tutors or the tutor leader. This is the final version of the functional requirements
(short FR) and the non functional requirements (short NFR) for the GBS Tutoring Tool based on
the FURPS+ model from [BD13, page 120]. FURPS+ is an acronym using the first letter of the
requirements categories: Functionality, Usability, Reliability, Performance and Supportability.
The + indicates the additional subcategories.

2.3.1 Functional Requirements

Functional requirements express the functions that the system has to accomplish at the end
state. They do not depend on the implementation, and should be accomplished on every
plattform [BD13]. The final FRs are:

FR1 Create Exercise: Users can create new exercises and view the compiled file in the
websystem.

11



2 Requirements Elicitation

FR2 Correct Exercise: Tutors can correct the students problem ideas.

FR3 Synchronization with GitLab: The web system actualizes the new problems and
changes with the GitLab system. The users should be able to interact with the imple-
mented properties of the web system, in the GitLab subsystem.

FR4 List GBS Material: Students can view and download their material from GBS.

FR5 Search Exercises: Exercises can be found with a search bar.

FR6 Create Exercise Sheets: Users can make exercise sheets and view the compiled file in
the websystem.

FR7 Automatic creation of Exercise Sheets: System creates exercise sheets based on time
constraints and chapters elected.

2.3.2 Non Functional Requirements

Non functional requirements describe the quality requirements from the system, and focuses
on its usability, reliability, performance and supportability [BD13]. The final NFRs are:

Usability

NFR1 Ease of use: The user data actualizes automatically from the TUM RBG LDAP Server.

NFR2 Ease of use: Admin can change in an easy way which users have access to the
websystem.

NFR3 Ease of use: The system uses the TUM Corporate Design to improve readability.

Reliability

NFR4 Safety: The system should check every login with the with TUM LDAP Server and
not store the password for extra security.

NFR5 Robustness: The system should use well tested modules for authentication & security.

Performance

NFR6 Performance: An Exercise should compile and be shown in less than 5 seconds.

NFR7 Performance: The system should actualize all the material in less than 10 seconds.

Supportability

NFR8 Maintainability: System should be well documented and easy to expand. (It should
be easy for the next developer to change functionality)

12



2 Requirements Elicitation

2.4 The Use Case Model

In Figure [2.1] a use case model is presented that focuses on the part of the future system
that handles the creation and evaluation of exercises ideas. Use case models describe a set of
scenarios from actors interacting with the system.

Figure 2.1: Use Case Model. A student creates an exercise idea, that gets edited from a GBS
Kern member and changes to a valid usable problem.

13



3 Analysis

This chapters concentrates on finding the best option for building the GBS Tutoring Tool. We
are building a system that has the GitLab system interacting with the new web system. We
will now decompose the actual system to be able to understand it better and discuss where
and how to establish the connections between both subsystems.

3.1 Decomposition of the Git System

The GBS lecture team uses three Git repositories to organize and manage their lecture
documents. Simply explained, a Git repository is a folder with the git version control tool
used to navigate in the different changes that this folder had over time and facilitates working
in a team and synchronizing the work. We will go more into the architecture of git here at
the section 3.6.

The "gbs-tutorials" repositories is where all the problems and files used in the lectures are
stored. "Problems" are how the GBS Kern defines the exercises used in the lecture. These files
and problems are mostly LaTEX documents that compile with a Makefile. Briefly, LaTEX is
a system of text composition, used to the creation of high quality scientific documents. A
Makefile is a file used to automate the compilation and create an objective. In this case the
Makefile is a complex 400 lines long file, that was inherited from the chair of networks lectures
organization. It is used to compile the tutoring PDFs from the LaTEX documents used in the
course in different forms. It chooses the different sheet structures from the predetermined
LaTEX documents, for example, when executing the make commands in the terminal. The
three most important variants will compile and build a PDF for every LaTEX sheet in the
directory, but with different outputs.

• The PDF will display its problems in a standarized way.

make tutorial01

• If existing in the LaTEX document. After every problem or subproblem the solution for
that part will be showed.

make tutorial01-solution.pdf

• After every problem or subproblem it leaves a blank space for the students to work on
when practicing on a sheet.

14



3 Analysis

make tutorial01-presentation.pdf

While studying the Makefile we came to the realization that a Makefile is prone to change
in the future as GBS changes the form of compiling their sheets or the commands the GBS
Kern will use. This could be the perfect bridge between the Git and the web system. It is
based on the fact that both systems work with the same Makefile, so that the scheme of
compiled sheets has only to be changed in the repository for it to take effect on the web
system. As seen in [BD13, p.224-228] a good system design should have low coupling, which
means that a change in one subsystem should not affect any other subsystem. It should
have high cohesion, which refers to having classes that perform similar tasks and have many
associations. We can decouple the whole system of GitLab and the GBS Tutoring Tool if we
use the same Makefile for both systems.

For example, when the GBS Kern changes the packages for compiling LaTEX docs or
chooses to use "biber" or "pdflatex" to compile, there should only have to be one change in the
git repository for it to effect on both subsystems. This applies when changing the individual
problem sheet used by the web system or an exercises sheet. A change in the git repository
takes effect both on GitLab and the new web system.

The second git repository is "Material", that it is used to give place to all the course material
for the students. The students either save a local copy of the repository on their laptop, or
they can visit the website gbs.cm.in.tum.de which has a directory listing of this repository.

Finally, the last git repository is "Tutorial", which is used by the tutors to coordinate their
organization in the course and has the compiled sheets and material that are not released for
students. This repository is mostly used for rescheduling tutorial hours. It is planned to be
substituted by another subsystem for the GBS Tutoring Tool. This can be a future thesis.

We only need to connect our system with the two first repositories, since with "gbs-
tutorials" we can compile all sheets in the different formats. We will use the data inputted in
the "Material" repository to make it accessible for students it in the web system. Although we
decouple the system by working with the same Makefile that will adapt to the changes, the
subsystem still has to know the folder structure from the problems and where to find the
Makefile. For the web system to work correctly with GitLab, there has to be a fixed structure
and naming of the folders.

Figure [3.1] is the structure of the "gbs-tutorials" Folder.

3.2 Base Problem Structure

While analyzing all the problems used in the last years of GBS, we saw that the problems
change a lot based on the different ideas the creators had. The simplest problems only had a
question text and solution, but the most complex ones also included different graphs written
in LaTEX or solutions only for the subproblems like in figure [3.2].

This lead to difficulties when designing the problem, so our goal is to find how to abstract
the problems. After brainstorming, it was clear that representing all different problem

15

gbs.cm.in.tum.de


3 Analysis

gbs-tutorials

build

figures

include

problems

example-Chapter

example-Problem.tex

any

Makefile

gbs-tutoring-tool-Exercise.tex

Figure 3.1: The "gbs-tutorials" git folder. White boxes represent files and blue boxes folders.

\problem{Scheduling (Klausuraufgabe)}
\vspace{\baselineskip}

\subproblem* %GO \ifsolution \else Die Programmiersprache Go
...
\begin{tabular}{p{10mm}|*{5}{p{\colwidth}|}|*{5}{p{

\colwidth}|}|*{5}{p{\colwidth}|}|*{5}{p{
\colwidth}|}|*{5}{p{\colwidth}|}|*{5}{p{\colwidth}|}|*

...

Figure 3.2: Problem "scheduling4" from chapter "Prozesse" with approximately 237 lines of
tables.

16



3 Analysis

examples would not be possible, owed to the fact that our subsystem would not substitute the
Gitlab system. For this reason, we came up with a structure that describes a basic problem in
a LaTEX document. This structure is separated in three big sections:

1. The header, which will be explained in the next section [3.3].

2. The problem, which begins with "\problem{}", stops when another section starts and
stores everything that wasn’t already contemplated in the header or in the subproblem.
It stores, for example, the title, the problem question, its solution, all graphs used to
explain the exercise better, and all comments or extra arguments that are not inside the
other sections.

3. If existing, the subproblem or subproblems. Beginning with "\suproblem" , where the
different subquestion are asked for the explanation of the " \problem{}".

We came up with this model of a basis structure file in figure [3.3].

-------- HEADER --------

-------- PROBLEM --------
\problem{This is the Title of a Problem} This is the input of
the problem question and etc...

-------- SUBPROBLEM(S) --------
\subproblem
This is the input of the subproblem.

Figure 3.3: Structure of a problem file, consisting of header, problem and subproblem.

3.3 Problems Header

Analyzing the system, we came up with a way of decoupling both systems by adding
functionality that can be changed from either one of the subsystems. This would consist of
adding the properties for the problems commented in their first lines, in a so-called "Header".

The header could enable an input bridge from the problem properties between the web
app and the git system, without really changing the workflow of the users of the git system.
It enables the git repository users to change the attributes in the commented header, at the
start of the file without having to compile anything. The users in the web system just have to
change the attributes of the problem and save the instance.

The header will store the different attributes of the problem. These attributes are, for
example, the keywords bonded to that problem, so that it is easier to find problems that
have key aspects in common. Keywords examples for the GBS problems are: "scheduling,

17



3 Analysis

round robin, FCFS, clock, semaphore, mutex, petrinetze, gantt, bitmap, buddy, clock, paging,
pagefault, segmente, ext4, inodes, rights, etc...".

Another attribute, if used in an exam, stores in which exam that problem has being used.
This comes very handy for differentiating which problems can be used in future exams, or
which problems the tutors can give for practicing, that are not going to be used in the exercise
sheets.

The last attribute is the approximate time needed for completing the problem. It aims at
creating the possibility of making random exercise sheets that are less or equivalent to the
time specified from a student wanting to practice.

Other property ideas were revised, but the use they gave was mostly overshadowed by the
complexity they introduced. For example, there was an idea of an attribute that told for every
term if the problem was already being used in an exercise sheet that semester, and if so, in
which one. The possible benefits from the functionality were overshadowed from the work of
having to change the different exercises files every week in the git repository.

There were two possibilities of how the header should be written in the .tex files. The
first one was to write the header as comments at the start of the file and then use pattern
matching to save the attributes in the system. The second one was to rewrite the defined
LaTEX "\problem{}" macro and create an input from the attributes like this:

\problem[oldExam-input][keywords-input][aproxTime-input]{problemTitle}
This is a problem example...

We discussed both possibilities with the GBS Kern and came to the conclusion, that since
the web system concentrated a lot in pattern matching to retrieve all data from the LaTEX
documents (Problem Title, text, solution, etc...). The implementation with the most sense
would be the first one, writing the attributes as comments and getting the properties with
pattern matching.

It should be programmed in a way that a header that isn’t complete still can be saved and
does not disrupt the process of creating new problems. This will require the subsystem to
have techniques of dealing with non compilable LaTEX documents. The pattern matching for
the header starts when the system detected a start of a line with the special set of characters
"%#%". This set works as a comment in LaTEX documents because of the % start, and it
draws the attention on the beginning of the page, clearifying where the properties of the
problem are saved. After that, it just needed to follow the line to find from which attribute it
worked and store the data written in the line.

We can find an example of a header in a problem file in the figure [3.4].

3.4 Programming Language

The programming language chosen for implementing this system was Python. Python is one
of the most fast growing programming languages in the world since 2018 [Jou18]. It is very
beginner friendly, since comparing it to other programming languages such as Java or C++

18



3 Analysis

1 %#% OldExam: Wi 17-18 Retake / Wi 18-19 Endterm / unused Wi
2 %#% Keywords: semaphore, mutex, petrinetze
3 %#% AproxTime: long==30 min, medium==20 min, short==10 min
4

5 \problem{Petrinetze: Basics}
6 Während einer Klausur sind die beiden Hörsäle MW2001 und MW0001
7 parallel in Benutzung. Die beiden Hörsäle teilen sich jedoch die
8 Toilette. Somit darf beide Hörsälen insgesamt immer nur eine Person
9 verlassen. Hierfür wird ein sogenanntes ``Toiletten-Mutex''

10 benutzt. Die Anfangsbelegung der Hörsäle entspricht den
11 Prüfungsplätzen, 187 für MW2001 und 127 für MW0001.
12

13 Modellieren sie das Szenario und dessen Synchronisation mit einem
14 Petrinetz. Gehen Sie wie folgt vor:
15

16 \subproblem*
17 Modellieren Sie das grundlegende Szenario mittels Stellen.
18 Verwenden Sie je eine Stelle für die beiden Hörsäle sowie zwei
19 Stellen für die Toilette. Dies ist notwendig, damit Studenten nur
20 in den Hörsaal zurückkehren können, den sie verlassen haben.

Figure 3.4: Header problem example for the "petrinetze3.tex" file.

you can write the same programm with less lines of code. This makes the system code easily
readable and lowers the entry barriers for new developers contributing for this system. It’s a
high level language so we do not have to worry about memory allocation like in C++. Being
a cross-platform, works on all different operating systems such as MacOs and Linux. This
creates a big community of developers and plenty of documentation which be found online
[Fou20a].

Comparing pythons performance in a web framework related to other languages, this paper
sums up the performance in several benchmarks . As found in [Rog17]: "The conclusion is
that the choice of the web framework is of secondary importance. In other words, any given
framework is not the ultimate blocker in the development path. The most important thing in
the decision process is to take into account programming language preferences, the size of
the community and a job market."

Python being used in the web framework, allows to write the front- and backend of
the application with the same language (Python), which is another plus for simplicity for
the developers. We will go more into the libraries we used in the System Design and
Implementation on chapter [4].

19



3 Analysis

3.4.1 Python Web Application Framework

For this project, different web application frameworks came in question for the realization of
this web system. Important aspects, that the frameworks had to fulfil, where to be open source,
and WSGi compatible. As explained in the glossary, the Web Server Gateway Interface (WSGI),
is a specification used to describe how a web server communicates with web applications,
and how work together to process one request.

Going into all web frameworks would need a lot of time, and is not really useful, since
most important properties of the web frameworks repeated itself. So we will divide them
into the two big branches, the full-stack frameworks and the microframeworks, and we will
propose the two main competitors, Django and Flask, and why we chose one.

The key characteristics of the full-stack framework Django [Fou20b] are, that it has a really
quick learning curve, which enables to develop systems in a fast manner. Additionally,
authentication and several other functionalities are already shipped with the framework.

Thus "Django is used as the go-to Web Application framework, when comparing the
productivity, features, security, performance and scale flexibility with other programming
languages" [Ben20].

On the other hand, the microframework Flask started in 2004 by Armin Ronacher is a
really lightweight web framework that uses the "Werkzeug" WSGi and the "Jinja2" Templating
Engine [Ron20]. It has no need of downloading extra tools of libraries, but is easily extended
to enhance features.

Considering the limited time and the lack of much experience in web development, the
best choice for this project was Django, also because of its thorough documentation.

[Bha20] on page [32]: "Based on the study, it is evident that Django can be best fit for
large-scale projects with the cost of the learning curve. Flaskisbest fit for the prototyping and
small-scale projects but not limited to it. Flask can be learned and set up quickly, but when it
comes to managing and maintaining, it requires more work than the former.".

3.4.2 Database

As seen in [KH09], it is recommended to use Django both in the front- and backend. Another
suggestion is to use sqlite as a database as there are fairly good python bindings available.
Our system design follows these advise and therefore uses Django Templating in the frontend
and a sqlite database in the backend. A downside of this design choice is that sqlite does not
offer the possibility of ArrayFields. We therefore had to adapt our Analysis Object Model to
this restriction.

3.4.3 Virtual Environment

It is recommended to always use a virtual environment for the deployment of the project,
since it makes easy to ensure for the program to use the same packages, and its versions as
the ones used in production. Hence, while choosing a virtual environment for small software
project like this, that does not use many libraries, we learned from the book [Ben20], that for
small software projects like ours, is virtualenv more than enough.

20



3 Analysis

Virtualenv is a lightweight python environment, that downloads the needed packages in a
folder and makes python take the libraries of the given folder instead of the ones that are
available on the whole system. It makes it really easy to develop different projects and be
platform independent.

3.5 Analysis Object Model

As described in the "Base Problem Structure" [3.2] modeling the different problem files is
a difficult task. Trying to specify the objects much would not work, because the problems
structure changes a lot from chapter to chapter. We want a system that makes the creation of
problems not only easier, but more adaptable to the different ideas from students. It should
have the option of making a simple problem object with "header, question and subproblem"
in their respective input panels.

Based on the analysis, the objects should be defined, in a similar way like this:

• An exercise sheet has many problems. Sheet -> [Problem]

• A problem has a one header, one problem question and 0 to many subproblems.
Problem -> 1 Header, 1 Question, 0..* [Subproblem]

• All subproblems have one problem. Subproblem 1..1 Problem

• The material for the git repository has many files and folders. Material ->[File], [Folder]

It had to be different because of SQLite3 does not let us construct ArrayFields, like explained
in the Database section [3.4.2]. So the final Analysis Object Model for our system is the one in
Figure [3.5].

3.6 Tools

The tools used in this project had to be open source and preferably already in the TUM
Ecosystem, to speed up the learning curve. In the end, the whole system should only have its
data inside the university network and servers, to complain with the privacy policy of the
TUM 1.

The Task Manager

A task manager helps to organize software projects, and assists the developers in creating
good practices. Furthermore, it gives the possibility of making to-dos in an intuitive way and
being able to issue new ideas or changes for the project.

1TUM Privacy Policy

21

https://www.community.tum.de/en/privacy-policy/


3 Analysis

Figure 3.5: Analysis object model describing the classes associations from an application-
domain perspective (UML class diagram).

22



3 Analysis

In general there are two considerable options: GitLab, the open source git version control2

service, and the Jira projects administration from the company Atlassian.
For this project GitLab was chosen, because both have a to-do section, a Milestones plan

and a place to document the progress [Con20]. However, the free verson Jira had to be located
in their server [Atl20], which creates privacy issues and using unneeded bandwidth. Jira
is better designed for big developer teams, which is currently not needed. In the future a
change to the more productive task manager, can be easily done if required. Therefore, no
new program had to be added to the ecosystem, because GitLab is already used for the GBS
projects and runs in the "Leibniz Rechenzentrum" (LRZ) servers at the TUM campus.

2Git Version Control is a free and open source distributed version control system designed to handle everything
from small to very large projects with speed and efficiency.

23

https://git-scm.com/


4 System Design & Implementation

Researching the software patterns from our reference book "Object-Oriented Software Engi-
neering Using UML" [BD13] chapter 8, we investigated the key characteristics of different
software patterns that give more functionality to an older system. Thereon we find the best
practices for designing a system with subsystems interacting and how to decompose the
subsections.

4.1 Subsystem Decomposition

In order to describe the integration of the proposed system into the GBS Tutoring Tool system,
we present a subsystem decomposition in Figure [4.1].

Here you can view how the main components of the new web system work with the envi-
ronment and the other subsytems. The "RbgAccountManager" component of the subsystem
interacts with the TUM LDAP Server to retrieve the user accounts data and is implemented
in [4.2.1]. It is the only component that interacts out of our system environment, because
it uses the TUM LDAP structure. If this structure should change, we also have to adapt
our component implementation. But considering that the structure was made to remain
unchanged, we probably will not have to deal with actualizing this component in the near
future.

The "ExerciseObjectCreator" deals with the creation of new problems in the web system
and stores them in the "ExerciseSynchronizer" if the creator is a logged-in user of the
"RBGAccountManager". The "ExerciseSynchronizer" stores all new changes in the "gbs-
tutorials" Git repository and receives the actualization from this once every five minutes to
maintain a synchronization between the two main subsystems.

Finally the "MaterialObjectsCreator" loads all the material data after every change in the
"Material" Git repository. This connection is unidirectional, because only the GBS Kern is in
charge of the "Material" Git repository and they prefer to work only with the Git repository.
After every change in the repository, the system reflects these changes in its internal state.

4.2 User Registration and Authentication

As stated in our requirements, our system should already use the well known "Rechnerbe-
triebsgruppe"(RBG), is the system administration group for the TUM Informatics Faculty
(RBG) accounts, that every Informatics student at TUM has, to have a more secure system
and lowering the system’s complexity by not having to deal with user credentials ourselves.

24



4 System Design & Implementation

Figure 4.1: Subsystem Decomposition (The UML Component and Subsystem Diagram).

25



4 System Design & Implementation

One of the reasons we chose Django is that it comes with really good security and well
tested authentication packages [Fou20b], that are important to reduce the risk of creating
privacy issues. Another strategy that we wanted implemented, was to not store the passwords
of our users, but that the system communicates with the TUM LDAP Server, to not only
retrieve the students most basic data but to confirm that the user password is correct.

Lightweight Directory Access Protocol (LDAP), is a base and flexible protocol to be able to
access the Directory Servers. When we refer to the TUM LDAP Server, we refer to the server
where all the data about the RBG accounts is stored.

There were many possibilities to implement this user logic, but in the end we had to chose
the one that the tutor leader and admin found more comfortable to use, because he was going
to be the only one modifying the users.

The implementation works as stated in the following: Before the start of every term, the
tutor leader actualizes a .CSV file in the project virtual machine (server). In this file, there are
written the usernames that can access the web system. The system stores these usernames
as user objects, and when you log in for the first time, it actualizes the data from the LDAP
server into the websystem. Everytime you log in, it checks first if you are in the list of users
from the system and if so, it checks your credentials in the LDAP server. If the LDAP server
accepts your request, you are logged in.

4.2.1 LDAP

A LDAP search in the TUM RBG server can be achieved with the following command in a
normal terminal:

(For it to work you have to be in the "Munich Scientific Network" (MWN))

ldapsearch -H ldaps://ldap.in.tum.de -x -b
'ou=Studenten,ou=Personen,ou=IN,o=TUM,c=DE'
-D 'uidNumber=23118,ou=Studenten,ou=Personen,ou=IN,o=TUM,c=DE'
-W uid=username

We based our implementation in this group structure, to find all persons with rbg accounts.
Luckily, there is a django package to communicate with LDAP servers. And we used their
documentation to program our implementation [Sag19].

AUTH_LDAP_SERVER_URI = "ldaps://ldap.in.tum.de:636"
AUTH_LDAP_USER_SEARCH = LDAPSearch("ou=Personen,ou=IN,o=TUM,c=DE",
ldap.SCOPE_SUBTREE,
"(&(uid=%(user)s)(objectClass=inetOrgPerson))")
AUTH_LDAP_USER_ATTR_MAP = {"first_name": "givenName",
"last_name": "sn", "email": "mail"}

As can be noted, the search tree is very similar in both implementations, but the different
commands documented in our systems source code is what really enables to use only the
usernames from the .CSV file

26



4 System Design & Implementation

4.3 Synchronization with Git

Our synchronization algorithm was activated every five minutes by the APScheduler and
used methods of GitPython to check whether an actualization was available and if so, to
perform this actualization.

Our scheduler is a BackgroundScheduler that does not interrupt the system as it acts
asychrnonuously. This scheduler was chosen over other solutions like cron because it offers a
range of options that allow for an efficient scaling.

The best approach to synchronize the web server with the Git System was using the
"GitPython" framework to communicate with the Git repositories [TC15].

4.3.1 GitPython Framework

The GitPython Framework offers a Python-API that permits us to interact with the Git
repositories from inside of Python instead of having to run the commands manually on the
command line or with e.g. subprocess calls.

4.3.2 Problems Synchronization Logic

After checking whether a change has occurred in the repository, the synchronization routine
checks all files’ modification date to find the files that have been affected by the change. A
changed file will then by converted into an object by scanning over its contents and pattern
matching the parts to the corresponding object variables as explained in the "Base Problem
Structure" section [3.2]. This object then is saved in the problems database and can thus be
used by the web system.

4.4 Project Structure for new Subsystems

While working on this thesis, a new developer joined the project and started implementating
the substitution of the third Git repository "Tutorial", which lies out of this thesis’ focus (as
seen in the section "Decomposition of the Git System").

The developer wanted to use another framework that worked with Django and to facilitate
the communication of his subsystem with the project base, we remodeled the folder and file
structure, so that his application only had to communicate with the core methods and files.
This improves the adaptability to new subsystems even more, because it allows for a modular
subsystem structure. This way, all subsystems can be independent of eachother.

The figure [4.2] represents the folder structure change, based on the django documentation
[Fou20b] to work best with our particular case. Before, all the Uniform Resource Locator
(URL) logic was contained in the "material" app. Afterwards, changes had only to be made to
the "core" when implementing a new subsystem. The "material", "tutor_management" and
future apps are completely independent.

27



4 System Design & Implementation

Figure 4.2: Structure change from the "gbs_tutoring_tool" project folder. White boxes repre-
sent files and blue boxes folders.

4.5 Web System Home

As already explained, we wanted to include the overview given by the directory listing from
"https://gbs.cm.in.tum.de" in our web system, where it should serve as the "home" page for
the GBS Tutoring Tool. All changes made by the synchronization are directly reflected in
this view. From this starting point, we also implemented small convenient functionality like
downloading files and whole directories from the "home" page.

4.6 LaTEX Editor Implementation

There was the idea in the brainstorming of having an "Advanced Mode" that lets us create a
file directly in an editor of the web system, to create for example graphs directly in the web
system. But after some time into the implementation and some meetings with the GBS Kern,
it became clear that the web system would not be able to perform as good as compiling the
latex code locally. Not being the systems original use case, we do not view this as a strong
limitation. The GBS Tutoring Tool system should connect both subsystems but not substitute
GitLab. Still, we explained the points why it is not possible to mimic GitLab in a good enough
way in section [4.6].

"However, it is not always the case when there is a need for a different approach when
solving the same problem. For example, if one has to modify the view to work differently
than it might require much work. This requires much investigation and reading the source
code. "[Bha20]

28



4 System Design & Implementation

4.7 The Creation of Exercise Sheets

Implementing the exercise sheets, we ran into some problems. We were able to create exercise
sheets with many problems, but we were not able to implement a working solution for
merging several problem statements from different files into a single exercise sheet. The tests
usually failed, and we could not deliver this functionality completely before the deadline of
this thesis.

Since the functional requirement "Automatic creation of Exercise Sheets" (FR7) was depen-
dent of this method, we could not start to implement it, leaving the FR7 not accomplished.

Nevertheless, we will continue to work on these features, and deliver them before the start
of the next GBS lecture term.

29



5 Deployment

5.1 VM Infrastructure

For the deployment of the web system, we requested a virtual machine in the university
network. This VM allows us to have the system up and running the whole time. Moreover,
the abstraction done by a VM also allows the program to run in a well-defined environment,
reducing the amount of possible error sources.

In order to work with the VM from the university, research on the VM infrastructure was
made.

Also, to support a possible large number of students accessing the system simultaneously,
the VM was equipped with sufficient RAM and computing power, although this can easily be
extended as it is a virtual machine.

In order to get the machine ready for our system, we had to open the ports 22 (SSH), 80
(HTTP) and 443 (HTTPS).

5.2 The Web Server

We chose to use the Apache web server as it is one of the most established ones available
and as it is easy to get a simple configuration working. However, it also allows for complex
configurations, making it a suitable choice for this project.

The web server is the base point for all requests and calls our python executable via WSGI,
when getting a request.

30



6 Results

One important aspect of the project was the participation of old and new tutors from the GBS
subject, who gave us ideas about which key elements could make the system a success (see
Strategy section [1.4] from the Introduction).

The key aspects for a good accomplishment of the project were the structured communica-
tion and organized meetings with all actors. Explaining the possible value and the part the
tutors played in the development process of the system, motivated sufficiently many tutors
to give us a variable input of ideas and points of view. This way, we also could get more
feedback data after the final meeting, where the finished system was explained with a demo:

6.1 Feedback Data

By letting the tutors use the web app for some basic tasks, we are going to be able to get
their feedback on how good the suggested elements for the system were accomplished. They
should then do the following: enter their profile, create one exercise, change one exercise,
create a sheet for the students and search for keywords.

Of the 21 tutors in the GBS semester of 2020/2021, eight took the questions on the feedback
formulary, one of them was in the GBS Kern while being tutor. All of these tutors participated
in the first survey already. Less members of the GBS Kern took the feedback formulary, as we
had a group meeting at the end of the project. Therefore, the change between the formularies
about the first two question makes sense. This is the feedback survey data used to improve
the final system:

1. Are you a Bachelor or a Master student?

Bachelor Informatics

75%

Master Informatics

25%

31



6 Results

2. How many times have you been a GBS Tutor?

Third or more

25%

Second Time

12.5%

First Time

62.5%

3. What do you think about the web system substituing https://gbs.cm.in.tum.de ?

All respondents found that it was good, that the web system substitutes the directory
listing https://gbs.cm.in.tum.de.

(100% Good, 0% Not helpful, 0% Bad)

4. Do you think that students will send GBS exercises suggestions on the web applica-
tion?

Yes

25%

Maybe

37.5%

No

37.5%

5. Can you imagine creating new GBS exercises on the WebApp?

Yes

37.5%

Maybe with
the new

web system

37.5%

Not really

25%

32



6 Results

6. Do you think that you will edit or correct problems on the web application?

All respondents answered that they see themselves editing and correcting problems on
the web application.

(100% Yes, 0% Maybe, 0% Not really)

7. Do you have any ideas for the system’s future functionalities?

a) Maybe some level of integration with Artemis, more tools for creating the tasks
(some tasks like in Introduction to Theoretical Computer Science webtool).

b) Tools for the visualization of algorithms (e.g. buddy, clock, etc.).

c) Similarly to many classic LaTEX editors, the finished worksheet over runtime could
be displayed on the screen (e.g. on the right).

d) Central contact point for all GBS matters, i.e. also Moodle replacement. In addition,
a separate problem tester can be added in the long term, then there really is only
one GBS page and no longer Artemis, Moodle and gbs.cm.in.tum.de

8. Do you have any suggestions or comments for the WebApp?

a) More feedback for wrong username or password.

b) Write down that Shibboleth is not used but the RBG login is required.

c) For the "Students GBS Material" a text field which renders the content of the
Readme.md, if this is stored in the repository.

d) Better icons. Maybe the one from here: https://github.com/vscode-icons/vscode-
icons since the License (MIT) would fit.

e) Unicode encoding for files.

f) Change link Create an Exercise for the GBS Lecture -> Create an Exercise.

g) No limitation to alphanumeric characters in the title of a problem.

h) More fancy.

i) On the start page, it irritates me that the file symbol to the left of the file name
does the same thing as when you click on the file name.

j) It would probably also be good at some point to add a manual on how to create
a problem/exercise or how the format should / can be. If it is possible to insert
pictures, then also how etc.

k) I like it very much, only the name "title" in the top line when creating a new
problem/exercise confused me for a moment. I thought at first that it was meant
to be the title that is displayed, otherwise the webpage is very intuitive.

l) Interface could be made a bit nicer so that it looks more modern and easier on the
eyes. But this is not critical.

33



6 Results

6.1.1 Feedback Conclusion

In general the feedback was really encouraging, seing that all tutors had a positive view about
the substitution of the old directory listing "https://gbs.cm.in.tum.de" (question [3]) and that
everyone saw themself editing and correcting problems on the web application (question [6]).

Most of the tutors could see themselves creating new problems (75%) and were positive
that students will use the web application for creating new problems (62.5%), which is very
similar to the tutors’ thoughts at the start of the semester (66.6% and 75%) (see data from
questions [5] and [6] of the first survey).

This is great news, because it shows that the tool achieved the tutors expectations about
how the system had to be, in order to be attractive to them and the students.

From the last question [8], we learn that most proposed changes are small adjustments or
UI improvements. This indicates that the system was working as it was expected from the
tutors. Almost all suggestions were implemented before the delivery of this thesis - only the
"No limitation of alphanumeric characters" (see suggestion [8g]) comment had to be refused,
since we wanted it to represent a "slug".

6.2 Benchmarks

The NFR6 "An Exercise should compile and be shown in less than 5 seconds." is a bit abstract
to prove, since there are many different use cases, because LaTEX is Turing-complete and it
really depends on the specific LaTEX file. This is why we tested it for our main use case: The
creation of new simple exercises.

We compiled 20 new exercises and measured them with the python shell. We timed from
the moment we clicked submit to the moment we were redirected. This contains not only the
compilation time, but the network delay, which should be neglectable.

Out of these 20 simple exercises of different lengths, the compilation time for all exercises
was very similar and resulted in an average compilation time of around 3.2 seconds.

The NFR7 had to prove that the system can recreate all the internal objects from the material
from the "Material" Git repository in less than 10 seconds. The Git repository data is 1061400
bytes big, roughly about 1,1GB when testing the benchmarks. We tested the implemented
method directly per ssh with this python code:

>>> start = time.time() ;\
... actualizeMaterial(material_git_path) ;\
... end = time.time() ;\
... print(end-start)

And created a main value between all 20 tests. We made sure to leave exactly one second
between each timing to have more reliable data.

(4.613s + 4.432s + 5.093s + 4.619s + . . . )
20

≈ 4.804 seconds

34



6 Results

Therefore, this benchmark for the content of the folder of 1,1GB showed us, that our system
can handle actualizing all Material from the Git repository in less than 5 seconds, which
leaves our non-functional requirement fulfilled.

6.2.1 Benchmarks Conclusion

As can be seen in the conducted benchmarks, the bottleneck of our system is the compilation of
the LaTEX files, since even a simple and short LaTEX problem already needs around 3 seconds
to compile. For a large amount of files, the combined compilation time can thus be arbitrarily
big, scaling proportionally to the number of files (as no multithreading/multiprocessing is
implemented).

35



7 Summary

7.1 Status

The status of the functional requirements (FRs) and non-functional requirements (NFRs),
from the section [2.3] will now be presented. The level of fulfillment is divided in these three
measures:

Requirement was accomplished: The requirement is implemented and finished.

Requirement was partially accomplished: The requirement is not finished, but partially
achieved. The implementation has to be completed to be accepted by the client.

Requirement was not accomplished: The requirement was not achieved.

7.2 Realized Goals

We fulfilled most of our functional requirements as seen in this table at the time of our writing
(see full requirement in section [2.3]):

Functional requirements Status

FR1 Create Exercise
FR2 Correct Exercise
FR3 Synchronization with GitLab
FR4 List GBS Material
FR5 Search Exercises
FR6 Create Exercise Sheets
FR7 Automatic creation of Exercise Sheets

Table 7.1: Implementation status of the functional requirements.
( completed | partially completed | incomplete)

36



7 Summary

Nonfunctional requirements Status

NFR1 Ease of use
NFR2 Ease of use
NFR3 Ease of use
NFR4 Safety
NFR5 Robustness
NFR6 Performance
NFR7 Performance
NFR8 Maintainability

Table 7.2: Implementation status of the nonfunctional requirements.
( completed | partially completed | incomplete)

As we saw in the given feedback, we accomplished our "ease of use" NFRs. The bench-
marks show the fulfillment of the "performance" NFRs, while the "safety", "robustness" and
"maintainability" NFRs were fulfilled by the used packages and project structure.

7.3 Open Goals

Although we completed all NFRs, there is one functional requirement that was partially
accomplished (FR6) and another that was not accomplished (FR7). FR6: "Create Exercise
Sheets: Users can make exercise sheets and view the compiled file in the web system.", could
not be accomplished, because as seen in section [4.7], the state of the implementation is not
stable. The lack of time played the greatest part in not fulfilling these requirements before the
deadline of this thesis.

7.4 Conclusion

In this work, the design and implementation of the software engineered project GBS Tutoring
Toolwas presented and its complications elucidated. This new web system makes it possible
for the GBS course to have organized exercises that are accessible to tutors and students.
The system makes it easy to create and edit exercises, without having to master LaTEX.
Nevertheless, this new system can still be used in the old context of “GitLab”, since it interacts
with it.

We implemented the system communication with the TUM LDAP server to retrieve the
users data and reduce the complexity of user management as the admin only has to change a
single file. We created a synchronization algorithm that runs with a scheduler, to maintain
both subsystems up to date.

We programmed the logic for the creation and evaluation of new material and developed
the strategies for adding functionality to the problems.

37



7 Summary

In addition, we refined the project’s file structure to make it easier to adapt the project to
new applications, like the future subsystem "Tutor Management Application".

Finally, we deployed the system in a university server and subjected it to tests with the GBS
Kern and tutors.

In order to achieve these goals, the main strategy was to collaborate with tutors to collect
as many ideas as possible. Then they were analyzed and the first version of the GBS Tutoring
Tool was completed. However, to start a whole new system for only one developer was no
easy task. Coordinating meetings with the GBS Kern and the tutors, gathering their feedback
and improving the system demanded a lot of time.

Our part now is to motivate new developers to keep on working on the system and make it
an even better tool for students and organizers. We already accomplished this with the next
thesis, where a "Tutor management Subsystem" will be implemented. However, there are
more meetings planned, where we will introduce the system and explain the future work to
the next developers for the GBS Tutoring Tool.

7.5 Future Work

The GBS Tutoring Tool is already in a shippable state. Still, we should try to improve it
mostly before it begins to be used at the start of the 2021/2022 winter term. The first next
steps, will be to find the solution for the exercise sheets creation problem, reimplement it and
test it again, until it is in a usable state. Like we explained in the benchmarks conclusion,
new techniques for dealing with the system’s bottleneck should be implemented, such as
multiprocessing or multithreading.

The most valuable new functionality would be that the tutors and students could give
feedback to every problem. Then it would be easier and quicker to know which problems
should be redefined or are really well explained.

Another idea that was proposed in the Google Forms was to implement a statistics about
the problems. This would help a lot to understand which material students are reviewing
the most, or which are the problems that are causing the most difficulties to understand. It
could enable to measure which parts of the lecture are already explained well and in which
chapters there should be more problems for the students to practice.

In our feedback survey, the students proposed more tools inside the web system, such as
tools for the visualization of algorithms (e.g. buddy, clock, etc.) or to integrate the system
with "Artemis" in the question [7]. It would make the online teaching less complicated if both
systems could communicate automatically. But first, it should be investigated what is needed
and how the implementation and maintenance efforts relate to the derived benefit.

In addition, if the problems’ quantity increases much in the future, there are django
packages that help with implementing "Pagination" in the web sites. Pagination lets you
decide how many problems to show per webview, to help dealing with possible performance
issues that could arise from a large number of problems. As of right now, it doesn’t affect the
performance of the system, since there are no more that 50 problems.

38



List of Figures

1.1 Schematic representation of the main seven stages with the Waterfall Model. . 4
1.2 Schematic representation of the main seven stages with the Iterative Model. . 4
1.3 The GBS Tutoring Tool SDLC Model . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Use Case Model. A student creates an exercise idea, that gets edited from a
GBS Kern member and changes to a valid usable problem. . . . . . . . . . . . . 13

3.1 The "gbs-tutorials" git folder. White boxes represent files and blue boxes folders. 16
3.2 Problem "scheduling4" from chapter "Prozesse" with approximately 237 lines

of tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Structure of a problem file, consisting of header, problem and subproblem. . . 17
3.4 Header problem example for the "petrinetze3.tex" file. . . . . . . . . . . . . . . 19
3.5 Analysis object model describing the classes associations from an application-

domain perspective (UML class diagram). . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Subsystem Decomposition (The UML Component and Subsystem Diagram). . 25
4.2 Structure change from the "gbs_tutoring_tool" project folder. White boxes

represent files and blue boxes folders. . . . . . . . . . . . . . . . . . . . . . . . 28

39



List of Tables

7.1 Implementation status of the functional requirements. . . . . . . . . . . . . . . 36
7.2 Implementation status of the nonfunctional requirements. . . . . . . . . . . . . 37

40



Bibliography

[Son+04] L. Song, E. S. Singleton, J. R. Hill, and M. H. Koh. “Improving online learning:
Student perceptions of useful and challenging characteristics”. In: The Internet and
Higher Education 7.1 (2004), pp. 59–70. issn: 1096-7516. doi: https://doi.org/10.
1016/j.iheduc.2003.11.003. url: https://www.sciencedirect.com/science/
article/pii/S1096751603000885.

[KS18] S. Krusche and A. Seitz. “ArTEMiS: An Automatic Assessment Management
System for Interactive Learning”. en. In: Proceedings of the 49th ACM Technical
Symposium on Computer Science Education - SIGCSE ’18. Baltimore, Maryland, USA:
ACM Press, 2018, pp. 284–289. isbn: 978-1-4503-5103-4. doi: 10.1145/3159450.
3159602. url: http://dl.acm.org/citation.cfm?doid=3159450.3159602.

[BD13] B. Brügge and A. H. Dutoit. Object-Oriented Software Engineering Using UML,
Patterns, and Java. eng. Third Edition. Pearson, 2013. isbn: 978-1-292-02401-1.

[Gue+17] G. Guest, E. Namey, J. Taylor, N. Eley, and K. McKenna. “Comparing focus groups
and individual interviews: findings from a randomized study”. In: International
Journal of Social Research Methodology 20.6 (2017), pp. 693–708. doi: 10.1080/
13645579.2017.1281601. eprint: https://doi.org/10.1080/13645579.2017.
1281601. url: https://doi.org/10.1080/13645579.2017.1281601.

[VN16] N. Vasantha Raju and H. N.S. “Online survey tools: A case study of Google Forms”.
In: Jan. 2016. url: https://www.researchgate.net/publication/326831738_
Online_survey_tools_A_case_study_of_Google_Forms.

[Jou18] T. E. Journal. Python is becoming the world’s most popular coding language. https:
//www.economist.com/graphic-detail/2018/07/26/python-is-becoming-the-
worlds-most-popular-coding-language. Accesed on: 20/10/2020. 2018.

[Fou20a] P. S. Foundation. The Python Programming Language Documentation, Version 3.1. Last
accesed on: 10/01/2021. Aug. 2020. url: https://docs.python.org/3.8/.

[Rog17] J. Rogowski. “The Comparison of the Web Application Development Frameworks”.
In: Institute of Information Technology, Lodz University of Technology (Mar. 2017). url:
https://itcm.comp-sc.if.ua/2017/Rogowski.pdf.

[Fou20b] D. S. Foundation. The Django Project Documentation, Version 3.1. Last accesed on:
15/01/2021. Aug. 2020. url: https://docs.djangoproject.com/en/.

[Ben20] A. Bendoraitis. Django 3 Web Development Cookbook - Fourth Edition. Ed. by J.
Kronika. Packt Publishing, 2020. url: https://learning.oreilly.com/library/
view/django-3-web/9781838987428/.

41

https://doi.org/https://doi.org/10.1016/j.iheduc.2003.11.003
https://doi.org/https://doi.org/10.1016/j.iheduc.2003.11.003
https://www.sciencedirect.com/science/article/pii/S1096751603000885
https://www.sciencedirect.com/science/article/pii/S1096751603000885
https://doi.org/10.1145/3159450.3159602
https://doi.org/10.1145/3159450.3159602
http://dl.acm.org/citation.cfm?doid=3159450.3159602
https://doi.org/10.1080/13645579.2017.1281601
https://doi.org/10.1080/13645579.2017.1281601
https://doi.org/10.1080/13645579.2017.1281601
https://doi.org/10.1080/13645579.2017.1281601
https://doi.org/10.1080/13645579.2017.1281601
https://www.researchgate.net/publication/326831738_Online_survey_tools_A_case_study_of_Google_Forms
https://www.researchgate.net/publication/326831738_Online_survey_tools_A_case_study_of_Google_Forms
https://www.economist.com/graphic-detail/2018/07/26/python-is-becoming-the-worlds-most-popular-coding-language
https://www.economist.com/graphic-detail/2018/07/26/python-is-becoming-the-worlds-most-popular-coding-language
https://www.economist.com/graphic-detail/2018/07/26/python-is-becoming-the-worlds-most-popular-coding-language
https://docs.python.org/3.8/
https://itcm.comp-sc.if.ua/2017/Rogowski.pdf
https://docs.djangoproject.com/en/
https://learning.oreilly.com/library/view/django-3-web/9781838987428/
https://learning.oreilly.com/library/view/django-3-web/9781838987428/


Bibliography

[Ron20] A. Ronacher. The Pallets Projects: Flask Documentation, Version 1.1. Last accesed on:
10/11/2020. Aug. 2020. url: https://flask.palletsprojects.com/en/1.1.x/.

[Bha20] V. Bhatnagar. Comparative study on Python web frameworks: Flask and Django. May
2020. url: https://urn.fi/URN:NBN:fi:amk-2020052513398.

[KH09] J. Kaplan-Moss and A. Holovaty. The Definitive Guide to Django: Web Development
Done Right, Second Edition. Ed. by D. Parkes. Apress, 2009. url: https://learning.
oreilly.com/library/view/the-definitive-guide/9781430219361/.

[Con20] S. F. Conservancy. GitLab Documentation. Last accesed on: 20/10/2020. Oct. 2020.
url: https://docs.gitlab.com/ee/.

[Atl20] Atlassian. Jira Documentation. Version 6.4. Last accesed on: 20/10/2020. May 2020.
url: https://confluence.atlassian.com/jira/jira-documentation-1556.
html.

[Sag19] P. Sagerson. Documentation Django Authentication Using LDAP, latest Version. Last ac-
cesed on: 15/01/2021. May 2019. url: https://django-auth-ldap.readthedocs.
io/en/latest/index.html.

[TC15] M. Trier and Contributors. GitPython Documentation, stable Version. Last accesed on:
05/02/2021. May 2015. url: https://gitpython.readthedocs.io/en/stable/.

42

https://flask.palletsprojects.com/en/1.1.x/
https://urn.fi/URN:NBN:fi:amk-2020052513398
https://learning.oreilly.com/library/view/the-definitive-guide/9781430219361/
https://learning.oreilly.com/library/view/the-definitive-guide/9781430219361/
https://docs.gitlab.com/ee/
https://confluence.atlassian.com/jira/jira-documentation-1556.html
https://confluence.atlassian.com/jira/jira-documentation-1556.html
https://django-auth-ldap.readthedocs.io/en/latest/index.html
https://django-auth-ldap.readthedocs.io/en/latest/index.html
https://gitpython.readthedocs.io/en/stable/

	Acknowledgments
	Abstract
	Contents
	Introduction
	Problem
	Purpose of the System
	Models
	Visionary Scenarios

	Strategy
	The Software Development Process Life Cycle


	Requirements Elicitation
	Requirements Ideas
	Redefining the Requirements
	Formulary with Tutors ideas
	BBB conferences with GBS Kern:

	Final Requirements
	Functional Requirements
	Non Functional Requirements

	The Use Case Model

	Analysis
	Decomposition of the Git System
	Base Problem Structure
	Problems Header
	Programming Language
	Python Web Application Framework
	Database
	Virtual Environment

	Analysis Object Model
	Tools

	System Design & Implementation
	Subsystem Decomposition
	User Registration and Authentication
	LDAP

	Synchronization with Git
	GitPython Framework
	Problems Synchronization Logic

	Project Structure for new Subsystems
	Web System Home
	LaTEX Editor Implementation
	The Creation of Exercise Sheets

	Deployment
	VM Infrastructure
	The Web Server

	Results
	Feedback Data
	Feedback Conclusion

	Benchmarks
	Benchmarks Conclusion


	Summary
	Status
	Realized Goals
	Open Goals
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography

